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Of late, the field of BFKL physics has been the subject of significant
developments. The calculation of the NLL terms was recently completed,
and they turned out to be very large. Techniques have been proposed to re-
sum these corrections. These lectures provide an introduction to the BFKL
equation and some of the recent developments, using DGLAP evolution as
the starting point.

PACS numbers: 12.38.Cy

1. Introduction

Some twenty-five years ago Balitsky, Fadin, Kuraev and Lipatov (BFKL)
set out to determine the high-energy behaviour of the scattering of hadronic
objects within perturbative QCD. They found terms going as (αs ln s)n,
where s is the squared centre-of-mass energy. Since ln s is large it can
compensate the smallness of ᾱs and thus it was necessary to sum this whole
series of leading logarithmic (LL) terms. The result was that the cross
section should grow as a power of the squared centre-of-mass energy s [1].
For the values of αs ≃ 0.2 that are typically relevant, this power comes out
as being of the order of 0.5.

Over the past few years much experimental effort has been devoted
towards observing this phenomenon, and the conclusion has consistently
been that while the cross sections do rise, that rise is much slower than s0.5

(see for example [2–6]).
The solution to this problem was to have been in the next-to-leading

corrections to the BFKL equation, terms αs(αs ln s)n, which have been
calculated over the past ten years [7]. The various contributions were put
together last year [8, 9], and to the consternation of the community turned
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out to be larger than the leading contribution, giving cross sections that
were not even positive-definite [10,11].

These lectures will illustrate the origin of some of the main features
of both the leading and next-to-leading BFKL equations, using as a basis
the constraints provided by the DGLAP equation, and follow on with a
discussion, based on [12, 13], of how to solve the problems that arise at
next-to-leading order.

After a brief definition of the problem in the next subsection, section 2
discusses the DGLAP equation as relevant for high-energy scattering, and
shows how it can naturally be extended to the give the BFKL equation [1].
This is followed by an illustration of the lack of agreement of the latter with
experimental data. Section 3 derives the main features of the next-to-leading
corrections to BFKL and discusses some of the problems that ensue from
their inclusion. Section 4 looks at how one can go beyond next-to-leading
order and section 5 concludes.

1.1. The problem

Let us first define a little more carefully

Q2
0

Q2

s

Fig. 1. High-energy collision of

two hadronic objects.

the problem to be addressed. We want to
study collisions of two perturbative hadr-
onic objects, figure 1, where the squared
centre-of-mass energy s is much larger than
the typical transverse scales Q2, Q2

0 of the
two objects, which in turn are much larger
than the QCD scale, Λ2, in order for the
problem to be perturbative. This is of phe-
nomenological relevance for certain features
of small-x deep-inelastic scattering (DIS)
at HERA, high-energy γ∗γ∗ scattering at
LEP and the NLC, and configurations at
the Tevatron and LHC involving jets that
are widely separated in rapidity. It is also of theoretical interest since the
large parton densities that arise at high energies can lead to novel effects
such as parton recombination and multiple perturbative scatterings.

2. Leading-logarithmic order

2.1. Deep inelastic scattering

Rather than entering straight into the problem of general high-energy
scattering, it is helpful to consider first high-energy scattering in which
one of the two hadronic objects is much smaller than the other, i.e. deep
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Fig. 2. (a) Deep inelastic scattering. (b) Cut ladder diagram for the evolution of

the parton distributions.

inelastic scattering, figure 2a. We have the collision of a proton (of massM2
p ,

equivalent to Q2
0 of figure 1) with a photon of virtuality Q2 ≫ M2

p , which
we will view as our second hadronic object. The photon-proton squared
centre-of-mass energy is ŝ. High-energy scattering in this system, ŝ≫ Q2, is
generally referred to as small-x scattering because Bjorken-x is = Q2/ŝ ≪ 1.

As is well known, to correctly treat such collisions it is necessary to
resum terms (αs lnQ2)n, because the smallness of αs is compensated by
the large size of lnQ2. This is DGLAP [14] or collinear resummation, or
renormalisation group evolution.

The cross section is proportional to the quark distribution at scale Q2,
which is related to the quark distribution at another scale Q2

0 by

xq(x,Q2) = xq(x,Q2
0) + αs ln

Q2

Q2
0

∫

dz1 Pqq(z1)
x

z1
q

(

x

z1
, Q2

0

)

+ αs ln
Q2

Q2
0

∫

dz1 Pqg(z1)
x

z1
g

(

x

z1
, Q2

0

)

+ . . . (1)

In an appropriate gauge this can interpreted as the first in a set of ladder
diagrams (figure 2b), whose rungs are strongly ordered in lnQ2.

To understand the type of ladder that dominates at small x, we need to
look at the splitting functions. A quark ladder (with gluon rungs) involves
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iteration of the Pqq splitting function:

Pqq(z) =
CF

2π

[

1 + z2

(1 − z)+
+

3

2
(1 − z)

]

, (2)

while a gluon ladder (with gluon rungs) involves the Pgg splitting function,

Pgg(z) =
CA

π

[

1

z
+

1

(1 − z)+
− 2 + z(1 − z)

]

+ δ(1 − z)β0 . (3)

At small z, Pqq is constant while Pgg grows as 1/z. So at small x, gluon
ladders with repeated iterations of Pgg(z ≪ 1) dominate, i.e. we have strong
ordering in z.

