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Transient Analysis of Coaxial Cables
Considering Skin Effect”

R. L. WIGINGTONT anp N. S. NAHMANTY, ASSOCIATE MEMBER, IRE

Summary—A transient analysis of coaxial cables is made by
considering the skin effect of the center conductor as the distorting
element. Generalized curves are presented by which the response of
any length of coaxial cable can be predicted if one point on the at-
tenuation vs frequency curve is known. An experimental check on
the analysis is made by comparing measurements and prediction of
the responses of several different coaxial cables.

INTRODUCTION

N A STUDY of oscilloscope systems for use in ob-
J:[ serving voltage waveforms of the duration of a few

millimicroseconds (1 mus=10—? sec), the problem
of the distortion of waveforms by the high frequency
loss of coaxial cable was encountered. Elementary con-
sideration of the problem indicated a degradation of
fast rise times (1 mus or less) due to greater attenuation
of the high-frequency components of the signal.

In polyethylene dielectric coaxial cables, the conduc-
tance loss is extremely small. Polyethylene has a dissi-
pation factor of 0.0031 at 3000 mc! and less at lower
frequencies. Likewise, in air dielectric cables the con-
ductance loss is even less. Therefore, the major portion
of high-frequency loss could not be blamed on leakage
conductance. The other source of loss in coaxial cable is
the series resistance of the center conductor. For analy-
sis the skin effect of the outer conductor was considered
to be lumped with the skin effect of the center conductor
increasing it slightly. Using empirical data to evaluate
the skin effect constant achieves this directly. Ordinary
analysis of transmission lines ignore this resistance as
being negligible. However, at frequencies at which the
skin effect of conductors becomes significant, the analy-
sis must include its effects, both as series resistance and
inductance.

In this analysis, a transmission line is treated as a
four-pole network. With the aid of an approximation
which is good at high frequencies, an analysis including
skin effect and neglecting dielectric effects can be made.
All calculations are in mks units.

PossIBLE APPLICATIONS

Before proceeding with the analytical details of the
problem, a few words about the engineering applications
would be indicative of the role which skin effect distor-
tion in coaxial cables may play in contemplated and
future systems using fast transients.

* Original manuscript received by the IRE, August 20, 1956;
revised manuscript received, October 18, 1956.

1 Natl. Security Agency, Washington, D. C. .

{ Univ. of Kansas, Lawrence, Kan. Formerly with Natl. Se-
curity Agency, Washington, D. C.

1 Reference Data for Radio Engineers,” Federal Telephone and
Radio Corp., 3rd ed., p. 51.

The origination of this problem was in the design of
an oscilloscope system.for observing very fast rise times,
1 mus or less. In triggered oscilloscope systems a signal
delay path (usually a simulated line or a coaxial cable)
is necessary to allow time for the trigger circuits to
detect the pulse to be observed and to start the sweep.
The delay of this path is 50 mus or longer in present
systems. As shown in this paper, the distortion in this
amount of coaxial cable is very serious for millimicro-
second transients. Therefore, along with the other
limitations of oscilloscope systems (such as rise time of
the signal amplifiers, writing speed, and vertical sensi-
bility), the distortion due to the signal delay cable must
be considered. Perhaps a knowledge of the form of this
distortion will enable the extension of the range of oscil-
loscope systems which are limited by the signal delay
distortion.

If preserving the rise times in fast pulse circuits is in
any way critical to the proper operation of the circuitry,
one must begin to consider the skin effect distortion in
10-mc prf circuits for long cable runs, and in 100-mc prf
circuits, the distortion would be troublesome even in
short cable lengths. The practice of using special small
size coaxial cable to conserve space results in greater
attenuation per unit length than for larger cable of the
same characteristic impedance, and thus, also makes
the skin effect distortion greater.

