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Abstract: Production of muons and neutrinos in cosmic ray interactions with the
atmosphere has been investigated with Monte Carlo models for hadronic interactions.
The resulting conventional muon and neutrino fluxes (from π and K decays) agree
well with earlier calculations, whereas our prompt fluxes from charm decays are
significantly lower than earlier estimates. Charm production is mainly considered as
a well defined perturbative QCD process, but we also investigate a hypothetical non-
perturbative intrinsic charm component in the proton. The lower charm rate implies
better prospects for detecting very high energy neutrinos from cosmic sources.

1 Introduction

The flux of muons and neutrinos at the earth has an important contribution from decays of
particles produced through the interaction of cosmic rays in the atmosphere (for a recent intro-
duction see [1]). This has an interest in its own right, since it reflects primary interactions at
energies that can by far exceed the highest available accelerator energies. It is also a background
in studies of neutrinos from cosmic sources as attempted in large neutrino telescopes, such as
Amanda [2], Baikal [3], Dumand [4] and Nestor [5].

Here we present a detailed study of muon and neutrino production in cosmic ray interactions
with nuclei in the atmosphere using Monte Carlo simulations [6].

At GeV energies the atmospheric muon and neutrino fluxes are dominated by ‘conventional’
sources, i.e. decays of relatively long-lived particles such as π and K mesons. This is well
understood from earlier studies [7, 8, 9], with which our investigations agree. With increasing
energy, the probability increases that such particles interact in the atmosphere before decaying.
This implies that even a small fraction of short-lived particles can give the dominant contribution
to high energy muon and neutrino fluxes. These ‘prompt’ muons and neutrinos arise through
semi-leptonic decays of hadrons containing heavy quarks, most notably charm.

Available data in the multi-TeV energy range, obtained with surface and underground detec-
tors (see e.g. refs. [10–13]), are still too discrepant to draw definitive conclusions on the flux of
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prompt muons and neutrinos from charm. Furthermore, estimates of these prompt fluxes [7,14–
21] vary by a few orders of magnitude due to the different models used to calculate the charm
hadron cross section and energy spectra. This huge model dependence is due to the need of ex-
trapolating charm production data obtained at accelerator energies to the orders-of-magnitude
higher energies of the relevant cosmic ray collisions. Obviously, this extrapolation can only be
trustworthy if starting from proper charm production data and using a sound physical model.
The main contribution of our study is in this context. First, we use recent charm production
cross section measurements that form a consistent set of data, but disagree with some of the
early measurements that were substantially higher. Secondly, we apply state-of-the-art mod-
els to simulate charm particle production through perturbative QCD processes in high energy
hadron-hadron interactions. In addition, we investigate a possible non-perturbative mechanism
using the hypothesis of an intrinsic charm quark component in the nucleon.

In the following we first (section 2) discuss the generalities of cosmic ray interactions in the
atmosphere resulting in a set of transport or cascade equations for particle propagation. These
equations are then solved by two different methods: a direct Monte Carlo simulation of the
cascade interactions (section 3) and a semi-analytic method (section 4) giving consistent results
for the conventional and prompt muon and neutrino fluxes. Section 5 gives an account of the
Monte Carlo model used to obtain the energy spectra of secondaries in the basic hadron-hadron
interaction, in particular concerning charm production in perturbative QCD. In section 6 we
investigate consequences of the non-standard hypothesis of a non-perturbative intrinsic charm
quark component in the nucleon. We then (section 7) compare our results with previous model
calculations and discuss differences in terms of the different charm production models. We
conclude (section 8) by some remarks and by putting our results in a general context of various
astrophysical sources of high energy neutrinos.

2 Cosmic ray interactions in the atmosphere

2.1 The spectrum of cosmic rays

Fluxes of secondary particles (hadrons and leptons) originate from nucleon–nucleon encounters,
even when the nucleons are bound in nuclei, because nuclear binding energies are much lower
than the energies of interest in this study (100 GeV – 109 GeV). So the relevant quantity to
consider is the flux of nucleons. Following [1, 9, 17] we have assumed a power law primary
nucleon flux

φN (E)

[

nucleons

cm2 s srGeV/A

]

=











1.7E−2.7 forE < 5 · 106 GeV

174E−3 forE > 5 · 106 GeV.
(1)

The normalisation constant 1.7 is derived [22] from the directly measured primary spectrum
using balloon-borne emulsion chambers in JACEE [23]. To within some 10% this agrees with
more indirectly derived spectra based on measured atmospheric muon fluxes [24], and is also
compatible with the data discussed in ref. [25]. The cosmic ray composition is dominated by
protons with only a smaller component of neutrons in nuclei [22, 25]. Only primary protons are
considered here, since in this study we are interested in quantities that are essentially indepen-
dent of the cosmic ray composition. At the energies of interest (E>∼100 GeV), the cosmic ray
flux can be considered isotropic (the anisotropy being <∼5% [26]).
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2.2 The model for the atmosphere

In studying the propagation of particles through the atmosphere, an important quantity is the
amount of atmosphere X, in g/cm2, traversed by the particle. This so-called slant depth is
the integral of the atmospheric density from the top of the atmosphere downward along the
trajectory of the incident particle. At distance ℓ from the ground along a direction at an angle
θ from the zenith, the slant depth is defined as

X(ℓ, θ) =

∫ ∞

ℓ
ρ[h(l, θ)]dl, (2)

where ρ[h(l, θ)] is the atmospheric density at the altitude h(l, θ),

h(l, θ) =
√

R2
⊕ + 2lR⊕ cos θ + l2 −R⊕ ≈ l cos θ +

l2

2R⊕

sin2 θ. (3)

Here R⊕ is the radius of the Earth and the approximate equality applies for zenith angles not
too far from vertical, θ<∼60◦.

The atmospheric density is not a simple function of height, even neglecting local atmospheric
turbulence. The temperature, which is related to the density through the equation of state, de-
creases with increasing height until the tropopause (8–17 km), stays almost constant in the lower
stratosphere (−56.42◦C up to 20–30 km), then increases until the stratopause (50 km) before de-
creasing again at the highest altitudes (> 50 km). However, since most particle interactions
occur at heights between 10 and 40 km (demonstrated in Fig. 1 below), we need only a simple
model for the density profile of the stratosphere. We therefore adopt an isothermal model,

ρ(h) = ρ0e
−h/h0 , (4)

with scale height h0 = 6.4 km and X0 = ρ0h0 = 1300 g/cm2, values which adequately describe
the density of the stratosphere (< 2% error in the vertical depth between 10 and 30 km and
<16% between 30 and 40 km).

Concerning the atmospheric composition, a good approximation, valid up to a height of
100 km, is 78.4% nitrogen, 21.1% oxygen and 0.5% argon (obtained from data in [27]). This
leads to an average atomic number of 〈A〉 = 14.5.

2.3 Particle interactions with air nuclei

To obtain the flux of atmospheric muons and neutrinos one needs to consider the particle pro-
duction mechanisms in strong interaction dynamics. The cosmic ray particles, represented by
protons (see section 2.1), interact with nuclei in the atmosphere to produce secondary parti-
cles. These proton-nucleus collisions can, for our purposes, be well represented by the simpler
proton-nucleon collisions and a rescaling of the cross section

σ(pA) = Aασ(pN) (5)

using a power dependence on the number A of nucleons in the target nucleus. For inclusive
cross sections, with σ(pN) of order 10 mb, the interaction occurs with nucleons at the surface
resulting in α ≃ 2/3 as verified experimentally.

The inelastic pN interaction produces secondary hadrons with a multiplicity increasing es-
sentially logarithmically with the cms energy (spN = 2mN c

2Ep). The formation time of a hadron
is the normal strong interaction time scale. In the particles rest system this corresponds to a
formation length of ∼ 1 fm, which is Lorentz transformed with a γ-factor to the target nucleus
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rest frame and thus becomes proportional to the energy of the particle [28]. Therefore, fast
particles have formation lengths that exceed the size of the nucleus whereas only slow particles
are formed and can re-interact within the target nucleus. Therefore, intra-nuclear cascade effects
are not important for the energetic particle production studied here.