With this is mind, let us examine the properties of the unintegrated

gluon distribution:

F(x,Q2) = x
dg(x,Q2)

dQ2
, (4)

and start with a simple (though not entirely physical) initial condition

Q2F (0)(x,Q2) = Θ(1 − x) Θ

(

Q2

Q2
0

− 1

)

, (5)

where the Q2 factor is included on dimensional grounds (g(x,Q2) is dimen-
sionless). Using the purely gluonic DGLAP equation in differential form,

Q2x
dg(x,Q2)

dQ2
= αs

∫ 1

x
dzPgg(z)

x

z
g
(x

z
,Q2

)

, (6)

and rewriting it in terms of the unintegrated gluon distribution, we obtain
the first-order contribution to F ,

Q2F (1)(x,Q2) = αs

∫ 1

x
dz1Pgg(z1)

∫ Q2

dk2
1 F

(0)

(

x

z1
, k2

1

)

≃ ᾱs

∫ 1

x

dz1
z1

∫ Q2

dk2
1 F

(0)

(

x

z1
, k2

1

)

= ᾱs ln
1

x
ln
Q2

Q2
0

, (7)

where ᾱs = αsCA/π has been introduced as a notational shorthand and a
factor Θ(Q2 − Q2

0) is implicitly understood to be contained in the result.
We retain only the 1/z part of the splitting function because the other parts
lead to contributions lacking the factor ln 1/x and so much smaller than (7).
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The second-order contribution is

Q2F (2)(x,Q2) = ᾱs

∫ 1

x

dz2
z2

∫ Q2

dk2
2 F

(1)

(

x

z2
, k2

2

)

=
ᾱ2

s

(2!)2
ln2 1

x
ln2 Q

2

Q2
0

,

(8)

By iteration one sees that the O (ᾱn
s ) contribution is

Q2F (n)(x,Q2) =
1

(n!)2

(

ᾱs ln
1

x
ln
Q2

Q2
0

)n

Θ(Q2 −Q2
0) . (9)

Since every power of ᾱs is accompanied by two logarithms, this is referred
to as a double-logarithmic (DL) series. It resums ladders in which there is
strong ordering of both the transverse and longitudinal momenta along the
ladders: k2

n/k
2
n−1 ≫ 1 and zn ≪ 1 respectively.

2.2. Summing the DL series
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Fig. 3. Graphical depiction of the integral equation (11)

Our DL series happens to be related to the series for the modified I0
Bessel function [15]. Using the asymptotic expansion for I0 gives us the
result that

Q2F(x,Q2) ∼ exp

[

2

√

ᾱs ln
1

x
ln
Q2

Q2
0

]

. (10)

However it is useful to develop a more general method of summation, one
which will be applicable also later on. Accordingly, we formulate the prob-
lem as an integral equation

F(x,Q2) = F (0)(x,Q2) + ᾱs

∫ 1

x

dz

z

∫ Q2

dk2

Q2
F
(x

z
, k2
)

, (11)
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which is depicted graphically in figure 3. It can be diagonalised by taking
Mellin transforms with respect to both x and Q2,

F(x,Q2) =

∫

dω

2πi
x−ω

∫

dγ

2πi

1

Q2

(

Q2

Q2
0

)γ

Fγ,ω , (12)

with the contours running parallel to the imaginary axis, giving

Fγ,ω = F (0)
γ,ω + ᾱs

∫ 1

0

dz

z
zω

∫ Q2

dk2

Q2

Q2

k2

(

k2

Q2

)γ

Fγ,ω = F (0)
γ,ω +

ᾱs

ωγ
Fγ,ω .

(13)

The pole in γ is conjugate to the DGLAP logarithm of Q2 and the pole in
ω conjugate to the logarithm of x. Eq. (13) is easily solved:

Fγ,ω =
ωF

(0)
γ,ω

ω − ᾱs

γ

. (14)

With the initial condition (5), we have F
(0)
γ,ω = 1/ωγ. The inverse Mellin

transform with respect to ω is carried out by closing the ω contour to the
left in eq. (12), leaving us with

Q2F(x,Q2) =

∫

dγ

2πi
x−

ᾱs
γ

(

Q2

Q2
0

)γ

·
1

γ
. (15)

The integrand has a saddle-point at

γ̄ =

√

ᾱs ln 1/x

lnQ2/Q2
0

(16)

and a saddle-point evaluation of the integral gives

Q2F(x,Q2) ≃
1

2





1

π2ᾱs ln 1
x ln Q2

Q2

0





1/4

exp

[

2

√

ᾱs ln
1

x
ln
Q2

Q2
0

]

. (17)

This result was first obtained twenty-five years ago by De Rujula et al. [16].
Its main feature is that the gluon distribution rises at small x, with an
effective power

ωeff ≃

√

ᾱs ln 1/x

lnQ2/Q2
0

, (18)
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Fig. 4. The effective power of the rise of F2 [2]; x and Q2 values are correlated so

that higher Q2 also means higher x.

which decreases as one moves towards smaller x values, and increases to-
wards higher Q2. The H1 data for ωeff shown in figure 4 illustrate precisely
this trend. Detailed comparisons of DGLAP-induced rises of F2, including
full splitting functions and a running coupling, such as those performed by
Glück, Reya and Vogt [17] and Ball and Forte [18], show remarkably good
agreement with nearly all the small-x F2 structure function data, even down
to Q2 ≃ 4 GeV2.

