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Abstract

This review considers standard approaches for describing particle propagation and interac-
tion. Quantized fields are introduced. A model of quantum electrodynamics is developed. The
anomalous electron magnetic moment is determined at one-loop precision, illustrating common
problem solving methods used with perturbative quantum field theories (pQFT). The predictive
scope of pQFT is discussed. The Standard Model is then presented in analogy. These are a
collection of notes combined from the courses PHY-855 and PHY-959 taught at Michigan State

University.
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1 Perturbative Quantum Field Theories

General quantized field theories begin with a classical system expressed through a suitable La-
grangian. This Lagrangian and related Hamiltonian may be considered in the continuum limit,
where discrete coordinates and parameters are converted to reflect a field, ¢(#,t). The Lagrange
density, .Z, representing the integrand of the Lagrangian, along with the Euler Lagrange equation
determines the equations of motion of the system.

A classical field is then promoted to an operator, quantizing the theory. Formalism describing
particle states, commutation relations between field operators, conjugate momenta, and creation
and annihilation operators are then introduced. The physical propagation of one particle between
two positions, the expectation of the product of two fields, requires a dependency on causality.
Consideration for the time ordering of fields is included in the standard descriptions of particle
propagators.

The functional structure of a propagator reflects physical features of the theory. In the case of
massive scalar particles, the position of a complex pole represents the physical mass. The residue
relates to the field strength renormalization.



The expectation of time-ordered field products is the Green’s function, G(&1,...,&,) of the
process. Fourier transform of the position-space Green’s function gives the momentum-space rep-
resentation, G (P1, -+, Pn). In an interacting theory, j incoming and k outgoing states are represented
with, G(Z1, ..., fj, Y1y eeey Uk )-

Interactions between particles can be incorporated perturbatively. The Hamiltonian is expressed
in the interaction picture and the interaction potential, Vi (t), is identified. Time evolution is then
related to V[(t) After individual fields are represented in the interaction picture, dependence of the
Green’s function on the potential is made clear. The expectation is then expanded perturbatively
with respect to this argument. The truncated Green’s function, Gtrunc(ﬁl, ..y Pn), removes depen-
dence on external leg corrections. Evaluating the Green’s function for propagators and interaction
terms helps to identify Feynman rules for a theory. These rules can be mapped to a diagram of
interest, and the Green’s function evaluated. The process’s probability can be further related to a
cross section or decay rate.

Determining a Green’s function at one-loop precision introduces an ultraviolet divergence related
to the unbounded loop momentum. A regularization scheme is used to derive physical meaning for
the theory parameters. Dimensional regularization is most common in high-energy physics. The
dimension, d of the theory is left variable, where convergent manipulations can be performed. A set
of renormalization conditions are introduced to absorb further divergences, redefining parameters
of the theory. The MS, minimal subtraction, or modified minimal subtraction scheme, are standard
in perturbative QCD (quantum chromodynamics). On-shell renormalization conditions are widely
used in QED (quantum electrodynamics). Last, the regulator is removed or replaced with its legit-
imate value, leaving finite observables. In practice, an estimation to second or third-loop order is
determined. The resulting level of error and applicability depends on the choice of renormalization.

1.1 Scalar Fields

The Lagrangian density for a real scalar field, ¢(Z,t), with a kinetic and mass term is:

2 = 5 (040)(0"0) — 5" (1)

With the Euler Lagrange equation, motion of this non-interacting system is found as the Klein
Gordon equation:

(8,0 +m?)p(,t) = 0. (2)

Canonical quantization is performed, and the field is exchanged for a quantum field operator,

A~

¢(Z,t). Equal time commutators for the field and its conjugate momentum are given below:

6, 1), 7(5,1)] = i6®) (& - §), (3)
[&(fﬂ t)? A(_‘ﬂt)] =0, (4)
[#(Z, 1), 7 (7, )] = 0. (5)

These relations reflect the fundamental brackets found in the classical theory, and the uncertainty
relation between observables. Taking the Fourier transform of ¢(Z,t),

6.0) = [ (L2, (a1 7 4 alppeent 7P ). ©)