Another example of a problem in which the analysis
may be very useful is in the analysis of regenerative
pulse generators, a circuit which is essentially a loop
consisting of an amplifier and a delay circuit.? For prac-
tical, high rep-rate pulse generation, the delay circuit is
usually a coaxial cable. The pulse shape obtained is a
composite of the characteristics of the cable and of the
amplifier.

In short, for any electronic circuit application using
coaxial cables as transmission media to provide either
time delay or transmission of millimicrosecond pulses,
the effects of skin effect distortion must be considered.

ANALYSIS

For a transmission line of length, /, terminated in its
characteristic impedance, Z,, and with propagation con-
stant, v, the following relation exists between input
(E.) and the output (E;) voltages as functions of com-
plex frequency:®

2 C. C. Cutler, “The regenerative pulse generator,” Proc. IRE,
vol. 43, pp. 140-148; February, 1955.

# The complex variable is the Laplace Transform variable p.
Egs. (1) and (2) comprise the Laplace Transform equations of the
system differential equations.
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Ey = e 7E, (1)
where in general 9 term 8L I K
v =V R+ pL)(G + pC) (2a) | p2 term - Kp2 1/6 h ,4Lp1/2
R L 2 L
G + pc' = . (7)
4L~/ 2xf

For high frequencies (skin depth small with respect to
conductor radius), the skin effect impedance of a round
wire is:*

Z, = K‘\/} (33)
and
1 /u
=—QY/— 3b
2@y (3b)

where 7 is conductor radius, p is the permeability and ¢
is the conductivity of the wire.

At high frequencies the series resistance of a wire is
expressed by the skin effect equation. Since an increase
in inductance is also caused by skin effect, it is treated
as an impedance rather than as a resistance. Therefore,
replacing R in (2) by Z, and neglecting dielectric leakage
(G=0), (2) becomes

y = V(EVP + pL)sC (4a)
K~v/p+ pL
7, = 1/ VPt L (4b)
C
The transfer function of a length of line is then:
=2 =1 = W PLC+pCKVD, (5)
1

The inverse Laplace Transform of the transfer func-
tion (5) is the impulse response of the section of line. For
simplification, the following approximation was made.
Expanding the square root in the exponent of (5) by the
binomial expansion, one obtains

7(p) = (PUIC + prCEH?

pllz
pvIC + 4/—+ Z(—l)ﬂ-l

<13‘(21’L—3)) /‘/___ 1-n/2 6
. Qn—1y, L1 p ( )

The first term of (6) is the delay term and the remain-
ing terms describe the waveform distortion. The series
is an alternating convergent series (for p2LC> p¥/2CK).
Approximating it by the second term of (6), the pl/2
term, results in an error less than the next term, the p°
term. The ratio of these two terms will be used as a
measure of validity of applying this approximation to
specific examples.

‘S. Ramo and J. R. Whinnery, “Fields and Waves in Modern
Radio,” John Wiley and Sons, Inc., New York, N. Y.; 1944.

Using the first two terms of (6) in (5) and letting
Ro=+/L/C, T=+/LC, results in

E,

—L(pT+(K/2Ry) pM*) (8)
E,

The exp (—itp) is simply a delay term so that the in-
verse transform of (8) is the inverse transform of
exp (—IlkpY2/2R,) delayed an amount IT. The latter
exponential is a common transform and is listed in
ordinary Laplace Transform tables.’ Its inverse giving
the impulse response is:

g)) = ax=¥% Pz £ 20
©)
=0 x<0
where
IK IK \?
= — =<—— , and x =¢— TI.
4R/ 4R,

Of greater utility in studying the distortion of fast
rise times by skin effect are the step response and the
response to a linear rise. The step response can be ob-
tained by finding the inverse transform of 1/p times the
transfer function. As before, the transform 1/p exp
(—1lkp'?/2Ry) is listed in tables.® Therefore in terms of
x and 8 as defined above, the step response is:

h(t) = cerf ,‘/ﬁ
x

=0

x=0

x < 0. (10)

cerf (y) is the “complementary error function of y.”

