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Abstract
This paper studies forecasting wind turbine power production for
use in the Askaryan Radio Array at the South Pole. As physical
hardware does not yet exist, first a model for the power production
of a wind turbine from historical meteorology data is developed.

1. Introduction
The Askaryan Radio Array (ARA) is a widely distributed neutrino
telescope being designed for deployment at the South Pole. Neutri-
nos, neutral subatomic particle with a mass close to zero, usually
pass smoothly through matter without stopping or interacting. This
“low cross section” makes their detection extremely difficult and
thus rare. To be effective a huge radio-transparent and radio quiet
detector is needed. How huge is huge? The ideal design places one
detector every kilometer over six hundred square kilometers, each
drawing over three hundred watts! Luckily the ice at the South Pole
meets all requirements admirably.

However the remoteness of the South Pole brings many unique
challenges. The United States Antarctic Program has had a con-
tinuous presence at the South Pole since 1957. The base is called
the Amundsen Scott South Pole station and sits at 9306 feet above
mean sea level all on glacial ice. The sun is up twenty four hours
a day for the summer, but it disappears for six months of winter!
Winter temperatures can dip to -117F. The day to day atmospheric
pressure varies enough to make the pressure altitude vary by almost
3,000 ft. With all of these extremes, winds are surprisingly light, av-
eraging only 10.7 knots with the highest measured wind speed of
48 knots [3]. There are generators run by the support staff on the
station but there is not enough excess capacity to power this array.
Cabling even a small 20 station array to these generators would cost
an estimated quarter of a million dollars. The current design calls
for wind turbines at each detector with a small battery bank to pro-
vide the required power. The problem is that the winds at the south
pole are light and are not reliable enough to provide a continuous
uninterrupted power source.

The naive control algorithm currently proposed shuts a station
down when the batteries reach a low state of charge, only turning
it back on again once the charge level has been restored. The
drawback of this control algorithm is that as all stations are likely to
be exposed to the same wind speed they will likely all power off at
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the same time and recover at the same time. This is not desirable as
a complete detector outage will eliminate any chance of catching a
possibly rare event. Improvements to this control algorithm may
be possible by forecasting future power production of the wind
turbines!

The South Pole Meteorology Office has recorded wind speed,
wind direction, temperature, and atmospheric pressure once a
minute, every minute since 2005 and has kindly made that data
available to us [2]. As no final turbine has been selected for ARA,
our technique has to be generic for any given wind turbine and has
to work from the weather data supplied.

2. Previous Work
Previous work has focused on forecasting future wind speeds in-
stead of future power production[1][10]. This technique is not suf-
ficient for use at the south pole for a number of reasons. First,
maintaining the necessary meteorological instrumentation in a re-
mote harsh environment is difficult and expensive. Power produc-
tion measurement is simple and requires no moving parts. Second,
due to the unique weather conditions at the south pole with severe
air density changes ( thousand foot changes in physiological alti-
tude overnight are not uncommon ) forecasting wind speed alone
is insufficient. Thirdly forecasting wind speed alone does not take
individual turbine variations into account. Snow drifting is a major
problem at the south pole resulting in wind turbine towers becom-
ing shorter by several feet a year. The meteorology office actually
mounts some of their instrumentation on sleds that can be repo-
sitioned as needed to be on the snow surface. Finally, some work
augments forecasting technology [9] that is not available in Antarc-
tica.

3. Methodology
3.1 Turbine Modeling

As the physical hardware for the ARA array has not yet been se-
lected we had to devise a method for modeling wind turbine power
production based on meteorology data. The South Pole Meteo-
rology Office has kindly provided us with wind speed, direction,
temperature and atmospheric pressure sampled every minute from
2005 through the present[2].