The operators, a(p) and at, act to remove and create individual particle states of a given momentum.
The operators behave as:

a(p), a' ()] = (2m)*2w,6@ (5~ 1), (
H,a(p)] = —wpa(p), (8
()] = wpd! (¢), (
a'(p),a'(7)] =0, (10
(P), a(p)] = 0. (11

—

The expectation of time-ordered particle propagation between positions, <O\T(q3(5c’)q3(gj')) |0y =
Dp(%). The causal solution for this scalar field propagator, the Feynman-Stuckelberg propaga-
tor, is:

Dp(@d)= | ———1< . s 12
F (@) /(27T)32Ep etbrte= DT < (. (12)

Prior to integration in the complex plane, the functional form of the integral can be related to,

4 i
Dp(i) = / (d : d (13)

2m)4 p? — phys + i€’

d3p {e—iEpteiﬁ-f t >0,

Here, mzhys is the physical particle mass, and pole in the complex plane. The field strength
renormalization factor, Z, is the residue of the integrand. This expectation of field products is
related to its Green’s function, G(Z1, ..., ), and momentum-space Green’s function é(ﬁl, ey D)
More general processes with mteractlons are treated in the interaction picture of quantum
mechanics. The free theory, HO, is separated from the interaction component, H=H,+H »- The
time evolution operator is identified as, U(tg,tl) = eZHS (ta—t0) ifl-(ta—t1) ¢ SLCRCE to)  where H(?
represents the Schrodinger picture. Fields now take the form, ¢;(Z,t) = UT(t,to)p(Z, t)U(t, to).
Expanding the original Green’s function to reflect dependence on the interaction picture,

_ O T(r(a1)..- b1 (@n)exp(i [ d*a2)) |0)
(0| T'(exp(i [ d*x%7)) |0) '

(14)

Here, .£; is the interaction term, related to the interaction potential, Vi = — f d*x%;. This
dependence then can be expanded perturbatively in the Green’s function, introducing additional
products of field operators. Contributions to the solution at a given order reflect process diagrams.

The truncated Green’s function removes virtual contributions to each leg, identifying connected
interactions,

~ - -

G(ﬁlw 7ﬁnak17-- 7km)
[1; Gy T, G(k:)

Feynman rules related to components of each diagram, particle propagators and interaction
vertices, are identified and used to represent additional graphical processes mathematically. Such
rules can also be considered in momentum space.

étrunc(ﬁla'-'7ﬁn7£17'--7Em) = (15)

1.2 Regularization and Renormalization Procedures

When evaluating higher-order diagrams, loops involving the interaction and reinteraction of parti-
cles introduce a dependence on virtual particle kinematics. As the momenta of these propagators



are unbounded, the Green’s function becomes divergent. In a single-loop integral,

d'k 1 d*kp 1 i > K3
I = =3 = — Q dr——. 16
/ (2m)* k2 —m? + ie z/ (2m)* —(k% 4+ m?) (2m)* 4/0 "+ m? (16)

Here, the momentum vector is mapped from Minkowski space to Euclidean space with a Wick
rotation. After integrating over the surface of a four-dimensional unit sphere, the result diverges
with the Euclidean momentum normalization. General divergences related to unbounded particle
momenta are handled with a regularization scheme and formal choice of renormalization condi-
tions. These procedures allow for the definition of finite observables estimated with a perturbative
expansion.

Dimensional regularization is used commonly in high-energy physics. Integrals divergent in
four dimensions are expressed in terms of variable d dimensions. A Wick rotation is performed,
followed by integration over the d-dimensional unit sphere, and radial integration. A convergent
result is determined for some value of d. Later, this regulator is replaced by its true value, and any
observables are left finite. The result of the integral above is related to,

/ ddki(kQ _1 Ay = (—D"mdﬂr(”rzn‘)l/ 2) pd22, (17)

Further divergences appear from considering the one-particle irreducible contributions to the Green’s
function. These diagrams involve interaction vertices or virtual momenta which cannot be further
segmented. In considering perturbative contributions to a propagating scalar particle, irreducible
diagrams contribute to the Green’s function with self-energy, ¥(p). As repeated contributions to
the self-energy can be made, connected by a propagator, the Dyson series for a connected (two-point
interaction) Green’s function follows:

Ge(p) = Ge(a1,4%) = Dp + DpiX(p)Dp + DpiX(p) DpiS(p)Dp + . ..
Dp i B i (18)