The linear rise referred to previously is defined spe-
cifically as the following, and it will be referred to as a
ramp input.

Fi) =0 t1<0
= t/a 0<t=<a
=1 t> a.

The response to F(t), called f(¢), is given by the con-
volution of F(t) with the impulse response of the line,

g(®).
f(t) = j; F(t — 7)g()dr.

This integral reduces to the following special cases:

*S. Goldman, “Transformation Calculus and Electrical Tran-
sients,” Prentice-Hall, Inc., New York, N. Y., p. 423; 1949,
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Case I: 0<t=Tl f(t)=0 since g(r) =0 for 7 < T
Case II: TIZt<Tl+a

o= (5

Case III:t>Tl+a

)T"sme_ﬂ/’dr x=1— Tl

z—a
0= [resa
0

—I-f ( )T“"”B"’/'dT, x=1— TI
z—a a

Note that Case II is contained in Case III providing
that the integrands are limited to positive valuesof 7 only
for Case II.

Considering Case III only and evaluating with the
aid of the identity derived in Appendix I, one obtains

f(t)=cerf1/ b +—f<cerf ,‘/—‘i—cerf 4/ 8 > (11)
x—a a ® r—a

1 z
- f Tar 3% Plrdr,
aJzq

Integrating the last term of (11) by parts one obtains
1 z
——f Tar3/2¢Bl7dr
a z—a
x F x—a B
= — cerf —— cerf /‘/
a x a x—a
1 - B
- — f cerf /‘/ — dr.
a z—a T

Observing that the first two terms of (12) cancel the
corresponding terms of (11), the function f(¢) is simply,

I B
(1) = —f cerf {/ — dr x=z0
a z—a T

x=t—T!

(12)

(13)

with the understanding that for x <a the lower limit is
zero.

As verification, one may note that the limit of the
ramp response as “a” approaches zero is simply the step
response. Also, as x gets large, the function approaches
unity; physical interpretation of the function required
that this be true.

EvALUATION OF CONSTANTS

Using the first two terms of (6), the propagation con-
stant is approximately

v(p) = oT + £ P’
2R,

. K Jo ‘(T+K1/;_)
v(jw) _Z_R_o —2‘+J w 2R 2
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The real part of y(jw) is the attenuation constant of the
transmission line, for the purposes of the analysis,

called C(f).
K+/xf

e = IR,

nepers/meter. (14)

Any coaxial cable whose attenuation constant obeys
the above law will have a straight line relation of slope
one-half between the logarithm of the attenuation con-
stant and the logarithm of the frequency. The majority
of types of coaxial cable have very nearly this character-
istic (see Fig. 1). The ratio of C(f) to /f from (14) is
therefore a constant for each type of cable and can be
calculated from the attenuation characteristic of the
cable.
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References:

1), 2), 3)—Brochure of Phelps-Dodge Copper Products Corp.

4),5),7), 8), 9—“Reference Data for Radio Engineers,”
Federal Telephone and Radio Corp., 3rd ed.

6)—Catalog N, General Radio Co.

Fig. 1—Attenuation vs frequency characteristics for common coaxial
cables.

In this way, the value of K, and subsequently of 3,
can be evaluated for each case as follows:

5 (IK)2 B ( I 2RC(fo) )2 _ (lC(fo) )2
4Ro ‘4Ro \/ W—fo- 2\/;"%—
where fo is the frequency chosen to evaluate 8. For con-

venience in calculation let I= T;_/_ T where T is the time
length of the cable and T"=+/LC is the delay per unit

length.
B=<Tam){
2T/xfo

(15)

(16)
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RESISTIVE TERMINATION

The analysis assumes that the transmission line is
terminated in its characteristic impedance which is
given in (4b). However, in the ordinary circuit, a purely
resistive termination of value Ro=+/L/C would be
used. To see at what frequencies R, would be a good
approximation for Z,, the following comparison of
actual Z, with R, is made.