2.3. BFKL

The above arguments are relevant in a limit where both 1/x and Q2/Q2
0

are large, i.e. when we have strong ordering in both longitudinal and trans-
verse momenta. But when the ends of the chain have similar transverse
momenta, Q2 ≃ Q2

0, there is no longer any reason for transverse momenta
along the chain to be ordered. Double logs no longer dominate the cross
section and we have to sum all leading (single) logarithms (LL) of x,

(

ᾱs ln
1

x

)n

. (19)

This is done by the BFKL equation [1], which can be derived in a number of
ways. Since these notes are intended only as an introduction to the BFKL
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equation, rather than engaging in its derivation we will try to deduce its
main characteristics from simple physical arguments.1

In the previous section we had the following integral equation for the
gluon density (11):

F(x,Q2) = F (0)(x,Q2) +

∫

dz

z

∫

dk2K(Q2, k2)F
(x

z
, k2
)

, (20)

where the DGLAP kernel K was just

K(Q2, k2) =
ᾱs

Q2
Θ(Q2 − k2) , valid for Q2 ≫ k2 . (21)

Since the BFKL kernel should be valid for any ratio of transverse scales
it must have the same limit for Q2 ≫ k2, and additionally correctly treat
situations in which Q2 is of the same order as, or much smaller than k2. We
can deduce its form in the limit k2 ≫ Q2 by the following argument. The
scattering of a big object off a small one, or of a small object off a big one,
must have the same cross section, and both situations must be correctly
described by the BFKL resummation. Therefore the BFKL kernel must
be symmetric under the interchange of Q2 and k2. So when k2 ≫ Q2 (the
anti-DGLAP, or anti-collinear limit) we have

K(Q2, k2) =
ᾱs

k2
, valid for k2 ≫ Q2 . (22)

If we approximate the full kernel just by its collinear and anti-collinear
limits, then we have

Kcoll(Q2, k2) = ᾱs ·

(

Θ(Q2 − k2)

Q2
+

Θ(k2 −Q2)

k2

)

. (23)

Following the treatment of the previous section, we will need its Mellin
transform,

χcoll(γ) =
1

γ
+

1

1 − γ
, (24)

where, by convention, the leading factor of ᾱs has been left out; χ(γ) is
usually referred to as the characteristic function of the system. The 1/γ
term was present also in the pure DGLAP case, and comes from the collinear
limit. The 1/(1−γ) term comes from the anti-collinear limit. The symmetry

1 For the interested reader one of the simplest full derivations is perhaps to be found
within the dipole formulation [19]. A wide ranging introduction and discussion of
many aspects of BFKL physics can be found in [20].
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γ ↔ 1 − γ is a direct consequence of the symmetry under the exchange of
the two transverse scales. This can be seen explicitly from the definition of
the Mellin transform, eq. (12), where

1

Q2

(

Q2

Q2
0

)γ

=
1

Q2
0

(

Q2
0

Q2

)1−γ

. (25)

What we have neglected in our collinear + anti-collinear approximation
is the correct treatment of the kernel for k of the same order as Q. This is
given by the full BFKL kernel [1] (with integration measure d2k/π because
the azimuthal integration now matters):

K(Q2, k2) = ᾱs ·

(

1

| ~Q− ~k|2
− δ(Q2 − k2)

∫ k d2q

πq2

)

. (26)

Its Mellin transform (again leaving out the overall factor of ᾱs) is

χ(γ) = 2ψ(1) − ψ(γ) − ψ(1 − γ), (27)

where ψ(x) = d lnΓ(x)/dx. Noting that −ψ(γ) = 1/γ + O (1) for small
x, we see that the full χ(γ) has the same polar structure around γ = 0
and γ = 1 as our approximation (24) reflecting the fact that the collinear
and anti-collinear limits are the same. The two characteristic functions are
shown in fig. 5, which illustrates their very similar shapes: they differ by
little more than a constant.

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1

γ

1/γ + 1/(1−γ)
χ

Fig. 5. The full and collinearly-approximated characteristic functions.
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0
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1Re[γ]
-0.5

0

0.5

Im[γ]

-5

0

5

10

Re[χ]

Fig. 6. The real part of the LL BFKL characteristic function in the complex plane

and the integration contour for the inverse Mellin transform.

The procedure for obtaining the BFKL cross section is analogous to that
used in the DGLAP case, with 1/γ replaced by χ(γ). We start with the
Mellin-transformed integral equation

Fγ,ω = F (0)
γ,ω +

ᾱs

ω
χ(γ)Fγ,ω , (28)

and solve for Fγ,ω:

Fγ,ω =
ωFγ,ω

ω − ᾱsχ(γ)
(29)

The inverse Mellin transform with respect to ω is once again trivial and
gives

F(x,Q2) =

∫

dγ

2πi
exp

[

ᾱsχ(γ) ln
1

x
+ γ ln

Q2

Q2
0

]

· ω̄F
(0)
γ,ω̄ ω̄ = ᾱsχ(γ) .

(30)

The real part of the characteristic function χ(γ), together with the integra-
tion contour are shown in the complex plane in figure 6. For large ln 1/x,
the integrand in (30) is dominated by behaviour of χ and has a saddle-point
close to γ = 1/2, which causes the gluon distribution to grow as

F(x,Q2) ≃
x−ᾱsχ( 1

2
)

√

2π ᾱs χ′′

(

1
2

)

ln 1
x

·
1

QQ0
, (31)
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where χ′′ is the second derivative of χ with respect to γ. Thus the gluon
distribution (and in general, high-energy cross sections) should grow as a
power of x determined by the minimum value of χ(γ), which is χ(1/2) =
4 ln 2. For the phenomenologically reasonable value of ᾱs ≃ αs = 0.2 this
gives a power of about 0.5.

It suffices to look back at figure 4 to see that this is incompatible with the
rise seen in the bulk of the structure function data. Some care is needed in
interpreting this disagreement: in considering the structure function data,
we are trying to apply perturbative QCD to a problem which is inherently
non-perturbative (the scale Q2

0 does not satisfy our requirement Q2
0 ≫ Λ2).