" 1-iS(p)Dr  i/Dp+3(p) P> —mZ+3(p) + i

This result for G.(p) is expressed as the vertex function for a given theory, I'(p) = iG. ().
Dependence on the propagator momentum, p, can introduce divergences, requiring renormalization
of the theory. Specifically, renormalization conditions are introduced to give physical meaning to
the mass and field strength renormalization. In the on-shell scheme, the renormalized (two-point)
vertex function is set as,

(2) _
FR ‘p2:mzhys =0, (19)
9 @)
ﬁFR |p2:m;!2)hys — ]. (20)

Alternately, the mininal subtraction (MS) scheme is designed to remove ultraviolet divergent terms,
poles related to 1/e. In general, a factor of s, = (47)%€7€°¢ is kept, where vz is the Euler-Mascheroni
constant. Then, A\,s. = )\M—S,u%fZ . Here, the bare coupling of a Lagrangian, J,, is related to the
renormalization coupling, Aj7g, renormalization scale, g, and coupling renormalization constant,
Zy. The last is set such that I'g is finite in the zero-limit of €. The coupling renormalization
constant may then be expanded per-loop as,

1 1
Z>\ = 1+EZ>\71(>‘M75)+€72Z)\12()‘M7S)+"‘ (21)
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The Green’s function for particle propagation or interaction is reevaluated, deriving new Feynman
rules in terms of the renormalized theory parameters.

Finally, if a different renormalization scale, M is considered, the transformation of the vertex
function reveals a relation between the dimensionality of field parameters — the Callan-Symanzik
equation:

M = e* M, (22)

) 0 9
Mo e —— 1" =0, 2
( anr T PR Gy v (AR) +mei(Ar) amR> 0 (23)

Here, v(Ar), B(Ar) and yar(Ag) are related to the anomalous dimension of the field, the beta
function, and anomalous dimension of mass, as functions of renormalization parameters.
1.3 Dirac Fermion Fields
Fermions in a Dirac field are described by the the Lagrangian density,
&L =9(i0,4" — m)y. (24)

To describe fermion states, the Weyl spinor representation of the Lorentz group is considered. Left
and right-handed spinors transform as:

T gi%’ P
i
b= = |]e2 2" (25)
A Dirac spinor is then constructed, with Lorentz transformation properties,
 [¢r (1% (0—i$) /2 0
Y= [¢L — 0 Giodrid)a| ¥ (26)

Additional transformation properties for parity should also be noted. Given a spinor field with an
initial fermion at rest, transforming to a different reference frame reveals the equation of motion of
the system, the Dirac equation,

(yup"* —m)ib(p) = 0. (27)
Here, v, is a matrix of Pauli matrices, o; with o treated as the identity,
; 0 —of
1 pr— .
i et (28)

The product of matrices, iy9y'72y3 = +°. Additionally, these matrices correspond to a Clifford

algebra, {v*,7"} = 2¢"”. A more compact notation expresses the contracted product of four-vectors
with 7, ¢ = a,7*. Solutions to the Euler Lagrange equation may be separated as,
(ip — m)ih(p) =0, (29)
$(p)(ip +m) = 0. (30)
States are be expressed as, ¥(x) = v(p)e®?® and ¥ (x) = u(p)e P, two separate solutions to the
equation of motion, corresponding to a particle and anti-particle. In momentum space,
(p —m)u(p) =0, (31)
(p +m)v(p) = 0. (32)



The theory can now be quantized. Expressing the field operator, 1/3(30), in terms of creation and
annihilation operators,

~ 3 D R R
5= 5 [ oo (#0007 - Hen @) (33)

The summation is over spin, which is not discussed here in detail. Solutions for és(p) and bs(p) can
be found in terms of the field operator and momentum space solutions. The theory is quantized
with anticommutators as below,
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Exchange of particles will follow Fermi statistics with these anticommutation relations.
Propagation of a free particle is again found by considering a time-ordered product of field
operators,
O T @B 10) = (4 m [ 2T
D@2t p? —m? + e
_ / d4ﬁ Z(p + m)ab —ip-(Z—7)
) @m)ip? —m?+ it '
Additional Feynman rules are found by considering the ordered effect of the field operator on
momentum states. Momentum-space Feynman rules are summarized for a fermion field below.