From (4b)
2L+ K/p ( K )”2
z =1/—————= R+ ——=
0 C 0+C\/{)
K K?
= Ry + + e 17)

2RCP  8RJCHH

The fractional deviation of Z, from R, as a function of p
is less than the second term of (17) divided by R,. The
smallness of the magnitude of this fraction indicates the
closeness of approximation.

Zo(p) — Ro ‘ K ‘ _
Ry 4RC/p|  4RCA/2xf
Since Ro2C =L then (18) is the same as (7). Thus, 4, the

validity constant calculated previously is also an expres-
sion of the departure of Z, from R,.

(18)

GENERALIZATION OF THEORY

In order to present curves with which any transient
problem involving skin effect distortion of rise times
could be solved, the theory is generalized. First, the
assumption is made that any rising function can be ap-
proximated sufficiently closely for engineering analysis
by a series of a few straight line segments. The response
to any function can then be obtained from the sum of
the responses to the ramp functions used for approxima-
tion. A generalized ramp response is then the function
to be plotted.

Recalling from the analysis the three basic functions,

Impulse response = g(¢)

= g(x “I" Tl) = /‘/—B— x—3/26—ﬂ/3 (9)
T

Step response = f(f) = f(x 4+ TI) = cerf ,‘/ﬁ (10)
X

Ramp response = A(f)

1 p- B
=h(x+ T = ;f cerf ,‘/ﬁ dr (13)
z—a T

x = 0, all cases,

the problem is to generalize them so that 3, the constant
which is determined by the specific case, does not appear
in the functions, but only in the scales to which the
responses are plotted.
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As the first step, the transformation x =8p is used in
(9). The resulting function of p is®

p—3/2e—1/p
g(p) = V- z0 (19)
or
p—3/2e—1/p
Bgo(p) = T p=0. (20)

To apply the normalized impulse response (20) as
plotted in Fig. 2 to a specific case, the 3 is calculated
from (15) or (16) using physical data. The horizontal
scale is then multiplied by 8 and the vertical scale di-
vided by 8 to obtain the impulse response g(x+ T7) vs x.

0.25

0.231

0.20 /
0is N

8s.(0)

°

o
—_—

\\
0.05
/ |
° o 05 é/S 1.0 15 20 25 3.0 35 4.0
0
Fig. 2—Normalized impulse response,
p~VPp32
Bg(p) = 7

Performing the same transformation in (10), a nor-
malized step response is obtained.

1
ho(p) = cerf /‘/—— p=0.
p

To obtain k(x4 T7) vs x the horizontal scale is multiplied
by the proper 8.

Likewise, performing the same operation on (13), the
normalized ramp response is obtained.

1 pr 1
folp) = -—,-f cerf /‘/— dp p=0 (22)
a p—a’ 14

where ¢’ =a/8.

This represents a family of curves (Figs. 3, 4, and 5)
with @’ as the parameter. Practical utilization of them
again requires only a time scale multiplication of mag-
nitude 8. Thus, the response of a particular piece of
coaxial cable is obtained for a series of ramp inputs with
0-100 per cent rise times of a¢’8. For a’ =0 the step re-

@1

. ® This transformation is simple; however much confusion can arise
if one does not state and visualize the problem. This is particularly
true with respect to obtaining (22). See Appendix II for details.
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sponse (21) is obtained. The ramps corresponding to a’
larger than the largest one plotted are relatively undis-
torted.

EXPERIMENTAL VERIFICATION

The experimental verification of the analysis which
has been presented required the use of an extremely
wide-band oscilloscope. Facilities which were available
at the Naval Research Laboratory were used to obtain
the transient response of eight pieces of coaxial cable.”
Two time lengths of each of four types of cable, namely,
RG-8/U, RG-58/AU, General Radio-874A2, and %-inch-
diameter Styroflex, were tested. The signal applied to

7 See Acknowledgment.
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Fig. 5—Normalized ramp responses,

the cables was approximated by five ramp functions,
and the response was calculated and compared with the
observed response for each case.