However BFKL also predicts scaling violations of the F2 structure function
[21], and this prediction can be shown not to depend on the properties
of the non-perturbative region [13, 22]. Essentially, regardless of the input
distribution, the scaling violations quickly lead to a structure function which
rises with a power 4 ln 2ᾱs and so is incompatible with the data [23].

There exist other, theoretically cleaner, tests of BFKL. Generally they
involve selecting a process with two hard hadronic probes, such as jets or
a virtual photon, separated by a large rapidity (or equivalently having a
large centre-of-mass energy). The requirement that both probes be hard
ensures that one can reasonably apply perturbation theory2 (unfortunately
it generally also makes the experimental measurement much harder). A nice
example of such a test is the collision of two virtual photons as measured
recently by the L3 [4] and OPAL [5] collaborations. The L3 data are shown
in figure 7. The data are significantly higher than the one-gluon estimate
(i.e. the prediction without BFKL resummation). On the other hand the
LL BFKL predictions clearly overshoot the data. The L3 collaboration
perform a fit to the data in order to determine the power of the high-energy
growth, and quote a preliminary result of 0.29±0.025 for scales in the range
of 3.5 to 14.5GeV2 [24].3

The same conclusion of incompatibility with LL BFKL comes out from

2 Though not strictly the subject of this presentation, an exposition of BFKL physics
would be incomplete without at least some mention of diffusion. Because transverse
momenta are not ordered, small-x evolution leads to a random walk in ln kt. The
mean width of this random walk — diffusion — increases as

√

ln s, and at very large
s eventually enters into the non-perturbative region. Thus, no matter how large the
transverse scales of the scattering objects, there is always an energy beyond which
perturbation theory loses its predictive power.

3 This result should probably be interpreted with some caution because the formula
used to carry out the fit assumes the LL normalisation with four light-quark flavours
(whereas both the NLL corrections and the charm mass probably have a significant
effect on the normalisation). A fit leaving the normalisation as a free parameter
leads to a similar power but with a much larger error. One should bear in mind that
because of the ‘limited’ energies at LEP, the Q2 values (between 3.5 and 14.5 GeV2)
are probably on the border of the region that can be considered perturbative.
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Data
BFKL
one-gluon
FIT
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=91 GeV L3

√s


=183 GeV

σ γ∗
γ∗

(Y
) 

[n
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√s


=189 GeV
Preliminary

Y= ln(Wγγ
2  / Q1Q2)

0

50

0

20

0

20

2 3 4 5 6

Fig. 7. The cross section for γ∗γ∗ collisions as measured by the L3 collaboration

[4, 24]. The mean Q2 values for the three energies are 3.5, 14 and 14.5 GeV2

respectively.

looking at the interactions between a jet and a virtual photon in DIS [6],
a measurement referred to as the forward-jet cross section, because of the
position of the jet in the detector.

3. Next-to-leading corrections

All along, while the various experimental tests of LL BFKL were being
carried out and refined, the calculation of the next-to-leading logarithmic
corrections to BFKL was in progress. The next-to-leading terms are those
suppressed by a power of αs relative to the LL series:

αs(αs ln s)n . (32)
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In terms of the notation developed so far, this corresponds to working out
the NLL corrections to the characteristic function χ, i.e. finding χ1, where

ᾱsχ(γ) = ᾱsχ0(γ) + ᾱ2
sχ1(γ) + O

(

ᾱ3
s

)

. (33)

The determination of χ1 took close to ten years [7], and was completed quite
recently [8, 9].

Rather than trying to reproduce parts of that derivation, we will adopt
the same approach that was used in the previous section, namely to de-
duce the structure of the NLL corrections through a study of the collinear
limit and symmetry requirements. This will translate to determining the
divergences around γ = 0 and γ = 1.

We will examine three main contributions: those from the running cou-
pling, the non-singular (at small z) part of the splitting functions and the
choice of energy scale.

3.1. Running coupling

The QCD coupling runs as

ᾱs(k
2) =

ᾱs(Q
2)

1 + b ᾱs(Q2) ln k2

Q2

, (34)

where b = 11/12 − nf/6. What sort of higher order contribution will this
lead to? The DGLAP equations tell us that in the right-hand graph of
fig. 3, when Q2 ≫ k2 the correct scale for the coupling is Q2. By symmetry,
when k2 ≫ Q2, the correct scale is k2 — i.e. in the collinear limit the correct
scale is the larger of the two scales involved. So our collinear approximation
for the kernel, eq. (23), becomes

Kcoll(Q2, k2) = ᾱs(Q
2)

Θ(Q2 − k2)

Q2
+ ᾱs(k

2)
Θ(k2 −Q2)

k2
. (35)

The Mellin transform of the first term just gives ᾱs(Q
2)/γ, as before. For

the second term, we re-express ᾱs(k
2) in terms of ᾱs(Q

2) in order to extract
a factor of ᾱs(Q

2) in front of the whole result. Expanding to second order,
and taking the Mellin transform, gives
∫

Q2

dk2

k2

(

ᾱs(Q
2) − bᾱ2

s ln
k2

Q2

)

Q2

k2

(

k2

Q2

)γ

=
ᾱs(Q

2)

1 − γ
−

bᾱ2
s

(1 − γ)2
, (36)

which is just the anti-collinear part of our LL result plus a running-coupling
NLL contribution

χb
1 = −

b

(1 − γ)2
. (37)
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The lack of symmetry γ ↔ 1−γ is due to our choice to extract an asymmetric
factor of ᾱs(Q

2) in front of the answer.
What is the uncertainty on our collinear approximation for χb

1? The
scheme of ᾱs is not defined, corresponding to an uncertainty proportional
to χ0. Nor do we a priori know the correct scale for branchings when k2

and Q2 are of the same order. So the overall uncertainty is a function with
at most single poles at γ = 0 and γ = 1.