)

e~ (T=Y)

(40)

1. e Incoming fermions of momentum j, spin s, correspond to a factor of u(*)(p),
e Incoming antifermions correspond to a factor of 7 (p),
e Outgoing fermions correspond to a factor of @) (),
e Outgoing antifermions correspond to a factor of v(*)(p).
e Fermion propagators receive a factor,
p+m
Q(LQ)-' (41)
pe —m= + e
2. e Closed fermion loops require a change of sign.
e The exchange of external lines leads to an additional change of sign.

e Spinor indices may be optionally ignored by constructing the Green’s function against
the direction of the arrow. This result is the trace of the matrix product.

e Symmetry factors of the diagram must be accounted for.

3. Unknown four-momenta are integrated over, corresponding to the integration of the original
expansion of the interaction Lagrangian density,

/@d:;l() (12)
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1.4 Quantum Electrodynamics

In quantum electrodynamics, interactions between both fermions and bosons (photons) are de-
scribed. Again, a classical description of the photon will be quantized, and rules describing propa-
gation and interaction vertices identified.

The electric and magnetic field relations to scalar and vector potentials, ¢, A are stated,

— =

B=VxA, (43)
E aj A (44)
b, A). (45)

The field strength tensor, F** = g*AY — 9¥ A, is then used to form a Lorentz-invariant product

in the classical Lagrangian density,

1
g — _ZF.U‘VFMV' (46)

Applying the Euler Lagrange equation, the solution is the set of inhomogeneous equations, 9, F*" =
0. Fourier decomposition of A* expresses the creation and annihilation operators, as well as the

polarization, EE[\) (k),

31 e =
AM(E) = / (27:23215;3 ;)egwc) [a,\(k)e_m'x + a3 (k)e* 7| (47)

The vector photon field and related operators are quantized as,

[Au(Z, 1), 7 (7,1)] = igud™ (T - 7), (48)
[Au(Z,1), Ay(F,1)] =0, (49)
[Fu(Z, 1)), 70 (7,1)] = 0, (50)
[ax(k), al, (K)] = —g™ 2k, (27)2 g (kK — k') (51)

An additional gauge fixing term is added to the Lagrangian to preserve covariance,
1 1% 1 AV

Here, f is a gauge fixing scale. In the choice of the Feynman gauge, f = 1. Considering again
the Dirac fermion field, the representative Lagrangian density must also be invariant under general
gauge transformations. This is accomplished with use of the covariant derivative, D, = 0,
ieA,(x). With the combination of electron (fermion) and photon fields, the full Lagrangian density
for quantum electrodynamics can be considered,

1
— ZF,, F" —

ZLorp = V(D —m)y 1

57 (8 A2, (53)

Additional momentum-space Feynman rules can be determined for the photon, to be used in com-
bination with the Dirac fermion field:

1. e The propagator for the photon is represented as,

_i(g,uu - (1 — p,upu/p )
p? + 10

(54)



e The interaction vertex between two electrons (fermions) and one photon is represented
by the strength of the coupling, iey*.

e Incoming photons are represented by their polarization, e (p),

e Outgoing photons are represented as e*#(p).

o
°

Reflecting summation over polarization, Zpol. u(p)u(p) = p +m,
Epol‘ ’U(p)@(p) = lﬁ - m,
> pot. €M (D) (P) = —g".

1.4.1 Electron Magnetic Moment with Projector

One application of perturbative QED is the predicted value of the anomalous electron magnetic
moment, g. An estimate can be found at one-loop precision, demonstrating the evaluation of a
diagram with standard integration and tensor decomposition methods. An approach involving the
construction of a projector is discussed in this section [2]. In the following section, tensor integral
reduction with Passarino-Veltman cofficients is considered. The software Mathematica is used for
symbolic evaluation. The package FeynCalc supports objects specific to pQFT.

In this prediction, dimensional regularization is used. A number of relations are utilized to
remove operators or contract products. In addition to earlier-stated relations between «, matrices,

pu(p) = mu(p), (55)
po(p) = —mo(p), (56)
P =1 (57)
wy =d. (58)
k
b1 P2
- - - -

Figure 1: “One-Loop Interaction Vertex Correction”: Pictured is the one-loop contribution to the
interaction vertex with labeled momenta. A diagram was taken from [5] and relabeled to create
this image.