Of importance for our considerations are the energy distributions of secondary hadrons pro-
duced in the collisions

dn(kA→ hY ;Ek, Eh)

dEh
=

1

σkA(Ek)

dσ(kA→ hY ;Ek, Eh)

dEh
, (6)

where dn(kA→ hY ;Ek, Eh) is the number of hadrons h with energies between Eh and Eh +dEh

produced in the collision of the incoming particle k with an air nucleus of atomic number A, and
σkA is the total inelastic cross section for particle k – nucleus A collisions. Experiments studying
proton–nucleus [29] and heavy ion [30] collisions obtain energy spectra that are approximately
the same as in proton–proton collisions, confirming that the interactions are essentially proton–
nucleon. So we adopt an energy distribution dnkh/dEh independent of the atomic number of
the target.

The energy spectra in Eq. (6) can also be expressed as

dnkh

dxF
=

1

σkA

dσ(kA→ hY )

dxF
(7)

in terms of the scaled longitudinal momentum or Feynman-x variable xF = pz/pz,max (≈ Eh/Ek

at large energies) where the z-axis is along the incoming particle momentum. If these distri-
butions are independent of the cms energy (i.e. incoming particle energy Ek), then ‘Feynman
scaling’ holds. The validity or breaking of this scaling in different models for particle production
is an important issue as will be demonstrated later.

To obtain the energy spectra of the particles produced in proton-nucleon collisions we use
the Lund Monte Carlo simulation programs Pythia and Jetset [31]. These have proven very
successful in describing the multi-particle final state in various kinds of interactions, including
hadron-hadron collisions. An advantage with this Monte Carlo approach is the access to the
complete final state as well as a proper account of the decay of unstable particles. Conventional
muons and neutrinos are obtained from an inclusive event sample generated with Pythia in
a mode simulating minimum bias proton-proton interactions (including diffractive scattering).
The particle production results from Lund model [32] hadronization of colour string fields be-
tween partons scattered in semi-soft QCD interactions. The prompt muons and neutrinos, on
the other hand, are obtained from a dedicated charm production simulation using Pythia.
Here, charm particles arise from the hadronization of charm quarks produced in the processes
gg → cc̄ and qq̄ → cc̄ as calculated with leading order perturbative QCD matrix elements. A
more detailed account of the Monte Carlo model is given in section 5. Since non-perturbative
charm production is neither well established nor well defined, it is not part of our main Monte
Carlo study but investigated separately based on the intrinsic charm hypothesis in section 6.

2.4 Particle propagation in the atmosphere

Propagation of high energy particles through the atmosphere may be described by a set of
transport or cascade equations. In principle, the transport equations for nucleons, mesons,
unstable baryons and leptons are coupled, but under the reasonable assumptions made below
they can be greatly simplified.

Nucleons constitute the initial primary flux. We consider nucleon absorption and regenera-
tion in nucleon–air inelastic collisions, but neglect the certainly small contribution to the nucleon
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flux from the interaction of unstable hadrons with air nuclei. Absorption is described by the
interaction thickness λN of nucleons N in air, i.e. the average amount of atmosphere (in g/cm2)
traversed between successive collisions with air nuclei. It is given by

λN (E) =
ρ(h)

∑

A σNA(E)nA(h)
, (8)

where nA(h) is the number density of air nuclei of atomic number A at height h and σNA(E) is
the inclusive inelastic cross section for collisions of nucleons with nuclei A. Note that to a good
approximation λN (E) does not depend on the height h because the atmospheric composition is
approximately independent of the height up to 100 km.

Nucleon fluxes develop according to the cascade equation

dφN

dX
= −

φN

λN
+ S(NA→ NY ). (9)

Here φN (E,X, θ) is the nucleon flux at slant depthX in the atmosphere at zenith angle θ, λN (E)
has been defined in Eq. (8), and S(NA→ NY ) is the nucleon–nucleon regeneration function in
air

S(NA→ NY ) =

∫ ∞

E
dE′ φN (E′)

λN (E′)

dn(NA→ NY ;E′, E)

dE
. (10)

Mesons and unstable baryons, in addition to interact with the atmosphere, can also decay.
The decay length d(E), i.e. the distance traveled in a mean decay time, is simply

d(E) = c β γ τ, (11)

where τ is the particle proper lifetime, γ = E/mc2 is its Lorentz factor, m its mass, and β its
speed in units of the speed of light c. The decay length increases with particle energy because
of relativistic time dilation; faster particles can travel longer before decaying. This implies an
increased probability to interact before decaying. It is exactly because of this energy-dependent
competition between decay and interaction that the muon and neutrino fluxes from charm
mesons overcome those from pions and kaons at high enough energy.

We assume that mesons and unstable baryons (collectively unstable hadrons) are generated
in nucleon–air collisions and regenerated in hadron–air collisions, but neglect generation of
unstable hadrons of other types in collisions of hadrons against air nuclei. This approximation
is reasonable since the fluxes of unstable hadrons are at least a factor of ∼ 10 smaller than the
fluxes of nucleons. Thus for mesons and unstable baryons we have

dφM

dX
= S(NA→MY ) −

φM

ρdM
−
φM

λM
+ S(MA→MY ), (12)

where λM (E) is the hadron interaction thickness in air (analogous to Eq. (8)), and S(NA →
MY ) and S(MA→MY ) are defined analogously to Eq. (10).

Finally we consider muons, muon-neutrinos and electron-neutrinos. At the energies we are
interested in, energy loss, absorption and muon decay can be neglected and the transport equa-
tion for lepton ℓ = µ±, νµ, ν̄µ, νe, ν̄e contains only source terms

dφℓ

dX
=

∑

M

S(M → ℓY ), (13)
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where the sum runs over all mesons and unstable baryons decaying into muons and neutrinos
M = π±, K±, K0, D±, D0, D̄0, D±

s , Λ±
c . S(M → ℓY ) describes lepton production in hadron

decays,

S(M → ℓY ) =

∫ ∞

E
dEM

φM (EM )

ρdM (EM )

dn(M → ℓY ;EM , E)

dE
, (14)

where dn(M → ℓY ;EM , E) is the number of leptons with energy between E and E + dE
produced in the decay of hadron M .

Muons and neutrinos born out of pions and kaons are traditionally called ‘conventional,’
while those born out of charmed hadrons are called ‘prompt.’ This originates from the fact that
up to ∼ 107 GeV very short-lived charmed particles have negligible probability of being absorbed
in the atmosphere before decaying. Up to ∼ 107 GeV the prompt flux is therefore essentially
independent of the zenith angle. The conventional muon and neutrino fluxes are instead lower in
the vertical direction, where the amount of atmosphere traversed in a given meson decay length
is larger. The prompt flux is therefore relatively more important in the vertical direction, and
we will predominantly consider this direction.

3 Simulation of cascade interactions

One way of solving the transport equations described in the previous section is to simulate the
particle cascade with a Monte Carlo program. Here we describe our simulation algorithm.

A cosmic ray proton is generated. Its energy is drawn from a flat distribution in logE, and
a weight is assigned to it in order to reproduce the shape of the primary spectrum.

An interaction height h for the cosmic ray proton is then chosen in the following way. Primary
nucleons propagate down through the atmosphere according to Eq. (9) without the regeneration
term S(NA → NY ). From the solution to this equation, φ(h) = φ∞ exp (−X(h)/λN ), the
probability distribution for the primary interaction height can be obtained. Using a standard
Monte Carlo technique, we generate this distribution by replacing φ(h)/φ∞ with a uniform

Figure 1: Distribution of the altitude for the primary interactions as obtained in the cascade
simulations.
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random number R ∈ ]0, 1[ and then solving for the interaction height h. This can be done
analytically for the isothermal atmospheric model in Eq. (4) in the vertical direction, for which
we obtain

h = −h0 ln

(

−λN ln R

X0

)

. (15)

Fig. 1 shows the height distribution so obtained (neglecting the logarithmic energy dependence
of λN ), which confirms that, under the assumptions made, most particle interactions occur at
heights between 10 and 40 km.

A proton-nucleon interaction is then generated in full detail with Pythia [31] resulting in a
complete final state of particles. Secondary particles are followed through the atmosphere where
they decay or interact producing cascades. Secondary nucleons give a flux that is rather small
compared to the primary flux and could therefore be neglected as a first approximation. To be
more precise, we do include the main effect of this correction by taking into account secondary
nucleons that have an energy of at least 30% of the primary one. Nucleons with a lower energy
give a negligible contribution compared to the primary flux due to its steep energy spectrum
Eq. (1). These leading nucleons emerging in the interactions are therefore allowed to generate a

Figure 2: The E3-weighted flux of muons (µ+ + µ−), muon-neutrinos (νµ + ν̄µ) and electron-
neutrinos (νe + ν̄e) from decays of the specified particles. The error bars indicate the statistical
precision of the Monte Carlo simulation.
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secondary interaction at a height

h = −h0 ln

(

e−H/h0 −
λN ln R′

X0

)

, (16)

obtained analogously to Eq. (15) but taking into account the finite height H of the primary
interaction. The procedure is iterated until the energy of the leading nucleon from an interaction
falls below 30% of the primary cosmic ray proton energy.