EXPERIMENTAL SYSTEM

Fig. 6 shows the cable comparison test circuit em-
ploying the NRL TW-10 traveling-wave cathode-ray
tubes as the indicating instrument. The TW-10 has a
bandwidth well in excess of 2000 mc, which should be
sufficient for displaying rise times of the order of 0.1
mys.

STYROFLEX COAX

MERCURY SWITOH TEST SECTION
O isen 250 OR 50 mus

29mys
ST YROFLEX|

TW VERTICAL
DEFLECTION PLATES

VERT. CENT
VOLTAGE

1000 MC. CW
OSCILLATOR

_____

DELAY
BOX

'
| 100" RG~58/AU
'

! Hi TW- 10
1
Tl

Fig. 6—Cable comparison test circuit.

SWEEP

INTENS .

The test pulse was generated by a mercury contact
relay pulser giving a 60-volt pulse, 45 mus wide and
having a rise time of 0.25 mus. Some signal delay
(179 mus of Z-inch Styroflex) was required to allow time
for operation of the sweep and intensifier circuits of the
crt. The pulse observed at the end of the 179-mus delay
was called the standard pulse. Cable test sections of
either 150 or 250 mus were added, and the response
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of the added sections to the standard pulse, as well as
the standard pulse itself, were recorded photographi-
cally. Time reference was added to each photograph by
applying a 1000-mc sine wave to the crt and taking
double exposures.

ANALYSIS OF DATA

Data was taken from the photographs using the sine
wave as the time reference and the maximum amplitude
of the standard pulse as the amplitude reference.

The rise of the standard pulse (Fig. 7) was approx-

X_OBSERVED POINTS
O APPROXIMATION POINTS

-

N 109 sec.

(112,103
i TN\ (-4, 092)
— (460,0.99)
(091, 0.805)

o
k3

/ (0.68,0.33)
/0.30. o)

Fig. 7—Standard pulse and linear approximation.

o
>

AMPLITUDE

o
[

o

TN 109 sec

imated by five straight line-segments as specified in the
following Table I.
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segment, were calculated from the general curves in
Figs. 3, 4, and 5.

The general curves consider ramp responses for ramps
of amplitude unity; therefore, it was necessary to cor-
rect the amplitudes as listed in Table I. Points (in time)
for calculation were preselected so that when the ramp
responses were shifted according to the correct £, (listed
in Table I) addition of ordinates would give the re-
sponse to the standard pulse. The calculated responses
as compared to the observed responses are given in
Figs. 8-11 (next page).

In all cases no attempt was made to keep track of the
zero time position of the transients. No information as
to the time at which the transient first departed from
zero amplitude after passing through a test section with
respect to the time at which the transient “entered” the
test section could be obtained. This difficulty is the
same as is always met in relating physical transient data
to mathematical prediction. The mathematician can
define exactly a time before which the system is quies-
cent. However, the engineer must define the beginning
of a transient as the time at which the waveform reaches
same measurable value.

For comparison of calculation and observation,
therefore, the curves were shifted in time relative to
each other so the leading edges most nearly coincided at
the region of steepest slope.

EXPERIMENTAL RESULTS AND DEPARTURES
FROM THEORY

From the comparisons of Figs. 8-11, one may conclude
that in the coaxial cables considered the major cause of
distortion of fact rise time transients is the skin effect.
Each type of cable seems to have its own characteristic
departure from the predicted response. During this
study the causes of some of the departure has become
apparent.