Considering the interaction vertex between two electrons and an incoming photon, the difference
in momentum of an incoming and outgoing electron are equivalent to the incident photon energy,
q = p1 — po. At one-loop order, the interaction involves an internal loop photon of momentum, k.
A general element of the four-current can be expressed in terms of form factors as:

2 ; 2 2
_ q i q 1 q
(sl ) o) = (o) | i (L5 ) = P (s Yo + - (L et

2 . 2 2
q 1 q v 1 q iaE
75<G1<m2>%_277”LG2<m2>UWq +mG3<m2)qu>]Ui(pl)eq '

8
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The sum of electron momenta can be considered constant, held at P = (p1 + p2)/2. Simplifying
further, the current can be related to the vertex function,

g (p2)I* (p1, p2, @)uip1) = Tg(p2) <F1 <nq;)7“ + %FQ <§L22>0’“’q,,> ui(p1). (60)

Here, F(q?/m?) reflects charge, while Fy(¢?/m?) is the magnetic form factor. The anomalous
magnetic moment of a fermion is found by extracting,

(9 —2) = F»(0). (61)

a =

(NN

This value can be determined by projecting out the value of F(¢?/m?). Such a projector would be
formed as a linear combination of vectors spanning the original expression [2],

1 1
Nu= (P +m) | 917 = —92Pu = —g3au | (P, +m)- (62)

Taking the trace, Tr(N,I'*), leads to a system equations determining the values g1, g> and g3.
Ultimately, an expression for the functional form factor, F(q?/m?) is derived. The value of F5(0)
can also be projected out directly. Expressing the vertex function as an expansion in g, [2],

)
I*(P,q) ~T"(P,0) + quaff“(P, q)|g=0 = V*(P) — ¢, T" (p). (63)

The tree level interaction vertex is, I'lj = v*. At one-loop order, the first correction to the interaction
is,

T = (ps) [/ (ddlC (iey”)i(p, + K +m) (iey")i(p, + K +m) (iey’)(—i)g"* wi(pr).  (64)

2m)4 (p2 + k)2 —m? +ie (p1 + k)2 —m? +ie k2 +ie

To express as a function of ¢, p1 and P> may be written as ps = (215 —q)/2, p1 = (2]3 +q)/2. The
choice of sign for the incoming photon momentum follows from [2]. Additionally, as translations of
the virtual loop momentum do not impact the integral result, shifting —k — —k+ P will simplify
vector operations in the numerator. After performing straightforward contractions, the new integral
is expressed as (leaving complex adjustments implicit),

o o [ 4%k (YW)(=g/2+F+m) (¥)(g/2+Kk+m) (")
i = f(m)[ /(27r)d(E—(z/z)?—m2+¢e(12+q'/2)2—m2+e(13—1;?)2

u;(p1)- (65)

After expanding the numerator product, vector and <, matrix relations can be used to simplify
each term. Noting 9,,¢ = 7", the derivative of the integrand of Ji gives,

0 1
T = ——TH*(P,q)|g=0 = ide*m —ide* V' AH (v - k
5, (Pl 25 —m2) (P ) 7 (ide*m[y"”, 7] VA k) 6)

+ide?(y - k)yHa” + die*my*, Y] + 6ie*y (v - k) — 6ie* (v - k)y*”).

If the average spatial orientation of k is accounted for, the value of a is projected out as,

1
T Sd—1)d—2)m2 "

Tr<dg [m*~ = dpup — (d = DympJV* + = (;'1’ +m) [, Y] (P + m)TW>

(67)
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The numerator of the result can be expanded into a sum of vector products. The full sum is omitted
here, but available in the attached Mathematica notebook, Projector.nb.