3.2. Splitting function

In section 2 we used only the part of the gluon

ᾱsA1/γ

ᾱs/ωγ

Fig. 8. A sequence of a

small-x and a non-small-

x branching.

splitting function that is singular at small z. At
NLL, we need to include the full splitting function
(3). Its Mellin transform (with respect to x) is

Pω
gg =

1

ω
+A1(ω) , (38)

where (for nf = 0)

A1(ω) = −
11

12
+ O (ω) . (39)

To get the NLL correction we consider a sequence
of two collinear branchings, fig. 8, where one of

the branchings is a small-x branching, giving a factor ᾱs/ωγ and the other
is a non-small-x branching, giving a factor ᾱsA1/γ. Remembering that
convolutions in x and k2 space translate to products in the ω, γ Mellin
transform space, our integral equation (28) receives a contribution

ᾱs

ω

ᾱsA1

γ2
Fγ,ω . (40)

There is a corresponding term for a pair of anti-collinear branchings, so that
the splitting-function contribution to χ1 is

χA1

1 (γ) =
A1

γ2
+

A1

(1 − γ)2
, (41)

where A1 = A1(0) = −11/12. Actually this is only the nf -independent part.
For non-zero nf there are contributions coming from the nf -dependence of
Pgg and from diagrams involving the convolution of Pgq and Pqg.

As in the running coupling case we have an uncertainty on this result,
which can arise for example from the combination of a collinear and an
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anti-collinear branching, and thus is once again at the level of a function
with at most single poles at γ = 0 and γ = 1.

3.3. Energy scale terms

A more subtle source of NLL corrections comes from the so-called
energy-scale terms. At leading order one resums terms

(

ᾱs ln
s

s0

)n

, (42)

where s0 can be chosen arbitrarily. Changing s0 is equivalent to introducing
a whole set of higher order terms. For a symmetric treatment (with respect
to Q and Q0), a natural choice is s0 = Q0Q. Let us then consider what
happens when Q ≫ Q0. As we obtained in section 2.1, the leading terms
are

1

(n!)2

(

ᾱs ln
s

QQ0
ln
Q2

Q2
0

)n

. (43)

But for DIS-like situations, Q ≫ Q0, we usually express our results as a
function of x = Q2/s and Q2/Q2

0. Let us do that for the n = 2 term:

1

4

(

ᾱs ln
s

QQ0
ln
Q2

Q2
0

)2

=
1

4

(

ᾱs ln
1

x
ln
Q2

Q2
0

)2

+
1

4
ᾱ2

s ln
1

x
ln3 Q

2

Q2
0

+ NNLL .

(44)

Of particular interest is the second term on the RHS because it has more
collinear logs than powers of ᾱs (it contains a double collinear logarithm for
a single power of ᾱs). But we know from renormalisation group constraints
that the cross section written as a function of x and Q2/Q2

0 contains at
most as many collinear logs as powers of ᾱs. Therefore for the result to be
consistent with the renormalisation group, the next-to-leading corrections
must be such as to cancel the second term on the RHS of (44), i.e. they
must contain a term

−
1

4
ᾱ2

s ln s ln3 Q
2

Q2
0

. (45)

In Mellin transform space this will correspond to a contribution to χ1 which
is proportional to 1/γ3. To obtain its coefficient it is not sufficient just to
take the Mellin transform of (45), because not all of the correction expo-
nentiates (i.e. should be incorporated into χ) — for example some of it is
to be associated with the initial condition.
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Instead, now that we know what kind of answer to expect, let us directly
consider the problem in Mellin-transform space. We start with a result
written for energy scale QQ0 (cf. eqs. (12) and (29)),

F(s,Q2) =

∫

dω

2πi

∫

dγ

2πi

(

s

QQ0

)ω 1

Q2

(

Q2

Q2
0

)γ
ωF

(0)
γ,ω

ω − ᾱsχ(γ)
, (46)

and then note that since

(

s

QQ0

)ω (Q2

Q2
0

)γ

=

(

s

Q2

)ω (Q2

Q2
0

)γ+ ω

2

, (47)

rewriting (46) with energy scale s0 = Q2 is just equivalent to shifting γ →
γ − ω

2 in χ and F (0):

F(s,Q2) =

∫

dω

2πi

∫

dγ

2πi

(

s

Q2

)ω 1

Q2

(

Q2

Q2
0

)γ ωF
(0)
γ−ω

2
,ω

ω − ᾱsχ(γ − ω
2 )
. (48)

If we now expand χ(γ − ω
2 ) in powers of ᾱs, recursively using the relation

ω = ᾱsχ we get

χ(γ −
ω

2
) = χ(γ) −

ᾱsχχ
′

2
+ O

(

ᾱ2
s

)

. (49)

In the collinear limit (γ → 0), since χ(γ) goes as 1/γ, the O (ᾱs) piece has
the behaviour

−
ᾱsχχ

′

2
≃

ᾱs

2γ3
. (50)

This is the analogue of the ln3Q2 term seen earlier (44) and it must be
subtracted from χ at scale s0 = QQ0 in order for the collinear limit with
energy scale Q2 to be free of unwanted double collinear logs. There is an
analogous 1/2(1 − γ)3 piece to be subtracted for the anti-collinear limit to
be correct (i.e. free of double anti-collinear logs for energy scale s0 = Q2

