They fit to the following equation:
However when fitting curves through the supplied data points it became clear that fitting for the C parameter was going to be difficult. Instead it was fit to:
The best fit found is implemented by the following python code:
# x_in is the ice temp in deg C def fit_matsuoka_a(x_in): temp = 0.0 # coefficients A = -6.3293731455351277E-05 B = 1.6797867246920113E-08 C = -1.4744880953559558E-12 D = 9.1142297584796472E-02 E = -1.3061526747480247E+01 F = 1.1626675440193469E+03 G = -4.2940915550767430E+04 temp = A + B * math.pow(x_in, 2.0) + \ C * math.pow(x_in, 4.0) + \ D / math.pow(x_in, 2.0) + \ E / math.pow(x_in, 4.0) + \ F / math.pow(x_in, 6.0) + \ G / math.pow(x_in, 8.0) return temp
# x_in is the ice temp in deg C def fit_matsuoka_b(x_in): temp = 0.0 # coefficients A = 3.6656269531875900E-05 B = -6.2610754337689568E-09 C = 4.5947045594069011E-13 D = 5.3986512806528447E-03 E = -6.1224071031577942E-01 F = -2.5506123420729601E+01 G = 4.9422024952720685E+03 temp = A + B * math.pow(x_in, 2.0) + \ C * math.pow(x_in, 4.0) + \ D / math.pow(x_in, 2.0) + \ E / math.pow(x_in, 4.0) + \ F / math.pow(x_in, 6.0) + \ G / math.pow(x_in, 8.0) return temp
# x_in is the ice temp in deg C def fit_matsuoka_c(x_in): temp = 0.0 # coefficients A = 9.0628357600078143E-08 B = 1.7535861695933664E-12 C = -4.6909178338196244E-16 D = -1.5145302144421151E-05 E = 2.8959559913410331E-03 F = -1.7486054687356639E-01 temp = A + B * math.pow(x_in, 2.0) + \ C * math.pow(x_in, 4.0) + \ D / math.pow(x_in, 2.0) + \ E / math.pow(x_in, 4.0) + \ F / math.pow(x_in, 6.0) return temp