1
a= —— (2id*e’kP — ... + 16ie*m* — 24ie’kP). (68)

—

(1-d)(2—d)(k? —m?) (P -k

The result is then refactored in terms of denominator components, Dy = (P — k)2, and Dy =
(k2 - m2). This combination depends only on the scalar dimensionality, d, coupling, e?, and mass,
m?2. Vector dependencies are represented only in D; and Do,

i(d—2)de’Dy  i(d — 2)de? 2i(2d — 3)e?
C2(d—1)m2D2 2(d—1)ym2D; = (d—1)D32
i(d — 2)de? 2ie?
(d—1)m2Dy DDy’

a =

(69)

Using integration-by-parts reduction, and application of the relations between 7, matrices, these
integral forms can be related as,

/ dlh— = 0, (70)

Dy

1 (d—2) 1
dk— = Ak —. 71
/ D3 m? / Dy (71)

An additional integral is rewritten after tensor decomposition,

Dy 1 1

A= = [ dk— +2 2/ddk. 72
/ D3 / D, " D3 72)

The value of a can then be evaluated in terms of two scalar integrals,

L i(d—6)(d—2)e*  2ie?

= — . 73
2m2D2 DlDQ ( )
The general solution for the tadpole-diagram integral is [1],
4-d 2 €
d=4—2¢/, 2y _ M D 1 o 1 1
Itadpole (m ) - i 2pp /d k(kz —m2 tie) =m (77’7,2 — i&‘) |:6 + 1:| + O(e). (74)
While the bubble-diagram integral [1],
4—d
1
I 2 2 2y _ M / dPk
bubble (11, M2) = =7 (k2 —m? +ie)((k + q)> — m3 + ie) (75)

1
= p% [1 — /0 daln(—a(l —a)g* + amj + (1 — a)m} — zs)} + O(e).

€

Here, the dimensionality is expressed as d = 4 — 2¢. After solutions to the relevant integrals are
inserted, d is replaced by its value of four in the zero limit of €. After dividing out remaining
factors, the expression for a is,

a= - +0). (76)

Here, « is the fine structure constant.
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1.4.2 Electron Magnetic Moment with Passarino-Veltman Reduction

In an alternate approach, @s(p2)I'*(p1,p2,q)ui(p1) can be expanded as a linear combination of

tensor integrals. Passarino-Veltman tensor decomposition is then performed, expressed in terms of

only g"”, external momenta, and form factors dependent on Lorentz invariant quantities [3,4]. This

set of factors, or Passarino-Veltman coefficients, map to a family of scalar integrals. Using these

integrals as a basis for decomposition is standard in high-energy and the study of similar systems.
As an example, common one-loop integral forms can be reduced as,

kM
d*k = pt By (p?, m2, m2), 7
J e gy~ B 7
kF kY
d4k‘ — "B 2 2 2 K B 2 2 2 ) 78

Additional propagators contributing to the loop are expressed in terms of additional coefficients.
Multi-loop integrals can be reduced through similar methods with the assistance of integration-by-
parts reductions.

In the case of the electron magnetic moment, the one-loop correction to the vertex function is
expanded, and known kinematic relations are applied. To determine F5(¢ = 0), the momentum
transfer is assumed zero, and ¢®> = 0. Tensor integrals are then decomposed in terms of their related
set of scalar functions. The majority of this approach is worked explicitly elsewhere [5]. Evaluation
is performed with FeynCalc, and illustrated in the notebook, Passarino_Veltman.nb. As only the
component of I'* proportional to g, is related to F»(0), further terms are dropped,

I'* = —2i7r263m(pf +p§)(201(m2, 0,m2,0,m?,m?) + dCi1(m?,0,m?,0,m?,m?)—

79
QCll(mZ,O,m2, 0, m2,m2) + dClz(mQ, 0,m2,0,m2,m2) — 2C’12(m2, 0, m?, 0,m2,m2)). (79)

Values of the coefficients are then evaluated for their specific arguments, and the dimension is fixed
to four,

3 d
_ 5: 2.3
'Y = —2ir°e m<327r4m2 - g47r4m2>' (80)
After removing an overall factor,
a
F5(0) = o (81)
m

2 The Standard Model Lagrangian

The Standard Model (SM) is a minimal working representation of (almost) all known free param-
eters and symmetries governing the observed physical universe.
The Lagrangian satisfies three group symmetries:

SUB)e x SU((2)L, x U(1)y. (82)

The special unitary group, SU(3)¢, describes the space of matrix transformations which preserve
the unit normalization of three vectors. This symmetry describes the color space of the model —
specifically the color mediated in strong force interactions. Only colorless particles are observed,
this concept of color confinement maintained with this symmetry.