0).
Overall therefore we have the following NLL energy-scale corrections (for
s0 = QQ0):

χs0

1 = −
1

2γ3
−

1

2(1 − γ)3
. (51)

As was the case for the running coupling and splitting function terms, our
analysis leaves us with an uncertainty which amounts to a function with at
most single poles at γ = 0 and γ = 1.
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3.4. Putting things together

Putting together eqs. (37), (41) and (51) gives us the following answer
for the collinearly-enhanced part of the NLL corrections (nf = 0):

χcoll
1 (γ) =

A1

γ2
+

A1 − b

(1 − γ)2
−

1

2γ3
−

1

2(1 − γ)3
, (52)

with A1 = −11/12. Our collinear approximation guarantees the correctness
of the coefficients of the cubic and quadratic divergences at γ = 0 and γ = 1.

The true NLL corrections as assembled in [8, 9] are, in the ms scheme
and for nf = 0 (the nf dependence turns out to be small)

χ1(γ) = −
π2 cos(πγ)

4 sin2(πγ)(1 − 2γ)

(

3 +
2 + 3γ(1 − γ)

(3 − 2γ)(1 + 2γ)

)

−
b

2

(

χ2
0(γ) − ψ′(γ) + ψ′(1 − γ)

)

+
ψ′′(γ)

4
+
ψ′′(1 − γ)

4

+

(

67

36
−
π2

12

)

χ0(γ) +
3

2
ζ(3) +

π3

4 sin(πγ)
− φ(γ) , (53)

where

φ(γ) =

∞
∑

n=0

(−1)n
[

ψ(n + 1 + γ) − ψ(1)

(n+ γ)2
+
ψ(n + 2 − γ) − ψ(1)

(n+ 1 − γ)2

]

. (54)

It is possible to make a direct identification between parts of (53) and (52)
in terms of the coefficients of the double and triple poles. The first line
of (53) is identifiable with the A1 piece of (52) and so originates from the
splitting function. The running-coupling dependence enters through the
first term on the second line of (53), while the energy-scale dependent piece
is formed by the last two terms of that line. The remaining terms are free
of double and triple poles. Of these terms, so far only the first one on
the third line of (53) has been understood: it is associated with the fact
that the natural scheme for processes involving soft gluons is the CMW

or gluon-bremsstrahlung scheme [25]. When writing an answer in the ms

scheme this leads to a correction term which is (67/36−π2/12)ᾱs times the
leading order result.

Figure 9 shows the full χ1 together with our collinear approximation.
There is a remarkable similarity between them: in the range 0 < γ < 1 they
never differ by more than 7%. Possible reasons for the surprisingly good
agreement will be discussed later, in section 4.
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3.5. Consequences of the NLL corrections

Figure 9 shows that the NLL corrections to χ are very large. For γ = 1/2
we have (again for nf = 0)

χ(1/2) = χ0(1/2)(1 − 6.47ᾱs) . (55)
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Thus for ᾱs = 0.2, the predicted power is negative, at about −0.16, which
is no more in agreement with the data than the leading power.

What is even more worrisome is that the structure of the characteristic
function changes radically. In figure 6, there is a single saddle-point at
γ = 1/2, i.e. on the real axis. With the NLL contributions included, there
are now two saddle-points, at complex values of γ which we will call γ̄, γ̄∗

[10]. Since the cross section goes as

σ(s,Q2, Q2
0) ∼

(

s

QQ0

)ᾱsχ(γ̄) 1

Q2

(

Q2

Q2
0

)γ̄

+ γ̄ ↔ γ̄∗, (56)

the fact that γ̄ is complex means that the cross section oscillates as a
function of lnQ2/Q2

0 (it remains real because of the contribution from the
complex-conjugate saddle point). This behaviour occurs as long as χ has a
negative second derivative at γ = 1/2, which is the case for ᾱs & 0.05. In
other words there exists no phenomenologically accessible domain in which
the inclusion of the NLL corrections gives a sensible result.

4. Beyond NLL

The solution is bound to lie with higher orders. Shortly after preliminary
results on χ1 had appeared, it was suggested that stable predictions might
be obtained by inclusion of the NNLL and NNNLL terms [26]. But remem-
bering that the LL calculation took about a year, and the NLL calculation
ten years, a reasonable estimate for the time to calculate the NNLL terms
might lie somewhere between an arithmetic (19 years) and a geometric (100
years) extrapolation. Even were these contributions to be calculated, there
is actually no guarantee that the resulting series would converge for the
values of ᾱs of interest!

So the only option left is to try and guess the higher-order terms and
then to resum them (we are now talking about the resummation of a re-
summation). The question is whether there is some reliable way of guessing
them. Various approaches have been investigated [12,13,27–29]. I here will
advocate a method closely related to that used in the previous section to
estimate the NLL corrections — namely a method based on the study of
the collinear limit [12,13].

We have already seen in the previous section that a study of the collinear
limit is a powerful tool. For the NLL characteristic function it gave us the
cubic and quadratic divergences at γ = 0 and γ = 1, and in the range
0 < γ < 1 reproduced the full answer to remarkably good accuracy. How
come?

