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1 Introduction

Quantum Chromodynamics (QCD) is nowadays settled as the theory of strong interac-
tions within the Standard Model (SM) of the elementary particles. To a large extent, this
achievement is the result of the theoretical and experimental progress in hadronic physics at
high energies. In this kinematic regime, QCD is synonymous of ‘perturbative QCD’. This
talk will cover a selection of topics, rather than results, in perturbative QCD. More com-
prehensive reviews of recent results on jet physics 1, unpolarized 2 and polarized 3 nucleon
structure functions, photon structure4, diffractive processes 5 and heavy-quark 6 production
and decay are presented in other contributions to this Symposium.

Calculations at the lowest order (LO) in QCD perturbation theory give only the order
of magnitude of hard-scattering cross-sections. The theoretical accuracy of perturbative-
QCD predictions is instead controlled by the size of the next-to-leading order (NLO) and,
in general, higher-order contributions. Section 2 is devoted to a review of the theoretical
progress in perturbative calculations and also includes the results of recent measurements
of αS.

Soft-gluon radiation is a source of large higher-order corrections for hard-scattering
processes near the exclusive boundary of the phase space. In these cases, summation of
the corrections to all orders can be important to improve the accuracy of the perturbative
approach. In Sect. 3, some predictions based on soft-gluon resummation are briefly reviewed
and their impact on the analysis of experimental data from high-energy colliders is discussed.

Low-x physics is a topic at the border of hard and soft hadronic interactions. Section 4
summarizes present analyses of the low-x behaviour of the nucleon structure function and
outlines recent theoretical developments in the BFKL formulation of small-x dynamics.

At high energies, non-perturbative phenomena affect perturbative predictions by contri-
butions that are suppressed by inverse powers of the energy. Some recent theoretical ideas
and phenomenological studies to quantify power corrections are discussed in Sect. 5.

A world summary of αS determinations is presented in Sect. 6 and some concluding
remarks are left to Sect. 7.
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2 Higher-order calculations in perturbation theory

The evaluation of perturbative corrections to hard-scattering cross-sections requires the
computation of higher-order Feynman diagrams that involve real and virtual partons. In this
computation one has to deal with different kinds of singularities. The customary ultraviolet
singularities, present in the virtual contributions, are removed by renormalization. By
adding real and virtual terms, the infrared divergences cancel in inclusive cross sections,
while the left-over collinear singularities are factorized in the process-independent parton
distributions and fragmentation functions.

Because of this complicated pattern of singularities, it is natural to divide QCD observ-
ables into two different classes, according to their degree of inclusiveness.

2.1 Completely inclusive quantities: NNLO predictions and recent αS determinations

Fully inclusive quantities are infrared- and collinear-safe observables that depend on a single
momentum scale. They can be expressed as a simple power series expansion in αS .

The best known observables of this type are the total hadronic cross-section in e+e−

annihilation and the hadronic branching ratio of the Z0. In Ref. 7, these observables were
computed up to next-to-next-to-leading order (NNLO) in perturbation theory, i.e. to rel-
ative accuracy O(α3

S) with respect to the lowest-order approximation. These calculations
have recently been confirmed by an independent re-evaluation 8. Using these results, one
can parametrize 9 the hadronic branching ratio of the Z0 as follows

RZ =
Γhad(MZ)

Γlep(MZ)
≃ R0

[

1 + 1.06
αS

π
+ 0.9

(

αS

π

)2

− 15

(

αS

π

)3
]

+ O
((

1

MZ

)p )

, (1)

where the factor R0 includes the electroweak radiative corrections and, in particular, de-
pends on the values of the masses of the top quark and Higgs boson. The term O((1/MZ )p)
stands for non-perturbative power corrections (cf. Sect. 5).

Other quantities, which have been computed at NNLO, are the hadronic width of the τ
lepton 10,11 and the deep inelastic scattering (DIS) sum rules 12, namely the Gross-Llewellyn
Smith sum rule 13 and the polarized 14 and unpolarized Bjorken sum rules.

Fully inclusive observables are the simplest quantities that can accurately be evaluated
in QCD perturbation theory. Their (relative) simplicity from the computational viewpoint
follows from kinematics. Since these observables are completely inclusive, no phase-space
restriction has to be applied. Real and virtual contributions can be combined at the inte-
grand level and this produces the cancellation of infrared and collinear singularities before
performing the relevant phase-space integrations. Owing to these features, general tech-
niques have been available for some time 15 to carry out NNLO calculations in analytic
form. These techniques are suitable for automatic implementations in computer codes 16.