The special unitary group, SU(2)r, and unitary group U(1)y describe other symmetries which do
not involve color — left-handed Fermi interactions and hypercharge in the electroweak theory. The
SU(2)r, group represents the existence of left-handed fermion doublets (right-handed anti-fermion
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doublets). These particles are observed with nonzero, weak isospin, forming pairs. Right-handed
fermions have no weak isospin, and exist individually in singlets. These relations pair generation
members of charged leptons and neutrinos, and generation members of quarks. The hypercharge
quantum number is then determined from this projected isospin and the electromagnetic charge
via the Gell-Mann—Nishijima formula, Y = 2(Q — I3).

I II III IE) Y 0

(ve) (Vu) (vr) +1/2 -1 0
Leptons e L n L T L -1/2 -1 -1
(u) (c) (t) +1/2 +1/3 +2/3
d S b -1/2 +1/3 -1/3
L L L
Quarks S " ee e 0 +4/3 +2/3
de  sg by 0 -2/3 -1/3

Figure 2: Observed charge, weak isospin and hypercharge for quarks and leptons [?].

The two special unitary symmetries introduce 8 and 3 force carriers to the theory, following the
dimensionality of generators introduced with SU(3) and SU(2). These first eight bosons represent
the basis of color combinations which can be taken with a gluon. The following three bosons,
W1, Wy and W3 represent weak force carriers. Last, an additional neutral boson is introduced from
the hypercharge symmetry, B.

The first two weak carriers rotate together to form the observed W, W™~ mass eigenstates,

_Wl—iWQ __Wl‘f‘iWQ
R

The third weak carrier and neutral boson compose the photon and Z mass eigenstates:

2 [l o] () o

w (83)

Here, 0y is the Weinberg mixing angle.
Last, a final mechanism is needed to set the masses of particles. This symmetry breaking occurs
through a phase shift in the Goldstone boson, ¢, representing the vacuum.

o[V ]

Here, V is the vacuum expectation, and h is the Higgs expectation. Three free parameters, ¢°,
¢ and ¢~ can be considered. When symmetry is spontaneously broken, the parameter ¢° settles
to a specific value, and the freedom of one Goldstone boson is lost. The action of the covariant
derivative on this field,

D, =0,+ iQQWﬁT“, (86)
2
(Du)(Dys) — (%) WS = MEW W (87)

Here, g2 is the gauge coupling, W] represents the weak boson fields, and 7% is the set of Pauli
matrices. The now specified Higgs boson sets the mass of the W bosons, My,. A similar constraint
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sets the mass of the Z boson. The specification of the three parameters, ¢°, ¢ and ¢, removes
longitudinal freedoms from the Goldstone field, and imparts masses to the three weak bosons. In
this way, the Higgs mass, W, W~ and Z masses are specified, while no such symmetry breaking
is present to set the masses of the gluon and photon.

In summary, the fermionic elementary particles, leptons and quarks, are observed to obey a
number of symmetries in nature. Describing these symmetries and explicit freedoms introduces a
number of communicative forces represented by bosons. As in QED, the full Lagrangian can be
written to express this content. We can first consider the covariant derivative which is used to
express the kinetic terms of this system:

Y ol e
D, =0,— 1915311 - zngWﬁ - zgg;Gz. (88)

e The second term acts on all fields of hypercharge, including left-handed fermionic doublets,
right-handed singlets, and bosons. g; is the gauge coupling, Y is the hypercharge quantum
number and unit matrix used for the symmetry group U(1), and B, is the vector potential
of the neutral boson.

o The third term represents the action of the weak force, acting only on SU(2) doublets. go is
the gauge coupling, 77 are the Pauli matrices used as generators for SU(2), and W}, are the
vector potentials of the three weak bosons.

e The last term represents the action of colored fermions, quarks, following SU(3). g3 is the
gauge coupling, \* are the eight Gell-Mann matrices spanning the space of SU(3), and Gy,
are the vector potentials of the eight possible gluon color combinations.

The general Lagrangian will consist of kinetic terms for both fermions and bosons, -2 kin, -Zb kin,
interaction terms for electroweak and QCD processes, .Z7 ns, terms for massive particle, 245,
and the energy associated with scalar fields, .Z:

Lsy = Lt kin + Lo kin + Lmass + Lyint + L. (89)
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