Secondary mesons and unstable baryons are traced through the atmosphere until they either
decay or interact. Which of these occurs is decided by comparing simulated decay and interaction
lengths

Ldec = −dM (E) ln R1 (17)

and

Lint = H + h0 ln

(

e−H/h0 −
λM ln R2

X0

)

, (18)

where R1 and R2 denote uniform random numbers ∈ ]0, 1[ and H is the height at which the
traced particle has been produced. The decay length dM (E) and the interaction thickness λM

are given in Eqs. (11) and (8) respectively, the atmospheric scale height h0 and depth X0 are
defined in sect. 2.2. Eq. (18) is obtained in a way analogous to Eq. (16).

Particle decays are fully simulated with daughter particle momenta. In case of interactions,
the interacting particle is regenerated in the same direction but with degraded energy, chosen
according to the appropriate leading particle spectrum. Considering only the most energetic
‘leading’ particles in secondary interactions is justified because they give the dominant contri-
bution to the lepton fluxes. Moreover, other particles with lower energy are much fewer than
the particles of the same type and energy produced in primary interactions.

The particle decay–interaction chain is then repeated until all particles have decayed, have
hit the ground or their energy has fallen below the minimum energy of interest, 100 GeV. Energy

Figure 3: The E3-weighted vertical flux of muons, muon-neutrinos and electron-neutrinos from
conventional (π,K decays) and prompt (charm decays) sources and their sum (‘total’). The
solid lines are from the cascade simulation (section 3) and the dashed lines are from the analytic
Z-moment method (section 4).
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N0 γ A E0 γ′ N ′
0

Conventional µ− + µ+ 2.0 · 10−1 1.74 7.0 · 10−3 5.3 · 105 2.10 2.2 · 101

Prompt µ− + µ+ 1.4 · 10−5 1.77 2.8 · 10−8 9.2 · 105 2.01 4.3 · 10−4

Conventional νµ + ν̄µ 1.2 · 10−2 1.74 2.0 · 10−3 6.3 · 105 2.17 3.8 · 100

Prompt νµ + ν̄µ 1.5 · 10−5 1.77 3.1 · 10−8 1.2 · 106 1.99 3.1 · 10−4

Conventional νe + ν̄e 4.2 · 10−4 1.63 7.0 · 10−3 5.0 · 104 2.12 8.4 · 10−2

Prompt νe + ν̄e 1.5 · 10−5 1.77 3.0 · 10−8 1.2 · 106 2.02 4.9 · 10−4

Table 1: Values of parameters in Eq. (19) obtained from fits to the Monte Carlo results of the
cascade simulations in Fig. 3.

spectra for muons and neutrinos are finally obtained by counting muons and neutrinos with the
initially-assigned primary proton weight.

The resulting fluxes of muons and neutrinos from different parent particles are shown in
Fig. 2. For charmed particles the figure clearly demonstrates the dominance of the D±,0 mesons,
while for conventional fluxes the dominant source varies with the type of lepton considered.
Summing the various contributions gives the inclusive fluxes in Fig. 3. As can be seen, the
prompt contribution from charmed particles dominates at high energies.

The results for the inclusive prompt and conventional fluxes can be parametrised as (similarly
to [7], cf. with the primary flux and Eq. (38) below)

φ(E) =











N0E
−γ−1/(1 +AE) , E < E0,

N ′
0E

−γ′−1/(1 +AE) , E > E0,

(19)

with an accuracy of typically better than 10% using the fitted parameter values in Table 1.

4 Approximate analytic solutions

Approximate analytic expressions for the muon and neutrino fluxes can be found from the cas-
cade equations in sect. 2.4 by interpolation of high-energy and low-energy asymptotic solutions.
This is done in the standard treatment for power law primary spectra and scale-invariant interac-
tion cross sections [1, 7, 9]. We wish to generalize the standard treatment to include non-scaling
effects.

The cascade equations for nucleons and mesons (and unstable baryons) can, using Eqs. (9,10,
12), be written

dφN

dX
= −

φN

λN
+ ZNN

φN

λN
, (20)

dφM

dX
= −

φM

ρdM
−
φM

λM
+ ZMM

φM

λM
+ ZNM

φN

λN
, (21)

where the spectrum-weighted moments for generation ZNM and regeneration ZNN , ZMM in
hadronic collisions are generally defined as

Zkh =

∫ ∞

E
dE′ φk(E

′,X, θ)

φk(E,X, θ)

λk(E)

λk(E′)

dn(kA→ hY ;E′, E)

dE
. (22)

It is assumed that the fluxes of nucleons, mesons, unstable baryons, muons and neutrinos can
be approximated in the factorized form φi(E,X, θ) = E−βi φi(X, θ), with appropriate values of
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the exponents βi in the low- and high-energy asymptotic regimes. We consider both a primary
spectrum φN (E) ∝ E−γ−1 with a constant spectral index γ, and the primary spectrum with
a knee as given in Eq. (1). Since nucleon and meson fluxes develop rapidly in the atmosphere,
their ratios are essentially independent on the depth X. To a good approximation one therefore
obtains the energy-dependent spectrum-weighted moments

Zkh(E) =

∫ ∞

E
dE′

(

E′

E

)−γ−1 λk(E)

λk(E′)

dn(kA→ hY ;E′, E)

dE
, (23)

which we will estimate numerically. In previous studies it has been assumed that Feynman
scaling holds, such that the distributions in xF = Eh/Ek of produced particles are energy
independent (cf. Eq. (7)). With this additional assumption the Z-moments become simply

Zscaling
kh =

∫ 1

0

xγ
F

dnkh

dxF
dxF . (24)

We will not make this scaling assumption, but investigate its validity by our calculation of the
energy-dependent Z-moments.

An approximate solution for the nucleon fluxes is then

φN = e−X/ΛN φN (E), (25)

where the nucleon attenuation length ΛN is defined as

ΛN (E) =
λN (E)

1 − ZNN (E)
, (26)

and φN (E) is the primary nucleon spectrum.
Concerning mesons and unstable baryons, at sufficiently low energies the interaction term

can be neglected and so also the regeneration term. One then finds

φlow
M =

ZNM

1 − ZNN

ρdM

ΛN
e−X/ΛN φN (E). (27)

In the high energy regime it is the decay term that can be neglected, and one finds in a similar
way

φhigh
M =

ZNM

1 − ZNN

e−X/ΛM − e−X/ΛN

1 − ΛN/ΛM
φN (E), (28)

with the meson attenuation length ΛM defined analogously to Eq. (26). Notice that at high

energies the spectral index of the meson flux is the same as that of the primary flux, φhigh
M ∝

E−γ−1, while at low energies the meson spectrum is flatter by one power of energy, φlow
M ∝ E−γ ,

because of the implicit proportionality of the decay length dM to the energy E.
The spectrum-weighted moments for hadron generation in hadron–air collisions can be

rewritten as

Zkh(Eh) =

∫

∞

Eh

dEk
σkA(Ek)

σkA(Eh)

(

Ek

Eh

)−γ−1 dn(kA→ hY ;Ek, Eh)

dEh
. (29)

The numerical evaluation of these Z-moments was made by applying the prefactor in the inte-
grand to the hadron spectra dnkh/dEh generated at different incoming energies Ek between 102

and 109 GeV with the Pythia Monte Carlo (see section 5 for details on the generation mecha-
nism). Total inelastic cross sections σkA(E) in Eq. (29) were taken from ref. [33] when available.
The spectra of regenerated kaons and D mesons, which cannot be used as beam particles in
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Figure 4: Energy-dependence of production Zkh-moments, Eq. (29), for incoming particle k pro-
ducing hadron h. Solid lines are the results of our model using the initial spectrum with a ‘knee’,
Eq. (1), whereas the dotted lines are obtained with a constant spectral index γ = 1.7. Dashed
lines show the values of [9] based on Feynman scaling.

Pythia simulations, were approximated by the leading pion spectrum obtained in pion-proton
collisions. Regeneration of Λc-baryons was mimicked using an ordinary Λ as a beam particle in
Pythia and extracting the spectrum of leading Λ’s. The resulting muon and neutrino spectra
are rather insensitive to these approximations, since they are slowly varying functions of kaon
and heavier hadron regeneration Z-moments (they enter only through the combination AM in
Eq. (39) below).