Power =
1

2
(swept area)(air density)(velocity3) (1)

3.2 Tower Height Corrections

The wind speeds provided by the South Pole Met office are taken
at the top of a 10 meter tower. ARA may use a different tower
height. The wind speed varies at different heights in a logarithmic
profile depending on the surface roughness (z0). Luckily Jackson
& Carroll present a model forz0 for the South Pole that depends
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Figure 1. Power Production Curve For ARE Wind Generators

on wind direction. Given the calculatedz0 we can correct our wind
speed for new tower height with the following formulas:

u = speedmeasured

0.4

log(heightmeasured

z0
)

(2)

speedcorrected =
u

0.4
log(

heightnew

z0
) (3)

3.3 Power Production Curve

A wind turbine manufacturer will provide a set of data points
relating wind speed to power output at sea level at standard pressure
and temperature. These data points can be fit to a smooth equation
[8]. For an example of such a curve see fig 1.

3.4 Density Correction

As the power production curve is for a turbine at sea level we have
to correct our estimate for production at altitude. Air density (ρ)
is expressed asρ = pressure

specificgasconstant∗Tinkelvin
. ρsea−level is

defined as 1.2041183[11]. Using the MET office weather data we
calculate an instantaneousρaltitude and de-rate the turbine output
by a factor of ρaltitude

ρsea−level

.

3.5 Verification

Raytheon Polar Services Corporation installed an ARE110 2.5 KW
wind turbine on top of a 12 meter tower. A technician manually
records the total number of kilowatt hours produced by the turbine
since last reset. For the month of April 2010 there where no logged
problems with the turbine and the logs where obtained for that
month. To evaluate our model we ran the weather data for that
month through the model described above and then integrated to
produce total kw/h’s produced per day to match the logs provided
by Raytheon. One source of uncertainty is that it is not known what
time of day the technician recorded the daily readout. The total
actual production for the month is within 1.2% of the production
estimated by our model in fig 2.

4. Forecasting
4.1 Preprocessing

Transforming the weather data to power production data results in a
time series of watts per minute. Directly using this data proved to be
problematic due to the training time required. For instance training
a multi-layer perceptron with forty-five minutes of previous history
required almost an hour of training time. After a discussion with
an ARA personnel it was decided that any stations should only be
turned on or off once an hour. As a result the time series of watts
per minute was integrated down to watts per hour.

Figure 2. Actual Versus Model Comparison

5. Machine Learning
5.1 Forecasting

We would like to be able to forecast power production up to ten
hours into the future. Three algorithms capable of numerical pre-
diction were selected for evaluation.

1. Multi-layer Perceptrons

• Settings

Learning Rate 0.3

Momentum 0.2

Number of Epochs 500

2. SVM By Sequential Minimal Optimization (SMO)

• Settings

Complexity Constant 1.0

ǫ 1.0E-12

3. Linear Regression

• Settings

M5 Attribute Selection Method

Ridge parameter 1.0E-8

All three algorithms were easily available in Weka version 3.6.0.
All were tested using data from the entire winter of 2008 with 10
fold cross-validation.

5.2 Past History

Two methods were compared to decide the amount of past history
required for an effective prediction. First we plotted the RMSE
error over the folds of the cross validation. Figures 3, 4, and 5 are
plots of the Weka reported RMS error over the folds of the training
data.

In all three cases it should be noted that providing four hours
of past history to the learning algorithm being evaluated yielded
approximately the same results as providing eleven hours of past
history.

As a further test we performed a sign test on a test set consisting
of data from the winter of 2009. The error of a prediction with
eleven hours of past history was compared with the error of a
prediction with a lesser amount of past history. The fraction of time
the error of the eleven hours was best was then plotted (fig 6). The
results demonstrate that using four hours of previous history yields
results that are significantly similar to using eleven hours of past
history.
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Figure 3. Predicting One Hour Into The Future

Figure 4. Predicting Two Hours Into The Future

Figure 5. Predicting Ten Hours Into The Future

Figure 6. Sign Test

GetReward(state, action, detector_array)
reward = 0
for each detector d

for each power prediction p
if actiond,p = on

reward += 1
if first time grid is active at time t

reward += 1
return reward

Figure 7. Reward Function

5.3 Schedule Learning

Once we are able to predict the future power available to a detector,
the next phase of the project involves using this information to
schedule the activation and deactivation of each detector within the
array. Our aim is to maximize both the total number of hours each
detector is active and the total time the array is in an active state.
The array is considered to be in an active state if at least one of its
detectors is currently active.