The high accuracy of the theoretical predictions for these observables derives from the
availability of NNLO calculations and from the fact that non-perturbative power corrections
can be controlled by operator product expansions 17 (OPEs) and are relatively small (in
general, p ≥ 2 and, in particular, p = 4 in Eq. (1)). Because of these reasons, fully inclusive
observables are particularly suitable for αS determination.
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The cleanest and, in principle, most accurate determination of αS is that performed at
the Z0 peak. Here, effects of power corrections are strongly suppressed because of the large
value of the Z mass, and the theoretical uncertainty due to perturbative-QCD contributions
beyond NNLO is estimated to be (∆αS)QCD = ±0.002. In practice, however, the value of
αS obtained in this way is quite sensitive to the assumption that electroweak interactions
are accurately described by the SM. For instance, extracting αS(MZ) from Eq. (1), one
has 18

αS = (αS)S.M. − 3.2
δΓhad

(Γhad)S.M.
. (2)

One can see that a variation of the hadronic width by one per mille with respect to the value
expected from the SM produces an effect on αS that is larger than the QCD uncertainty.

Using a fixed top mass, mt = 175.6±5.5GeV, and the experimental value of RZ reported
at the 1997 summer conferences 19, one obtains from Eq. (1)

αS(MZ) = 0.124 ± 0.004 (exp.) ± 0.002 (mH ) , (3)

where the central value corresponds to the Higgs mass mH = 300GeV and the second error
is due to the variation of mH in the range 60GeV < mH < 1TeV. The sensitivity of αS

to the SM assumption can be reduced by considering a global fit to electroweak data. In
this case αS mainly depends on RZ , the total width ΓZ and the peak value of the hadronic
cross section σ0

h. The simultaneous fit of mt, αS ,mH gives 19 mt = 173.1 ± 5.4GeV and

αS(MZ) = 0.120 ± 0.003 (exp.) , mH = 115+116
− 66 GeV . (4)

The difference between the values (3) and (4) for αS comes from a shift (∼ −0.002) produced
by the new entry ΓZ and a further shift (∼ −0.002) due to the different central value of mH .
This shows that, within a global SM fit, αS is still quite sensitive to mH . This dependence
can be parametrized as follows 18

(∆αS)mH
= 0.0023 xH(1 + 0.2 xH) , xH ≡ ln(mH/100GeV) . (5)

Much theoretical work20 has recently been devoted to the calculation of quark-mass cor-
rections to current–current correlators. These corrections are important for measurements
of αS from low-energy e+e− data.

These results and estimates of non-perturbative contributions (along the lines of similar
analyses for the hadronic decay of the τ lepton 10) have been used 21 to determine αS from
the e+e− hadronic cross-section at the Υ resonance. This NLO determination gives

αS(4.1GeV) = 0.228+0.045
−0.030 , (6)

where the error is dominated by the theoretical uncertainty. The corresponding value
evolved to the Z0 mass is αS(MZ) = 0.119+0.010

−0.008 and has to be compared with a previ-
ous determination 22, αS(MZ) = 0.109 ± 0.001, based on LO predictions.

Measurements of αS from the continuum in e+e− annihilation at low energies have
typically large experimental errors due to poor statistics. The new measurement submitted
by the CLEO Collaboration to this Symposium is 23

αS(10.52GeV) = 0.20 ± 0.01(stat.) ± 0.06(syst.) . (7)
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Note that, because of the large amount of data collected at CESR just below the Υ res-
onance, the statistical error is no longer dominant. The systematic error is theoretical
(uncertainties in QED radiative corrections) and experimental (estimates of backgrounds
and detector efficiencies).

2.2 Inclusive quantities: NLO calculations and general algorithms

QCD calculations beyond LO for inclusive quantities are much more involved. Owing to the
complicated phase space for multiparton configurations, analytic calculations are in practice
impossible for most of the distributions. Moreover, infrared and collinear singularities,
separately present in the real and virtual contributions at the intermediate steps, have to
be first regularized by analytic continuation in a number of space-time dimensions d = 4−2ǫ
different from four. This analytic continuation prevents a straightforward implementation
of numerical integration techniques.