For the charm Z-moments one has to consider that the charm cross section need not scale
with the target atomic number A in the same way as the total inelastic cross section. The
ratio of the A1-dependence in our charm cross section (see section 5.2) and the inclusive A2/3-
dependence (see section 2.3) gives a A1/3-dependence in the Z-moments for charm, which are
included in our results (e.g. Fig. 4).

The energy dependence of the hadron generation and regeneration Z-moments is shown in
Fig. 4 for a constant spectral index γ = 1.7 (dotted lines) and for a primary spectrum with
a knee as in Eq. (1) (solid lines). For comparison, we also show the constant values given by
Lipari [9] under the assumptions of energy-independent inelastic cross sections and Feynman
scaling of the meson spectra [34, 35], i.e. with a Z-moment defined by Eq. (24). It is clear
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Particle π± K± KL D± D0 Λc Ds J/ψ

ε [GeV] 115 850 205 3.74 · 107 9.47 · 107 2.57 · 108 9.33 · 107 8.8 · 1015

Table 2: Critical energies for hadrons traversing the atmosphere in the vertical direction.

from the figures that variations of the Z-moments with energy are non-negligible, in particular
when the changing slope (γ) of the primary spectrum is included. On the other hand, this
energy dependence of the Z-moments, and of the interaction lengths λ, is mild with respect to
the rapid decrease of the primary flux with increasing energy. For example, differentiation of
Eq. (25) gives

E

φN

dφN

dE
=

X

ΛN

E

ΛN

dΛN

dE
− (γ + 1), (30)

where the first term comes from the energy dependence of Z and λ and the second term from the
primary spectrum. Numerically, the former is only 0.1, much smaller than the latter which is
2.7 or 3.0. This demonstrates that the treatment of non-scaling effects as corrections embodied
through energy-dependent Z-moments is justified irrespectively of the derivation leading to
Eq. (23).

We can now find approximate asymptotic solutions for the muon and neutrino fluxes. In
the asymptotic regimes meson fluxes are well approximated by power laws, φM (E) ∝ E−β, with
β = γ in the low energy case and β = γ + 1 in the high energy case. Hence the source terms in
the lepton cascade equation (Eq. 13)) can be rewritten as

S(M → ℓY ) = ZM→ℓ,β+1

φM

ρdM
, (31)

with decay spectrum-weighted moments defined by4

ZM→ℓ,β+1 =

∫ ∞

E
dEM

(

EM

E

)−β dM (E)

dM (EM )

dn(M → ℓY ;EM , E)

dE
. (32)

Integrating the lepton cascade equations over the line of sight, one then obtains the following
expressions for the lepton fluxes deep in the atmosphere (X → ∞):

φlow
ℓ = ZM→ℓ,γ+1

ZNM

1 − ZNN
φN (E) (33)

for leptons coming from low energy mesons and

φhigh
ℓ = ZM→ℓ,γ+2

ZNM

1 − ZNN

ln (ΛM/ΛN )

1 − ΛN/ΛM

εM
E

φN (E) (34)

for leptons coming from high energy mesons (with EM ≫ mM ). In Eq. (34), εM is a critical
meson energy separating the low energy and the high energy regimes, i.e. where the meson
dominantly decays or interacts, respectively. It depends on the atmospheric profile and in
general on zenith angle. For the exponential atmospheric profile in sect. 2.2 and in the vertical
direction, one has [1]

εM =
mMc

2h0

cτM
. (35)

4To keep the analogy with the (re)generation Z-moments, which include the multiplicity of the final state, we
include the branching ratio Br(M → ℓX) into the definition of the decay Z-moments. This differs from [9].
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β = 1.7 β = 2 β = 2.7 β = 3

π± → µ−/µ+ 0.675 0.634 0.553 0.523
K± → µ−/µ+ 0.253 0.227 0.183 0.169
K0

L → µ−/µ+ 0.0543 0.0435 0.0273 0.0227
D± → µ−/µ+ 0.0171 0.0124 0.00636 0.00490
D0 → µ−/µ+ 0.00880 0.00651 0.00346 0.00270
Ds → µ−/µ+ 0.00708 0.00516 0.00266 0.00205
Λc → µ−/µ+ 0.00377 0.00269 0.00130 0.000976
J/ψ → µ− + µ+ 0.045 0.040 0.033 0.030

π± → νµ/ν̄µ 0.0870 0.0607 0.0271 0.0194
K± → νµ/ν̄µ 0.221 0.196 0.153 0.139
K0

L → νµ/ν̄µ 0.0292 0.0216 0.0115 0.00894
D± → νµ/ν̄µ 0.0181 0.0134 0.00720 0.00566
D0 → νµ/ν̄µ 0.00839 0.00636 0.00354 0.00283
Ds → νµ/ν̄µ 0.00744 0.00550 0.00292 0.00228
Λc → νµ/ν̄µ 0.00395 0.00284 0.00141 0.00107

K± → νe/ν̄e 0.00653 0.00509 0.00298 0.00242
K0

L → νe/ν̄e 0.0517 0.0401 0.0235 0.0191
D± → νe/ν̄e 0.0187 0.0139 0.00756 0.00597
D0 → νe/ν̄e 0.00870 0.00660 0.00372 0.00298
Ds → νe/ν̄e 0.00767 0.00571 0.00306 0.00240
Λc → νe/ν̄e 0.00404 0.00293 0.00148 0.00101

Table 3: Decay Z-moments ZM→ℓ,β+1 for various decay channels. (For the decay J/ψ → µ−+µ+

a factor 2 is included to account for both µ− and µ+.)

In Table 2 we have collected the critical energies εM used in this study. For not too large zenith
angles θ<∼60◦, Eq. (3) leads to εM ∝ 1/ cos θ and φhigh

ℓ depends on the zenith angle.
To resume, the lepton fluxes from meson M have the same spectral index of the primary

flux, φlow
ℓ ∝ E−γ−1, and are independent of zenith angle at energies smaller than the meson

critical energy εM , while they are steeper by one power of energy and depend on zenith angle
at energies above εM , φhigh

ℓ ∝ E−γ−2/ cos θ. We see that at the energies of interest to us, pions
and kaons are above their critical energy and so generate ‘conventional’ muons and neutrinos,
while charmed mesons are below their critical energy (∼ 107 GeV) and give ‘prompt’ muons and
neutrinos.

The energy spectra of muons and neutrinos from decays of ultra-relativistic mesons take a
simple scaling form [9]

dn(M → ℓY ;EM , E) = FM→ℓ

(

E

EM

)

dE

EM
, (36)

and the decay Z-moments are independent of energy

ZM→ℓ,β+1 =

∫ 1

0

dxxβ FM→ℓ(x) , (37)

with x = E/EM . Approximate expressions for the functions FM→ℓ have been obtained for two
and three body decay channels in ref. [9].5 Since there are many semi-leptonic decay channels

5Because of our convention, the functions FM→ℓ in ref. [9] should be multiplied by the branching ratio
Br (M → ℓ X).
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for charmed mesons and most of them have more than three particles in the final state, we prefer
to generate all decay spectra within the Lund Monte Carlo. In Table 3 we list the values of the
decay Z-moments for the spectral indices of interest in this study.

Finally we join the low and high energy solutions with the interpolation

φℓ =
∑

M

φlow
ℓ φhigh

ℓ

φlow
ℓ + φhigh

ℓ

=
φN (E)

1 − ZNN

∑

M

ZNMZM→ℓ,γ+1

1 + AME/εM
, (38)

with

AM =
ZM→ℓ,γ+1

ZM→ℓ,γ+2

1 − ΛN/ΛM

ln (ΛM/ΛN )
. (39)

The fluxes of muons and neutrinos calculated according to Eq. (38) using the previously-
obtained energy-dependent Z-moments are plotted in Fig. 3 as dashed lines. It is satisfying to
see that the cascade simulations and the approximate analytic solutions, which are conceptually
rather different, give results that are quite close. Detailed comparison of corresponding fluxes
shows good agreement both for conventional and prompt muons and neutrinos. The differences
are typically less than 20% which is quite sufficient in this context. For the prompt leptons,
this is below the uncertainty in our charm calculation (see section 5) and far smaller than the
differences between the different models discussed in section 7.

5 The model for particle production

A model for particle production is needed to specify the energy spectra of secondaries in cosmic
ray collisions with atmospheric nuclei. As discussed in section 2.3, collisions involving nuclei
can be reduced to the simpler proton-nucleon collision. This applies in particular when only
energetic particles are of interest, as in our case.