In order to determine the optimal schedule of detector activa-
tions and deactivations, we will make use of a reinforcement learn-
ing algorithm. Reinforcement learning algorithms in general have
successfully been used in various optimization problems including
(control) scheduling.

For the project we used PyBrainsTMreinforcement learning
package. PyBrains NFQ package is a feed forward, neural network
learning algorithm. There are several advantages in using a neu-
ral network learning algorithm over a traditional state-action table
learning algorithm. Amongst these advantages are the condensed
representation of the environments state space and the possibility
of converging faster. Given the exponential nature of our environ-
ments state, the size of which is calculated as

(bf2)n

where b is the detectors battery level, f is the number of future
predictions, and n is the size of the array. A neural network learner
is likely the only feasible solution for this problem.

While a few minor extensions were necessary to the NFQ pack-
age in order to be applied to our problem, the details of these exten-
sions are neither necessary nor advantageous to the reader. Instead
we turn our attention to the details of the environment and the re-
ward function used.

The environment state space consists of the current battery level
as a percentage of the maximum possible charge discretized within
10% intervals along with the future power predictions available for
each detector within the array. To further reduce the size of the
state space each power prediction was represented as a fraction of
the maximum possible power output generated by a turbine correct
to two decimal places.

The details of the reward function are shown in figure 7. In
order to meet our objectives of maximizing a single detector’s
active status as well as that of the array, two separate rewards are
provided to the learner. A reward is received each time a detector is
successfully activated within a given timeslot. An additional reward
is also received if the time slot is previously empty. That is, no other
detector has been currently scheduled within the time slot. The aim
of the second reward is to encourage the learner to stagger each
detector’s schedule against the remaining detectors.

6. Conclusions
The RMS error across the folds of the training set ( winter 2008 )
showed that linear regression out performed the other methods (fig
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Figure 8. 2008 RMS Error On Cross Folds

Figure 9. 2009 RMS Error On 2008 Model

8). The comparison held when all three algorithms were run on a
test set of data from the winter of 2009 (fig 9).

As an approximation for how far in the future these methods
would effectively predict power production we performed the fol-
lowing procedure. The average power production for our training
set of the winter of 2008 was 81 watts with a standard deviation of
92 watts. If we simply predict average power production we get an
RMS error of 125 watts. Applying the same techniques proposed in
this paper allows us to predict power production up to thirty hours
in the future before the RMS error of any of our predictive tech-
niques exceeds that of naively predicting the average.

Because of time constraints, a few (minor) sacrifices were made
as discussed below in order to evaluate the Q Learning Algorithm.
Ideally, a Q learner should be trained on simulated data and allowed
to run as long as necessary until convergence (or the user is happy
with its performance). However, because of limited time, we were
forced to restrict the amount of data sampled and as a result de-
liberately limited training data to that available for the years 2005
through 2010. The data for 2011 was reserved for testing purposes.
Each training iteration comprised of 3 future power predictions, an
array of size 2 and a specified number of passes to be made over
the data. Values of 1, 2, 5 and 10 were used.

Unfortunately, the results were not as expected. The table below
shows the number of hours active for a given detectors as well as the
array out of a maximum of fifteen hundred hours. After analyzing
the data, we observed that the problem lied primarily in the reward
function. Given a state such as [b1, p1,1, p1,2, p1,3], [b2, p2,1, p2,2,
p2,3] where b represents the battery state andpi’s are the future
power predictions, we were unable to determine the appropriate
reward balance for scheduling a detector within the first time slot
and maximizing the number of time slots covered. Consequently,
we would see an action such as 0, 1, 0 for detector 1 and 0, 0, 1 for
detector 2. Consequently both detectors are delayed for scheduling

until the next hour. Receiving the next hourly update we will see a
similar action with the activation being delayed until a later hour.
This will occur more frequently as the number of iterations in the
learning process increases.

Number passes detector 0 detector 1 array active
1 321 373 641
2 25 260 279
5 84 134 201
10 0 0 0
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