Methods to overcome these problems are known. They consist in using hybrid analyt-
ical/numerical procedures: one must somehow extract and simplify the singular parts and
treat them analytically; the remainder is treated numerically, independently of the full com-
plications of the actual calculation. These methods were first 24 used to evaluate 3-jet cross
sections in e+e− annihilation and were then applied to other cross sections 25, adapting the
method each time to the particular process. This is very time-consuming and has required
lot of effort to produce new NLO calculations.

Only recently has it become clear that these methods are generalizable in a process-
independent manner. The key observation is that the singular parts of the QCD matrix
elements can be singled out in a general way by using the factorization properties of soft
and collinear radiation. Owing to this universality, the methods have led to general algo-
rithms 26,27,28 for NLO QCD calculations.

The various algorithms use different methods and techniques (phase-space slicing 26,
subtraction method 27, dipole formalism 28) to achieve a common goal. All the analytical
work that is necessary to evaluate and cancel the infrared singularities is carried out once
and for all. The final output of the algorithms is given in terms of effective matrix elements
that can be automatically constructed starting from the original (process-dependent) ma-
trix elements and universal (process-independent) factors. The effective matrix elements
can be integrated numerically or analytically (whenever possible) over the available phase
space in four dimensions to compute the actual value of the NLO cross section. If the nu-
merical approach is chosen, Monte Carlo integration techniques can be easily implemented
to provide general-purpose Monte Carlo programs for carrying out NLO calculations in any
given process.

Using these algorithms, the computation of inclusive quantities at NLO essentially
amounts to the evaluation of the original matrix elements. Since efficient techniques 29

(based on helicity formalism and colour-subamplitude decompositions) are available for
calculating real matrix elements, the computation of the matrix elements for the virtual
contribution remains the only real obstacle to perform new NLO calculations.

In recent years, this obstacle was greatly reduced by the introduction of new tools 30,
inspired by string-theory methods, for the evaluation of one-loop amplitudes. One-loop
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matrix elements involving up to five massless partons are known 31 and the computation of
those with four massless partons and a vector boson has been completed recently 32.

The relevance of the theoretical progress that I have briefly outlined is witnessed by
the accelerated production rate of new NLO calculations. These include, for instance, 4-
jet cross sections 33 and mass quark corrections 34 to 3-jet observables in e+e− annihilation.
The complete calculation for 3-jet cross sections in hadron collisions35 is expected to appear
soon.

The theoretical accuracy of NLO predictions for inclusive observables can reach the
level of 10–20%, although in some notable cases (e.g. production cross sections of charm
and bottom quarks 6 and direct photons 1) theoretical uncertainties are much larger and the
agreement with data is poor. This accuracy is very important for physics studies within and
beyond the SM. The comparison between NLO predictions and high-energy collider data is
discussed in Ref. 1 and in the following sections. The new calculations mentioned above are
extremely valuable for further studies such as, for instance, to obtain stronger constraints
on the elusive light gluino 33,36 and to measure the running of the b-quark mass 34,37.

The extension to higher orders of the NLO techniques described in this section is still
a challenge for theorists. The high experimental accuracy of LEP and SLC data demands
improved perturbative-QCD predictions and efforts in this direction.

3 All-order resummation, high ET , high x

Higher-order perturbative contributions are certainly important for studies of QCD observ-
ables close to the exclusive boundary of the phase space. Although infrared and collinear
singularities cancel in inclusive cross sections upon adding real and virtual contributions,
in this kinematic regime real emission is strongly inhibited. The ensuing mismatch of
real and virtual corrections generates double-logarithmic terms of the type (αSL2)n, where
L = ln 1/y, and y generically denotes the distance from the exclusive boundary. For in-
stance, y = ycut can be the resolution parameter for the transverse size of jets in e+e−

annihilation, or y = 1 − 2ET /
√

S, where ET is the transverse energy of jets produced in
hadron collisions at the centre-of-mass energy

√
S, or y = 1 − x, where x is the Bjorken

variable in DIS processes.

In all these processes, when y ≪ 1 the logarithmically-enhanced terms of infrared origin
spoil the convergence of the fixed-order expansion in αS . Accurate predictions require the
evaluation and (whenever feasible) the resummation of this class of contributions to all
orders in perturbation theory 38. In the following I briefly discuss some examples of soft-
gluon resummation in lepton and hadron collisions. Transverse-momentum distributions of
vector bosons and di-photon systems are reviewed elsewhere 1 in these proceedings.