The flux of conventional muons and neutrinos results from the decay of relatively long-lived
particles, such as π and K mesons. The production of such hadrons, containing only light quarks
(u, d, s), is dominated by minimum bias proton-nucleon interactions (without large momentum
transfers) and receives a small contribution from diffractive interactions. On the other hand,
the prompt muons and neutrinos arise through decays of short-lived particles, i.e. dominantly
charmed particles. Charm quarks are, due to their relatively large mass, usually considered
to be produced in hard processes which can be described by perturbative QCD (pQCD). In
the following, some relevant details of the models implemented in the Pythia and Jetset

Monte Carlo programs [31] will be discussed. The hypothetical non-perturbative intrinsic charm
mechanism is discussed separately in section 6.

5.1 Light particle production

The production of light hadrons is dominantly through minimum bias hadron-hadron collisions.
The strong interaction mechanism is here of a soft non-perturbative nature that cannot be cal-
culated based on proper theory, but must be modelled. In the successful Lund model [32] hadron
production arise through the fragmentation of colour string fields between partons scattered in
semi-soft QCD interactions [31]. The essentially one-dimensional colour field arising between
separated colour charges is described by a one-dimensional flux tube whose dynamics is taken
as that of a massless relativistic string. Quark-antiquark pairs are produced from the energy
in the field through a quantum mechanical tunneling process. The string is thereby broken
into smaller pieces with these new colour charges as endpoints and, as the process is iterated,
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primary hadrons are formed. These obtain limited momenta transverse to the string (given by a
Gaussian of a few hundred MeV width) but their longitudinal momentum may be large as it is
given by a probability function in the fraction of the available energy-momentum in the string
system taken by the hadron. The iterative and stochastic nature of the process is the basis for
the implementation of the model in the Jetset program [31].

A non-negligible contribution to the inclusive cross section is given by diffractive interactions.
These are also modeled in Pythia [31] using cross sections from a well functioning Regge-based
approach and simulating the diffractively produced final state using an adaptation of the Lund
string model. These diffractive events are included in our simulations and contribute rather less
than 10% to the final results.

5.2 Perturbative production of charm

Charm production is strongly suppressed in hadronisation models that are commonly used in
detailed comparisons with experimental data on multihadron production in various high energy
collisions. The tunneling mechanism in the Lund model [32] gives a production probability of
different quark flavours as uū : dd̄ : ss̄ : cc̄ ≃ 1 : 1 : 0.3 : 10−11, i.e. charm production in the
hadronization phase can here be safely neglected.

Charm quarks are instead considered to be produced in perturbative QCD processes in
accordance with the relatively large charm quark mass. To leading order (LO) in the coupling
constant, i.e. O(α2

s), these are the gluon-gluon fusion process gg → cc̄ and the quark-antiquark
annihilation process qq̄ → cc̄ as shown in Fig. 5abc. The charm production cross section is
calculated using the usual convolution of parton densities fi in the colliding hadrons and the
hard parton level cross section σ̂ from pQCD, i.e.

σ =

∫ ∫ ∫

dx1dx2dt̂ f1(x1, Q
2) f2(x2, Q

2)
dσ̂

dt̂
(40)

Here, xi are the parton longitudinal momentum fractions in the hadrons and t̂ is the Mandel-
stam momentum transfer at the parton level. Q2 is the factorization scale defining at what
momentum transfer the parton densities are probed and also regulating the amount of pQCD
scaling violations; we have used Q2 = (m2

⊥c + m2
⊥c)/2, where m2

⊥
= m2 + p2

⊥
. The charm

quark mass introduces a threshold in the invariant mass of the parton level subsystem, i.e.
ŝ = x1x2s > 4m2

cc
4. The dominating contribution to the cross section comes from the region

close to this threshold, since dσ/dŝ is a steeply falling distribution. It is therefore important
to use QCD matrix elements with the charm quark mass explicitly included. The numerical
value used is mc = 1.35GeV/c2 together with ΛQCD = 0.25GeV (in accordance with using the
MRSG parton density parametrisation [36]).

Next-to-leading order (NLO), i.e. O(α3
s), cross sections for heavy flavour production in

hadron collisions have been calculated in pQCD [37, 38]. Compared to the leading order re-
sults there is an overall increase of the cross section of about a factor of two. This does not
demonstrate a bad convergence of the perturbative series, since the main NLO contribution is
associated with a process that does not appear in leading order charm production. This is the
gluon scattering process gg → gg, which has a much larger cross section than the leading order
charm processes and is of a comparable magnitude when including the NLO correction g → cc̄
shown in Fig. 5d. Since the NLO distributions of the charm quark transverse momentum and
rapidity to a reasonable approximation have the same shape as the LO ones, we take the NLO
results into account by rescaling the cross section with an overall factor K = 2. Still higher
order corrections have not been calculated, but their effect should be significantly smaller since
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Figure 5: Illustration of charm production in pQCD. The leading order processes (a,b,c) and an
important next-to-leading order process (d).

there should be no such additional process entering like for NLO. The factor K = 2 is indeed
consistent when comparing the leading order cross sections with experimental results [39].

Another estimate of higher order corrections can be obtained from charm production in
the simulated parton cascades implemented in Pythia. These represent a leading logarithm
approximation of multiple parton emission from the incoming and scattered partons in basic
QCD 2 → 2 processes. Charm quark production arises here through the perturbative QCD
gluon splitting process g → cc̄, i.e. basically the same as in the NLO matrix element calculation.
This approximate charm production to arbitrary order in pQCD gives a contribution of the same
magnitude as the LO matrix elements, thus confirming the use of a renormalisation factor of
K = 2. Furthermore, the energy spectra of the charm quarks from this higher order treatment
are very similar to those from the LO calculation. If anything, they rather tend to be slightly
softer than the LO distribution [6]. Since it is the hardest part of the spectrum that gives
the largest contribution to the high energy neutrino and muon spectra, one may conclude that
taking the higher order corrections into account through a global K-factor renormalisation and
keeping the leading-order shape of the charm quark energy spectra, as we have done, is sufficient
for the precision needed in this study.

The charm production cross section depends on the input for the parton density functions
fi(xi, Q

2) in Eq. (40). With charm production being dominantly close to threshold ŝ = x1x2s >
4m2

cc
4, the typical initial momentum fractions xi will decrease with increasing collision energy s.

This is demonstrated in Fig. 6, which shows the distribution of initial parton momentum fractions
in charm production at different energies. At the highest energies, the parton densities are probed
down to x ∼ 10−5 or even below. The recent data from the ep collider HERA [40, 41] show a
significant increase at small x, xf(x) ∼ x−a and constrain the parton densities down to x ∼ 10−4.
These data, together with other data from previous deep inelastic scattering experiment as well
as other processes, have been used in the parametrization MRSG [36] of parton densities. The
resulting small-x behaviour is given by the power a = 0.07 for sea quarks and a = 0.30 for gluons.
Since MRSG is the most recent parametrisation, using essentially all relevant experimental
data, we use this as our standard choice. To investigate [6] the dependence on the choice of
parton density parametrisations, we also applied the MRSD0 [42] with the small-x behavior
x f(x) ∼ const, which before the HERA data was an acceptable parametrisation. The effect
on the total charm production cross section from the choice of parton density parametrisation
is illustrated in Fig. 7 with curves resulting from these parametrisations. At high energy there
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Figure 6: Distribution of momentum fraction x for the initial partons entering the QCD charm
production subprocesses. The curves represent three different beam particle energies: 103 GeV
(solid), 106 GeV (dashed) and 109 GeV (dotted).

is a large dependence on the choice of parton density functions. The difference between the G
and the D0 parametrisations should however not be taken as a theoretical uncertainty. First of
all the D0 parametrisation is known to be significantly below the small-x HERA data and gives
therefore a significant underestimate at large energies. Secondly, the naive extrapolation of the
G parametrisation below the measured region x>∼10−4 at rather small Q2 (∼ m2

c) leads to an
overestimate. A flatter dependence like x−ǫ with ǫ ≃ 0.08 as x → 0 can be motivated ([43] and
references therein) based on a connection to the high energy behaviour of cross sections in the
Regge framework. The implementation of this approach in Pythia makes a smooth transition
to this dependence such that the parton densities are substantially lowered for x<∼10−4 leading
to a substantial reduction of the charm cross section at large energies, as given by the solid curve
in Fig. 7.