There is a temptation to argue that since γ = 1/2 is a moderately small
number, one can legitimately carry out an expansion in powers of γ and 1−γ
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(including the first two terms in the expansion for χ0, i.e. the two poles and
a constant, also seems to do quite well, reproducing the full answer to within
about 8%). A slightly better motivated argument might be the following.
For γ = 1/2, the transverse momentum integrals in the Mellin transform
converge quite rapidly and so one might not expect a collinear approxima-
tion to work too well. However at higher orders, pieces of the transverse
momentum integrals are accompanied by logarithms of transverse momen-
tum. These have the effect of shifting the dominant part of the integral
out towards more collinear regions, where the collinear approximation itself
becomes better.

So there are reasons to believe that collinearly-enhanced contributions
might give a significant part of the higher-order corrections even beyond
NLL.4 A more general justification for carrying out the collinear resum-
mation is that one wants to be able to use one’s answer in the collinear
limit. Since the collinear limit involves taking γ close to zero, where higher
orders involve successively more divergent terms, the only hope of a sensible
answer there is a collinear resummation.

The determination of the collinearly enhanced corrections can be divided
into two parts. The first deals with terms in the same class as the 1/γ2 terms
in χ1, single collinear logarithms originating from the splitting function and
running coupling; the second addresses the terms in the same class as the
1/γ3 term in the NLL result, namely double collinear logarithms. We will
consider only an outline of the method. The interested reader is referred to
the original references [12,13] for the full details.

4.1. Single collinear logs — running coupling and splitting function terms

It is fairly straightforward to calculate the collinear NnLL contributions
to the BFKL kernel from splitting function and running coupling effects.
One just takes diagrams such as figure 8 with an arbitrary number of non-
small-x emissions, inserting and expanding the appropriate running coupling
for each branching (the answer is given in [13]). One is then left with the
tricky problem of resumming the resulting set of terms.

An equivalent approach essentially treats the small-x and non-small-x
branchings on a more similar footing [13]. In eq. (28) we have a factor ᾱs/ω
coming from the 1/z part of the Pgg splitting function, and a factor of χ(γ)
from the transverse structure of the branching. In the collinear limit, we can
replace 1/ω with the full splitting function, Pω

gg. So the collinear behaviour

4 This statement should really be restricted to those corrections that can be associ-
ated with a single ladder (referred to as t-channel iteration). Actually at NNLL,
corrections arise associated with the presence of two ladders (the start of s-channel
iteration), i.e. saturation, or unitarity corrections. Our aim here is to understand the
high-energy behaviour of a single ladder.
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of the ᾱsχ/ω factor becomes (for DIS energy scale, s0 = Q2)

ᾱsP
ω
gg

γ
=
ᾱs(Q

2)

ω

1 + ωA1(ω)

γ
⇒ χ ≃

1 + ωA1(ω)

γ
, (57)

where we have used eq. (38) for Pω
gg. The correct scale in the branching

is Q2 (the largest scale in the problem) so there are no running coupling
corrections.

The situation in the anti-collinear limit is very similar except for an issue
related to the running coupling: the appropriate scale for the branching is
not Q2, but k2 (referred to fig. 3). If we want to extract a factor of ᾱs(Q

2)
the difference of scales must be taken into account. It turns out [13] that
this can be done at all orders by replacing A1 with A1 − b, so that the
resummed anti-collinear structure is (with the anti-DIS energy scale choice,
s0 = Q2

0)

ᾱs(Q
2)

ω

1 + ω(A1(ω) − b)

1 − γ
⇒ χ ≃

1 + ω(A1(ω) − b)

1 − γ
. (58)

The reader can verify that substituting ω = ᾱsχ0 into the expressions for χ
in (57) and (58) reproduces the correct NLL collinear-enhanced terms.

4.2. Double collinear logs — energy-scale terms

We have just given resummed answers for the collinear and anti-collinear
behaviours of the kernel with DIS and anti-DIS energy scale choices respec-
tively. We really want the answer for a common energy scale, say s0 = QQ0.
We saw in section 3.3, that changes in s0 introduce higher-order double-
collinear logs (the 1/γ3 and 1/(1−γ)3 terms). The higher-order corrections
had to be such that for energy scale s0 = Q2 there were no such terms
around γ = 0, and similarly around γ = 1 for energy scale s0 = Q2

0. For
s0 = QQ0, appropriate double-collinear log counterterms had to be included
in order to satisfy the conditions for the other energy scales. One can work
out, order by order, the counterterms for higher kernels, but it soon gets
tedious. In any case one finds that the resulting series of terms is divergent
for reasonable values of αs.

The solution [12] exploits the fact that a change of energy scale corre-
sponds to a shift of γ by an amount proportional to ω (cf. section 3.3). For
energy scale s0 = QQ0, one writes a leading-order kernel with the following
structure

χω
0 = 2ψ(1) − ψ

(

γ +
ω

2

)

− ψ
(

1 − γ +
ω

2

)

, s0 = QQ0 , (59)
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originally discussed in [30]. Changing energy scale to s0 = Q2 corresponds
to the shift γ → γ − ω

2 (cf. section 3.3), and we have

χω
0 = 2ψ(1) − ψ (γ) − ψ (1 − γ + ω) , s0 = Q2 . (60)

Remembering that −ψ(γ) ≃ 1/γ for small γ, and iteratively solving for
ω = ᾱsχ as we did in section 3.3, we find an answer which is free of sin-
gularities stronger than 1/γ, and so free of spurious double collinear logs.
The procedure can be repeated for energy scale s0 = Q2

0, expanding around
γ = 1 and one finds an answer free of spurious double anti-collinear logs.
Expanding (59) to order ᾱs gives exactly the same triple poles as in (51).