First, the analysis involves an approximation in tak-
ing the inverse transform of the transfer function as

TABLE I
ANALYSIS OF STANDARD PULSE

. End Points of Segments . 0-100 Per Cent Rise
Line Segment (10-* second, Amplitude) Amplitude Time to
1 (0.34, 0); (0.68, 0.33) 0.330 0.34X107? second 0
2 (0.68, 0.33); (0.91, 0.805) 0.535 0.23 0.34X1079 second
3 (0.91, 0.805); (1.12, 1.03) 0.165 0.21 0.57
4 (1.12, 1.03); (1.34, 0.92) —-0.110 0.22 0.78
5 (1.34, 0.92); (5.00, 1.00) 0.080 3.66 1.00

The approximation to the standard pulse is then a
succession of ramp functions having rise times and
amplitudes as specified above and each starting at the
appropriate .

The B8 and appropriate values for a’ for each case were
calculated from (16) and a’ =a/f [see (22) ]. Considering
now each example (z.e., 150-mus delay of %-inch Styro-
flex), five ramp responses, one for each approximation

expressed in the validity constant 4 (7). The 4 for each
case is indicated on the graphs (Figs. 8-11). As yet no
quantitative measure has been developed to determine
limits of error due to a particular value of 4. However,
the values of 4 in the examples considered are believed
to be sufficiently small as to cause negligible error in the
time range plotted. One may note that in the propaga-
tion constant y(p) (6) the first term ignored is a con-
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stant (p° term) which adds nothing to the distortion
and only insignificantly affects the amplitude.

The analysis assumes a f% law for the variation of
attenuation with frequency [see (3) and (4)]. This is
very nearly true for Styroflex cable. However, other
cables have a somewhat greater exponent, GR-874 being
as high as 0.6. A more elaborate analysis using f=,
0=m=0.5, has been made; however its usefulness is
questionable since it cannot be directly related to the
real physical problem. A realistic approach is to search
for a second distorting factor such as dielectric loss
which in this study was assumed to be negligible.
Dielectric loss should be greater for GR-874 and other
polyethylene dielectric cables than for Styroflex, al-
though still it should not be the major distorting mecha-
nism. Work on this phase of the problem is continuing.

Useful engineering results may be obtained even
though the f% law is not followed exactly by the cable.
The choice of the frequency at which 8 is evaluated (16)
then becomes important. The frequency chosen in this
study was fo = 1000 mc because the components of most
importance were in the region of 1000 mc (considering
a logarithmic frequency scale).

The bandwidth of the TW-10 was considered to be
sufficient not to distort appreciably the response. The
10-90 per cent rise time of the standard pulse is 0.5 mus.
Approximately 700-900 mc of bandwidth (to the 3-db
points) is needed to pass such a rise. The designers of
the TW-10 oscilloscope system have established that
the 3-db point of the deflection structure is well in
excess of 2000 mc although no detailed data of deflection
as a function of frequency is available. The ringing
which is evident in some of the responses is probably due
to the slight impedance discontinuities in the system.

Another possible source of error is in the nonlinearity
of the crt deflection as a function of input amplitude.
Checking this possibility showed that the crt deflection
was within approximately 2 per cent of being linear. A
slight curvature of the field of view (sometimes called
“pin-cushion effect”) made transcription of amplitude
data difficult for time values of 3 to 5 mus after the be-
ginning of each response. Errors of up to 4 per cent
(positive) may arise from this cause.

The RG-8 flexible connection between the TW-10
and the waveform to be observed (not explicitly shown
in Fig. 6) does introduce appreciable distortion in the
crt display; however, it does not invalidate the tech-
nique used to check the analysis.

Referring to Fig. 6, let the waveform entering the test
section be represented by Fi(p).® Let the transfer func-
tion of the 15-mus RG-8 connecting cable be Gi(p). Also
let Fy'(p) represent the waveform observed on the CRT
(the standard pulse) when the test section is not in-
cluded. Then, Fy(p) = Fi(p)Gi(p). Now let G2(p) be the
transfer function of the test section of cable. Then,

8 These expressions are given in complex variable form as Laplace
transforms of the time functions.
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Fy(p) which represents the waveform observed on the
CRT when the test section is included is given by

Fy(p) = Fi(p)G2(9)G:(p)
= F1(p)G.(p)Ga(p) = F{'(p)G(p)

since transfer functions of passive networks are com-
mutative.