Using this procedure we get a quite decent agreement between experimental charm produc-
tion data and the Pythia simulation results over a wide range of energies (Fig. 7). A few
comments on the data in Fig. 7 are here in order. A given experiment is only sensitive to some
channels and a limited kinematical region. The total charm cross section is therefore obtained
by a rescaling with charm decay branching ratios and by using assumed shapes of the xF dis-
tributions to extrapolate to unmeasured regions. In particular, corrections to points 1,2,6 and
7 are small while they are large for point 9 and 13. The bands 8,10,11 and 12 illustrates the
uncertainty in these experiments due to this extrapolation. In band 8 the uncertainty includes
a scaling for including D±-mesons (taken from [49, 51]). Data-band 11 is based on D+D̄ iden-
tification, 12 on Λ+

c D̄ and 10 on Λ+
c identification. Furthermore, points 3, 4 and 5 are from

beam dump experiments on heavy nuclear targets without direct charm identification and have
an additional uncertainty from the scaling with nuclear number. In point 4 the scaling A0.75

has been assumed, which we have rescaled in 4’ to a A1-dependence in order to be consistent
with the other beam dump experiments and with our model. Data points 2 and 6 come from
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Figure 7: Energy dependence of charm production cross section in pp(pp̄). The experimental data
points are 1:[44] 2:[45], 3:[46], 4,4’:[47], 5:[48], 6:[49], 7:[50], 8:[51] 9:[52], 10:[53], 11:[54, 55],
12:[56, 55] and 13:[57]. The solid line is the result of our model. The dotted lines result from
a naive application of the MRS parametrisations G and D0 of parton densities. The dashed
lines represent earlier models, C from [15], V from [17] and Z1 from [20] which is 10% of the
total pp cross section σtot. The curves IC1 and IC2 are based on the intrinsic charm hypothesis
(section 6). Detailed discussions are in sections 5.2 and 7.

pp interactions with explicit charm particle identification. Although these issues leave some
uncertainty for each individual result, the combination of all data should give a trustworthy
knowledge on the charm cross section and its energy dependence.

As indicated, there is an uncertainty related to the dependence of the charm production
cross section on the nuclear mass A. Since the discussed pQCD charm production involves
hard scattering processes with a small cross section, one may argue that it does not only take
place with nucleons at the nuclear surface but also with nucleons in the interior. Consequently,
the power αc in σ(pA → cc̄) = Aαcσ(pN → cc̄) may be larger than 2/3 and rather be 1,
corresponding to interactions in the whole nucleus. In fact, experiments give values of αc that
are mainly close to 1 (see e.g. [63] and references therein), which is the value we have adopted
in our calculations. This is also in agreement with a number of recent experiments with both
pion and proton beams [51, 58, 59]. Using αc = 2/3 instead would lead to a reduction of the
normalisation for the prompt muon and neutrino fluxes by the factor A2/3/A = 14.5−1/3 ≈ 0.4.
This is at most an upper bound for the uncertainty of the A-dependence.

5.3 Semileptonic decays of charmed hadrons

The branching ratios for semileptonic charm decays used are BR(D± → e/µ) = 17%, BR(D0

→ e/µ) = 8%, BR(D±
s → e/µ) = 8%, BR(Λ+

c → e/µ) = 4.5%. These values agree with experi-
mental measurements as compiled by the ‘Particle Data Group’ [33]. To distribute momenta in
the charm hadron decay H → ℓνℓh, the Monte Carlo [31] uses the weak V −A matrix element

|M|2 = (pHpℓ)(pνph) (41)
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in terms of the involved four-vectors and neglecting decay product masses. H is the charm
hadron and h is the final hadron in a three-body decay and generalized to represent the final
state hadron system in case of more final hadrons. The multiplicity and momenta within the
h-system is phenomenologically modelled [31] and tested against data. These details, however,
concern the final hadrons and are not important for our purposes, because we only use the final
leptons, which should be well accounted for through the weak decay matrix element (41) and
the known branching ratios.

6 Possible non-perturbative origin of charm

Although most of the charm production data from accelerator experiments can be reasonably
well understood from pQCD calculations, the uncertainty in the data and the calculations cannot
exclude some smaller non-perturbative contribution. Charm production in pQCD is theoreti-
cally well defined and only has some limited numerical uncertainty due to parameter values
and NLO corrections which, however, can be examined and controlled as discussed above. In
contrast, non-perturbative charm production is not theoretically well defined due to the general
problems of non-perturbative QCD. In particular, the absolute normalisation has to be taken
from comparison with data. Models for non-perturbative charm production exist and some
have been used in the context of atmospheric muon and neutrino fluxes, as discussed in sec-
tion 7. Here, we will investigate the consequences of the hypothesis of intrinsic charm quarks in
the nucleon wave function [60]. Although being far from established, this idea has theoretical
motivation [60, 61] and some experimental data can be interpreted as giving evidence [62–67].
It is therefore a serious model for a possible additional mechanism for charm production with
a non-perturbative origin. The results presented in this section are based on a more general
study [68] of intrinsic charm in high energy collisions, to which we refer for more details of our
implementation in an explicit model.

The hypothesis of intrinsic charm (IC) amounts to assuming the existence of a cc̄-pair as a
non-perturbative component in the bound state nucleon [60]. This means that the Fock-state
decomposition of, e.g., the proton wave function, |p〉 = A|uud〉+B|uudcc̄〉+ ..., contains a small,
but finite, probability B2 for such an intrinsic quark-antiquark pair. This should be viewed as a
quantum fluctuation of the proton state. The normalization of the heavy quark Fock component
is the key unknown, although it should decrease as 1/m2

Q. Originally, a 1% probability for charm
was assumed, but later investigations, e.g. [64, 65], indicate a smaller but non-vanishing level.

Viewed in an infinite momentum frame, all non-perturbative and thereby long-lived compo-
nents must move with essentially the same velocity in order that the proton can ‘stay together’
for an appreciable time. The larger mass of the charmed quarks then implies that they take
a larger fraction of the proton momentum. This can be quantified by applying old-fashioned
perturbation theory to obtain the momentum distribution [60]

P (p → uudcc̄) ∝

[

m2
p −

5
∑

i=1

m2
⊥i

xi

]−2

(42)

in terms of the fractional momenta xi of the five partons i in the uudcc̄ state. Neglecting the
transverse masses of the light quarks in comparison to the charm quark mass results in the
momentum distribution

P (x1, x2, x3, xc, xc) ∝
x2

cx
2
c

(xc + xc)2
δ(1 − x1 − x2 − x3 − xc − xc) (43)
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which favour large charm quark momenta as anticipated. In fact, one obtains 〈xc〉 = 2/7 by
integrating out the light quark degrees of freedom xi.

A proton with such an intrinsic cc̄ quantum fluctuation can then interact with another
hadron such that charmed particles are realised. A hard interaction with such a charm quark
is certainly possible, but the cross section is then suppressed both by the small probability of
the fluctuation itself and by the smallness of the perturbative QCD interaction. The charm
quarks may, however, also be put on shell through non-perturbative interactions that are not
strongly suppressed [61]. This may lead to a rate that is large enough to be of potential interest.
To estimate these non-perturbative interactions we have constructed a model [68] based on
refs. [60, 62, 63].

The formation of charm hadrons can occur through the following mechanisms. The charm
(anti)quark can hadronise into a D-meson as described by a normal hadronisation function,
similar to those successfully used in e+e− → cc̄. Alternatively, the (anti)charm quark can
coalesce with another quark or diquark from the |uudcc̄〉 state to form a hadron. Following
[62, 63] we use the recombination probabilities 50% to form a D-meson and 30% for a Λc,
in which cases the remaining c or c̄ quark is assumed to hadronise separately from the proton
remnant. The probability to directly form a J/ψ (i.e. the cc̄ pair is combined) is taken to
be 1%. The momentum of the hadron formed through coalescence is taken as the sum of the
corresponding xi’s, e.g. xΛc

= xc + xu + xd. The momentum distribution is then obtained by
folding Eq. (43) with the proper δ function, e.g. δ(xΛc

− xc − xu − xd), and integrating out all
extra degrees of freedom. The c or c̄ quarks that does not coalesce with spectator partons are
hadronised to D-mesons with a normal hadronisation function. Since such a function is quite
hard, we here approximate it with a δ-function to let the charm hadron take the whole charm
quark momentum given by Eq. (43), which is consistent with low-pt charmed hadroproduction
data [67].