4.3. The full resummed answer

Let us first see how to correctly include the energy-scale resummation
in the full kernel. We start with the modified LL characteristic function,
χω

0 , eq. (59) which, as we have just seen, is free of unwanted double (anti)
collinear logs for the (anti) DIS energy scale choice; χω

0 contains NLL cor-
rections,

χ0

2

(

−ψ′(γ) − ψ′(1 − γ)
)

, (61)

which must be subtracted from χ1 to avoid double counting:

χ̃1 = χ1 −
χ0

2

(

−ψ′(γ) − ψ′(1 − γ)
)

. (62)

The quantity χ̃1 still has quadratic and single divergences at γ = 0, 1.
In analogy with the single divergences in χ0, these need to be ‘shifted’ in
order to avoid spurious double-collinear logs at higher orders when changing
energy scale. This is accomplished by subtracting unshifted divergences and
replacing them with shifted divergences:

χ̃ω
1 = χ̃1 −A1(0)ψ

′(γ) +A1(ω)ψ′

(

γ +
ω

2

)

− (A1(0) − b)ψ′(1 − γ)

+ (A1(ω) − b)ψ′

(

1 − γ +
ω

2

)

+
π2

6
(χω

0 − χ0) . (63)

Here we have chosen to use ψ′(γ) and −ψ(γ) (in χ0) as our quadratic and
single ‘divergences to be shifted’. We could equally well have used 1/γ2

and 1/γ respectively. The difference in the final result would amount to
collinearly suppressed NNLL terms. The reason for including A1(ω) in the
shifted poles is discussed shortly.
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To resum the splitting-function and running coupling effects, we have to
ensure that χ has the following structure around γ = 0 and γ = 1,

χ(γ, ω) ≃
1 + ωA1

γ + ω
2

, γ ≪ 1 , (64a)

χ(γ, ω) ≃
1 + ω(A1 − b)

1 − γ + ω
2

, 1 − γ ≪ 1 , (64b)

where the poles have been shifted compared to eqs. (57) and (58) to take
into account that they have been written for energy scale s0 = QQ0. This
can be obtained by writing

χ(γ, ω) = χω
0 + ω

χ̃ω
1

χω
0

. (65)

Since ω = ᾱsχ
ω
0 + O

(

ᾱ2
s

)

the expansion of χ to order ᾱs is correct. Addi-
tionally the ratio χ̃ω

1 /χ
ω
0 contains (shifted) single poles at γ = 0 and γ = 1

with coefficients A1 and A1 − b respectively, as required by eqs. (64). The
full ω dependence of A1 is included through the A1(ω) factors eq. (63).

A point to note is that (65) is no longer an expansion in ᾱs, but rather in
ω. For this reason this resummation technique is known as the ω-expansion
[13].

4.4. Results

Figure 11 shows various BFKL exponents as a function of ᾱs, including
the LL and NLL results for reference. The quantity labelled ωs is the
minimum value of ω = ᾱsχ(γ, ω), and as such corresponds to the exponent
expected for the gluon Green function at high energies. It is the power that
one expects to observe in γ∗γ∗ collisions or forward-jet and Mueller-Navelet
jet observables at ep and pp colliders respectively [22].

Also plotted is a second quantity labelled ωc. This corresponds to the
position of the singularity of the gluon anomalous dimension, i.e. the power
growth of small-x splitting functions. Though we have not really discussed
the resummed gluon anomalous dimension, it is worth noting that ωc is
significantly different from ωs because it contains additional corrections

O(ᾱ
5/3
s ), which arise because the effective scale for BFKL evolution in the

anomalous dimension turns out, dynamically, to be considerably higher than
Q2. Corrections of this form were first noticed in [31]. In general, such cor-
rections are present for quantities involving an effective cutoff on the lowest
accessible transverse momentum. Another example of such a quantity is the
elastic-scattering cross section. It should be emphasised therefore that the
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difference between ωs and ωc is not an uncertainty on the BFKL exponent,
but rather reflects differences between various processes.

The actual uncertainty on the results can be determined by examining
the effect of scheme changes and different approaches to the details of the
resummation (as discussed for example in the previous section, with regards
to the shifting of divergences), as well as a study of solvable models [22] or
other possible higher-order effects [29]. For ᾱs ≃ 0.2 it is about 15%.

5. Conclusions and Outlook

In these lectures, we have seen how to deduce many of the proper-
ties of the BFKL pomeron. The recurrent theme has been the study of
the collinear (and anti-collinear) limit, which gives information about the
structure of divergences of the BFKL characteristic function at all orders.
At NLL order the information thus obtained is sufficient to reproduce the
true NLL corrections to a high degree of accuracy, i.e. the non-collinearly
enhanced NLL corrections are small. Ensuring that the BFKL kernel cor-
rectly reproduces the collinear limit at all orders leads to stable predictions
for the high-energy power growth. The resulting resummed power is much
more compatible with the data than either the LL or NLL values.

For actual phenomenology, two more ingredients are required. First we
should understand the exponentiation of the characteristic function, because
the running of the coupling complicates the simple approach that we had at
leading order — it turns out however that these complications are not too
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severe [11,22,32].
Secondly we need to know the virtual photon impact factors, i.e. the

coupling of a virtual photon (DIS or γ∗γ∗) to the gluon chain. These have
still to be worked out at NLL. When results are eventually available it is
likely that a collinear resummation will again be needed in order to ob-
tain stable predictions, in analogy with the situation for the characteristic
function.

The overall message is that despite initial fears, the large size of the NLL

corrections BFKL is not an impediment to the use of BFKL resummation
for predicting high-energy phenomena. But it is necessary to understand
the origin of the large corrections, and include at all orders the physics
which causes them.
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