In words, what this means is that the distorting ele-
ment, Gi1(p) having been present both in observation of
the input and output of the test section allows isolation
of the characteristics of the test section alone. This is the
basis for all comparison type measurement techniques.
For accuracy, the distortion due to G;(p) must be of the
same order of magnitude or preferably less than that
due to Ga(p). It is less in all cases.

CoNCLUSION

The analysis as described is a first order theory for
the transient response of coaxial cables. As presented,
it is useful in engineering problems involving milli-
microsecond transients, however, later refinements in
the theory may permit greater accuracy for cables in
which dielectric loss is an appreciable factor.

APPENDIX I

The following identity was useful in the analysis.

I(x) = f z/‘/—ﬁ— 7312 Bl7dr = cerf /‘/—'B— .
0 ™ X

It may be verified by using Laplace Transformation
operational theorems.? Letting L indicate the operation
of taking the Laplace Transform and L-! the inverse,

e )

L[I(x)] = —;;— L[,‘/gx—3/2e—ﬂlz:| _ 11)
I(x) = IL[I(%)] = L [% -m] ~ eert 1/%—

This inverse has been listed.?

Since a function which is expressed as a definite in-
tegral with a variable in the limits is a function only of
the limits, then

I(x — a) =f /‘/—B—T—me“’/’dr = cerf /‘/ b
0 ™ *—a

ArpPENDIX II

The normalization of (9), (10), and (13) to obtain
(19), (21), and (22) is performed as follows. Consider
first (9) and (10).

gz 4+ TI) = ,‘/E- 3% Blz x>0 ©)
™

x4+ TI) = cerf ,‘/——B—
x

® C. R. Wylie, “Advanced Engineering Mathematics,” McGraw-
Hill Book Co., Inc., New York, N. Y.; 1951.

£20.  (10)



e FROCEEDINGS OF THE IRE

Let x=08p

p——3/2e-—1/p

B
T = - —3/2¢—1/ =
g(Be + T1) 1/ L Boy et = —

h(Bp + T1) = cerf ,‘/——1—
0

As written above, the functions g and % are still plotted
on the x time scale although x does not appear in the ex-
pressions. Changing the time scale to the dimensionless
p (6 has the dimensions of time) new functions go(p) and
ho(p) are obtained.

p—3/2e—l/p
= =— =20 19
B == (19
1
ho(p) = cerf /‘/-— p=0. (21)
p
For plotting, (19) is changed to
p—3/28—llp
Bgolp) = —=— p20. (20)
VT

Note that in the transformation the shape of the
functions were preserved, and in order to plot the func-
tions g(x+7T17) and k(x4 T1) for any particular physical
case the horizontal scale is altered by the factor 8 for
that case. In (20) the vertical scale must also be altered
by the factor 8.

Considering (13), more care must be used in the
change of time scales.

1 = B
f(x+Tl)=——f Cerf/‘/f-d’r =0 (13)
aJ g T

In the above, change the scale on the dummy variable

February

by the substitution #=8p. A corresponding change of
scale must be made in the limits by dividing by 3.

1 z/B T
flx+ T = ——f cerf 1/— Bdp.
a J (z-a)/8 P

The function is now set up for normalization by
letting x=fBp and plotting the resulting function

folp)=f(Bp+T1) vs p

BelB

1
cerf /‘/ — dp.
a J Bp—a)/8 P

le) = (8o + T = =

Finally, letting ¢’ =a/8,

1 e 1
folp) = ~,f cerf /‘/— dp
a Jpa P
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CORRECTION

The editors wish to point out the following correction
to “SSB Performance as a Function of Carrier Strength,”
by William L. Firestone, which appeared on pages 1839-
1848 of the December, 1956 issue of PROCEEDINGS. On
page 1843, the illustrations in the first column identified
as Fig. 10 and Fig. 11 should be transposed.