The shapes of the xF -distributions for the charmed particles are thereby given (see [68]).
They are quite hard, in fact harder than those for charm from pQCD, and therefore have
the potential to contribute effectively at high energies. As mentioned, the main uncertainty
in the intrinsic charm model is the absolute normalization of the cross section and its energy
dependence. The magnitude of the cross section has been estimated [63] from data at relatively
low energies (Ep = 200−400GeV ). Since the process is basically a soft non-perturbative process
it may be reasonable to assume that its energy dependence is the same as that for normal inelastic
scattering [61, 68]. We therefore take as our first case

IC1 : σIC(s) = 3 · 10−5σinel(s) (44)

with normalisation from [63] and shown as curve IC1 in Fig. 7. Alternatively, one might argue
that there is a stronger energy dependence related to some threshold behavior for putting the
charm quarks on their mass shell. We make a very crude model for this by taking the intrinsic
charm cross section to be a constant fraction of the pQCD charm cross section

IC2 : σIC(s) = 0.1 σpQCD(s) (45)

as shown by curve IC2 in Fig. 7. This is similar to the low energy (200 − 800GeV ) treate-
ment in [62]. The normalisation is here fixed to be the same as IC1 at the low energy where
evidence is claimed for intrinsic charm [63]. There is, however, some indication against such an
increased cross section, as in IC2, since no evidence for J/ψ from intrinsic charm was found in
an experiment [69] at a somewhat higher energy (800GeV proton beam).

The dependence on nuclear mass number should (in both cases) essentially be A2/3 reflecting
the soft nature of the hadron-hadron interaction. Note, that the intrinsic charm quarks can be
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Figure 8: Energy-dependence of production Zkh-moments, Eq. (29), for incoming particle
k = proton producing charmed hadron h = D0,D±,Λc and J/ψ through the intrinsic charm
mechanism with the two assumed energy dependences IC1 and IC2.

released through interactions with the other parts of the |uudcc̄〉 state, as demonstrated clearly in
case of J/ψ production after the remaining proton state has been ‘stripped off’ in the interaction
[61].

The intrinsic charm model provides simple and scaling xF -spectra for the charmed particles
which makes the analytic method suitable for calculating the fluxes of muons and neutrinos
from their decays. The charm production Z-moments are calculated according to Eq. (29) by
numerical integration and shown in Fig. 8. The mild energy dependence of the IC1 case gives
essentially constant Z-moments, except for a marked step due to the change of the slope γ in
the primary spectrum. The step is more pronounced here compared to charm from pQCD (see
Fig. 4) where the xF -distribution is both energy-dependent and extending to smaller values.
The stronger energy dependence in IC2 is reflected in the corresponding Z-moments, where the
strong variation at energies below ∼ 105 GeV may cast some doubt on the reliability of the
analytic method in this region.

The lepton fluxes are then obtained by using Eq. (38) and the regeneration and decay Z-
moments calculated in section 4. The results are displayed in Fig. 9 and compared to those
from our pQCD calculation. The milder, and more conservative, energy dependence (IC1) of
the intrinsic charm cross section gives a result which is only a small (∼ 10%) correction to the
pQCD result, except at super-high energies where the rate is extremely small and not measurable
in a foreseeable future. Note that the J/ψ contribution is here becoming important, since the
J/ψ flux is not attenuated through interactions due to the high critical energy (Table 2). This
raises the question of how well the normalisation of the otherwise small J/ψ contribution is
known. With the strong energy dependence assumed in IC2, the intrinsic charm result exceeds
the pQCD one already at lepton energies around 104 GeV . Although the energy dependence of
this IC2-model is, as mentioned, rather ad hoc and may be disfavoured by data, it illustrates
the large theoretical uncertainty associated with the intrinsic charm model when extrapolated
to the high energies of cosmic ray interactions.
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Figure 9: Fluxes (cf. fig. 3) of muons and neutrinos from the intrinsic charm model with the
two assumed energy dependences IC1 and IC2; for IC1 the contributions from different charm
particles are given. Shown for comparison are our standard results (full curves) for conventional
and prompt fluxes as given by the parametrisation Eq. (19) and extrapolated to higher energies
(dashed).

7 Comparison with previous model calculations

In sections 3 and 4 we have obtained atmospheric muon and neutrino fluxes with two different
methods: via a Monte Carlo simulation of the hadronic cascade and via approximate analytical
expressions with energy-dependent Z-moments. We were satisfied that the two methods gave
consistent results. Here we want to compare our results with those obtained with different
models for particle interactions in the atmosphere. In particular, we focus on the prompt muon
and neutrino fluxes arising from different charm production mechanisms.

Earlier calculations of the conventional muon and neutrino fluxes [1, 7, 8, 9] agree well with
our results as shown in Fig. 10. The conventional muon flux from Gaisser [1] is shown as a dashed
line in Fig. 10a as far in energy as it is applicable. Also shown as dashed lines in Fig. 10bc are the
conventional neutrino fluxes from Volkova [7]. In contrast to these models, ours does not obey
Feynman scaling. The scaling violations are apparent in Fig. 11a and from the deviation from
a constant value of the production Z-moments (Fig. 4). Nevertheless, they are small enough
that when folding everything together (initial spectrum, cascade interactions and decays) the
resulting conventional muon and neutrino fluxes agree well with those models. We have thus
confirmed previous results by an independent calculation based on a new approach using Monte
Carlo simulations to more fully take into account the atmospheric cascade interactions producing
secondary particles decaying into muons and neutrinos.

Concerning previous estimates of the flux of prompt muons and neutrinos, there are variations
between different model calculations of up to a few orders of magnitude, as illustrated in Fig. 10.
One should note that prompt fluxes are direction independent up to the charm particle critical
energy ∼ 107 GeV (Table 2) and therefore directly comparable independently of whether the
horizontal or vertical direction has been considered in these estimates. Furthermore, due to the
charmed particle decay kinematics and the same branching ratios for the semi-leptonic decays
into electrons and muons, the prompt muon and neutrino fluxes are essentially the same (cf. the
decay Z-factors in Table 3). Therefore, the curves for prompt muons in Fig. 10a are also taken
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Figure 10: Prompt and conventional muon and neutrino fluxes from our cascade simulation
(solid curves) compared with earlier model calculations as discussed in the text.

to represent the prompt neutrinos in Fig. 10bc (except for our own curves, which are calculated
separately). The comparison in Fig. 10 shows that previous results are in general substantially
larger than our results based on pQCD. Even the highest flux from our extreme version IC2
of the intrinsic charm hypothesis (Fig. 9) is lower than most previous calculations. These large
differences are due to different models for charm production, both regarding the magnitude
and the energy dependence of the cross section and the distribution in longitudinal momentum
fraction xF of the charmed particles.

The curves labeled V in Fig. 10 are from the calculation by Volkova et al. [17], applying
the so-called ‘quark-gluon string model’ (QGSM) [70] (not to be confused with the Lund string
model [32]). It uses a parametrised energy dependence of the charm cross section, curve labeled
V in Fig. 7, normalized to early experimental data which are substantially above more recent
measurements. The charm particle energy spectrum is assumed to obey Feynman scaling and
has the form

dN/dxF ∼ (1 − xF )α (46)

with αD = 5 and αΛc
= 0.4 for D-mesons and Λc-baryons, respectively.

The curves marked Z1 in Fig. 10 are from Zas et al. [20] and illustrates an extreme model
where the charm cross section is simply taken as 10% of the total inelastic cross section
(cf. Fig. 7). This is substantially higher than all charm data as shown in Fig. 7. This model
uses the scaling xF -distribution of Eq. (46) with αD = 3 and αΛc

= 1. Castagnoli et al. [15]
obtained the result marked C in Fig. 10 using a parametrised energy dependent charm cross sec-
tion shown by curve C in Fig. 7 based on some early data (band marked 11) that are higher than
later measurements. Again, the differential spectra are of the form Eq. (46) using αD = 5 and
αΛc

= 0.4. The curves marked Z2, from Zas et al. [20], correspond to charm quark production
calculated with leading order pQCD matrix elements using relatively hard parton distributions.
This spectrum would be softened by taking hadronisation into account and thereby become even
closer to our result, as expected since they are based on the same pQCD processes.

The first important difference between our model and previous ones lies in the magnitude
and energy dependence of the charm production cross section. As demonstrated in Fig. 7 our
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Figure 11: Distribution in fractional energy xE of produced mesons: (a) π± and K± mesons, (b)
D mesons. Dashed, dotted and dashed-dotted lines are obtained from simulations with Pythia at
proton beam energies of 103 GeV, 106 GeV and 109 GeV, respectively. The solid line represents
Feynman scaling using Eq. (46) with αD = 5. (D-meson curves are normalized to unit area.)

model reproduces available data on charm production cross sections, but the other models do
not. In some cases one may have been mislead in the construction of the models by the early
charm measurements that turned out to be substantially higher than the measurements done
later.

Another important reason for our lower flux is the strong breaking of Feynman scaling
as demonstrated in Fig. 11b. The xF distributions for D-mesons produced at three different
energies in our model are here compared with the energy-independent distribution in Eq. (46)
with αD = 5. The Feynman scale breaking in our model arises in the perturbative charm
quark production, but is also influenced by the hadronization model. As discussed in section
5.2, charm quark production is dominant close to threshold, ŝ = x1x2s > 4m2

cc
4. This effect

does not disappear with increasing energy, but is rather enhanced with parton densities that
increase at small x. This leads to a scale breaking with the charm quark xF distribution in the
symmetric nucleon-nucleon cms becoming softer around xF = 0 with increasing cms energy. In
the Lund hadronization model, the charm quark is connected by a colour string to a spectator
parton. In the hadronization of this string, the produced charm hadron may obtain a larger
longitudinal momentum than the charm quark, due to the momentum contribution from the
parton with which it is joined. The string may even have so small invariant mass that it directly
produces a charmed hadron, i.e. the charm quark effectively coalesces with a spectator parton
into a charmed hadron. This latter process naturally happens particularly at small overall
cms energies. Since these forward-‘pulling’ hadronization effects become less important with
increasing collision energy, they also contribute to the Feynman scale breaking.

The effect on the prompt muon flux from this Feynman scale breaking is shown in Fig. 12.
Our normal result is here compared with the results from a modification of our model, where in
each event the charmed particles D and Λc are redistributed according to the scaling distribution
in Eq. (46) with αD = 5 and αΛc

= 0.4. Clearly, the Feynman scale breaking softens the spectrum
considerably. (In comparing these curves one should note that there is no conserved integral of
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the E3-weighted flux.) To examine the effect of the energy dependence of the overall charm cross
section, we have, in addition to using this scaling xF -distribution, renormalized our simulated
charm events to mimic the cross section in the model by Volkova et al. [17] mentioned above
and shown by curve V in Fig. 7. Since this cross section is larger than in our model at energies
below ∼ 106 GeV and smaller above, this change flattens the muon spectrum in Fig. 12. With
these two changes in the spirit of ref. [17], we obtain the same shape of the prompt muon flux as
in [17] but with a lower overall normalization. The resulting spectra are, however, in reasonable
agreement with the calculation of Castagnoli et al. [15] using a similar approach as ref. [17]. A
more recent calculation based on the QGSM by Gonzalez-Garcia et al. [21] gives fluxes that are
comparable to the fluxes predicted by Castagnoli et al. [15].

The calculation by Bugaev et al. [18] resulted in overall prompt fluxes slightly lower than
in ref. [17]. They considered Feynman scaling violations in charm production through a phe-
nomenological equation and obtained higher fluxes in the non-scaling case than in the scaling
case, i.e. opposite to the effect we find and have just described. However, their way of introduc-
ing the energy dependence in the xF distribution does not preserve the overall normalization,
i.e. the integral of the xF -distribution. This means that, in comparison with our model, there
is not the same clear separation between the overall charm cross section normalization and the
charm particle xF distribution.

Since most of the earlier calculations are based on non-perturbative charm production mech-
anisms a comparison with our intrinsic charm model in section 6 is of interest, i.e. comparing
Figs. 9 and 10. Intrinsic charm should be considered as a process in addition to the standard
pQCD one, but the sum of their resulting fluxes is still lower than, e.g., Volkova et al. [17]. To
get a similarly high flux the rate of intrinsic charm must be increased substantially, about a
factor 1000 for IC1 and 10 for IC2. Such rates are incompatible with the experimental limits on
intrinsic charm and with measured inclusive charm cross sections (Fig. 7) and xF -distributions.

This discussion has demonstrated significant effects on the high energy prompt muons and
neutrinos depending on the assumptions made in the charm production model employed. The

Figure 12: The prompt muon flux in our model (solid line) and after re-distributing the generated
charm particles to obey Feynman scaling using Eq. (46) (dashed line) and then also renormalizing
the cross section to that of curve V in Fig. 7 from [17] (dotted curve).
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models in ref. [15, 17] give cross sections above more recent charm production data (Fig. 7) and
apply simple Feynman scaling xF -distributions. The model used by us, on the other hand, gives a
fair description of measured charm production cross sections (Fig. 7) and applies well-motivated
charm particle momentum distributions with significant Feynman scaling violations.

8 Conclusions and outlook

We have studied the production of neutrinos and muons in the atmosphere by collisions of cos-
mic rays with air nuclei, paying special attention to muons and neutrinos coming from decays of
charmed particles (prompt fluxes). Two methods have been used to calculate the fluxes: a Monte
Carlo simulation of the hadronic cascade in the atmosphere and an interpolation of asymptotic
solutions to the transport equations. In both methods the Pythia Monte Carlo program has
been used to simulate the primary collision and following cascade interactions. Results for the
two methods are consistent. They agree with previous calculations of the conventional fluxes
from decays of pions and kaons, but give substantially lower prompt components. This is due to
different models for charm production, both regarding the energy dependence of the cross section
and the longitudinal momentum distribution of the charmed particles. Whereas previous models
give charm production cross sections above collected recent data and apply Feynman scaling for
the longitudinal momentum distributions, our model gives a fair description of measured charm
production cross sections and applies well-motivated charm particle momentum distributions
with significant Feynman scaling violations. There is still some uncertainty (as discussed in
section 5.2) when extrapolating this charm cross section calculation to the very high energies
(109 GeV) needed for this study. Here, one cannot at present exclude a non-negligible contri-
bution from some unconventional non-perturbative production mechanism. We investigate one
such mechanism, namely that of intrinsic charm which has some theoretical motivation and
some indications from data. This mechanism is likely to give a very small contribution to the
total charm cross section, but the poorly known normalisation and energy dependence prevents
a reliable prediction. Although disfavoured, a contribution ∼ 10% of the pQCD charm cross
section is presently not excluded, which through the harder momentum spectrum would lead to
a dominant contribution of leptons at very high energies.

We find that prompt muons and muon-neutrinos overcome the conventional fluxes at an
energy of 106 GeV, which is substantially higher than in some earlier estimates. According
to our results, it will therefore be harder to use measurements of the prompt atmospheric
fluxes to estimate the total charm production cross section at high energy. The situation is
slightly different in the case of the electron-neutrinos, for which prompt fluxes dominate above
105 GeV. The electron-neutrino flux is, however, experimentally more difficult to measure and it
is therefore a challenge to obtain the data needed to derive the charm production cross section.

On the positive side, the lower atmospheric neutrino fluxes we predict are a less severe
background to measurements of neutrinos from astrophysical sources (for a review on these
see [71]). To illustrate this, we show in Fig. 13 the vertical fluxes of conventional and prompt
atmospheric muon-neutrinos calculated by us (solid lines) together with expected neutrino fluxes
from such sources. Cosmic ray interactions with the interstellar medium produce neutrino fluxes
through processes similar to the atmospheric case and we show results derived from [72] in the
direction of the galactic center (dashed upper curve) and orthogonal to the galactic plane (dashed
lower curve). Two estimates of diffuse neutrino fluxes from active galactic nuclei are also shown
(dotted line from ref. [73] and dash-dotted line from ref. [74]). At high energies (>∼105 GeV), all
of these fluxes are in excess of our predicted atmospheric neutrino background. This provides
interesting prospects for large scale neutrino telescopes to detect high energy neutrinos from
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Figure 13: Vertical fluxes of conventional and prompt atmospheric muon-neutrinos from our
simulation (solid lines) compared to some astrophysical sources: the flux from cosmic ray inter-
actions with the interstellar medium as derived from [72] (dashed upper curve: in the direction
of the galactic center; dashed lower curve: orthogonal to the galactic plane) and the estimated
diffuse fluxes from active galactic nuclei (dotted line [73], dash-dotted line [74]).

cosmic sources.
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[31] T. Sjöstrand, PYTHIA 5.7 & JETSET 7.4, Comput. Phys. Commun. 82 (1994) 74

[32] B. Andersson, G. Gustafson, G. Ingelman and T. Sjöstrand, Phys. Rep. 97 (1983) 33.
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