3.1 Jet rates and event shapes in e+e− annihilation

A detailed understanding of logarithmically-enhanced terms exists for jet rates 39 and for
many shape variables 40,41 in e+e− annihilation in the two-jet limit. In these cases all-order
resummation takes an exponentiated form. For instance, using the k⊥-algorithm 39,42 to
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define jets, the 2-jet rate R2 is given by 39,43

R2(αS(Q), ycut) ≡
σ2jet

σtot
= exp

{

−2CF

π

∫ Q

Q
√

ycut

dk

k
αS(k) ln

Q2

k2
+ . . .

}

, (8)

where ycut is the jet resolution parameter, Q is the e+e− centre-of-mass energy and the dots
denote subleading contributions. Note that the exponent involves a double-logarithmically-
weighted integral of the QCD coupling. The effective scale k at which αS is evaluated corre-
sponds to the transverse momentum exchanged at the elementary QCD vertices rather than
to the total momentum Q. Using the QCD running, αS(k) = αS(Q)/(1+2β0αS(Q) ln k/Q),
one can nonetheless perform the integral in Eq. (8) and explicitly obtain R2 as a function
of αS(Q) and L = ln 1/ycut.

In general, shape variable and jet rates can written as follows 44

R(αS , y) = C(αS)Σ(αS , L) + D(αS , y) , (9)

Σ(αS , y) = exp {Lg1(αSL) + g2(αSL) + · · ·} , C(αS) = 1 +
∞
∑

n=1

Cnαn
S , (10)

where D(αS , y) vanishes as y → 0 order-by-order in perturbation theory. In the expression
(9) the singular ln y-dependence is entirely included in the effective form factor Σ, given in
Eq. (10). The function Lg1 resums all the leading contributions αn

SLn+1, while g2 contains
the next-to-leading logarithmic terms αn

SLn and so forth. Equation (10) represents an
improved perturbative expansion in the two-jet region y ≪ 1. Once the functions gi have
been computed, one has a systematic perturbative treatment of the shape distribution
throughout the region of y in which αSL∼< 1, which is much larger than the domain αSL2 ≪
1 in which the fixed-order expansion in αS is applicable. Furthermore, the resummed
expressions (9) and (10) can consistently be matched with fixed-order calculations. In
particular, one can consider the next-to-leading logarithmic approximation (NLLA) as given
by the functions g1 and g2 and combine them with the complete NLO results 24,45 (after
subtracting the resummed logarithmic terms in order to avoid double counting), to obtain
a prediction (O(α2

S)+NLLA) which is everywhere at least as good as the fixed-order result,
and much better as y becomes small.

Detailed experimental studies46 performed at LEP 1 and the SLC proved that resummed
predictions substantially improve the QCD description of the data. These analyses led
to determinations of αS from hadronic final states with reduced theoretical uncertainty
with respect to pure NLO calculations. The combined value from SLD and the four LEP
experiments is αS(MZ) = 0.122 ± 0.001(exp.) ± 0.006(th.).

Resummed calculations were also compared with e+e− data at lower energies, namely
at PEP47 (Q = 29GeV) and TRISTAN48 (Q = 58GeV). A re-analysis of the data recorded
in 1981–1986 by the JADE detector at PETRA has been presented recently 49. This anal-
ysis provides measurements of αS at three different centre-of-mass energies, αS(22GeV) =
0.161, αS(35GeV) = 0.143, αS(44GeV) = 0.137. The energy dependence of these values is
in agreement with the QCD expectation and corresponds to

αS(MZ) = 0.122+0.008
−0.006 , (11)
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Figure 1: The differential 2-jet rates, dR2/dy23 (y23 ≡ ycut), measured at Q = 44, 35 GeV, are shown after
correction to the parton level. The solid and dashed lines correspond to the results of fits with resummed
and fixed-order calculations, respectively. Note the extension of the fit range (denoted by the arrow) towards
the small-y23 region in the case of resummed predictions.
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Figure 2: Measured distributions of thrust T (left) and scaled heavy jet mass ρ (right) in comparison with
O(α2

S)+NLLA QCD predictions at Q = 172 GeV.

where the error is dominated by the theoretical uncertainty. The result (11) improves a
previous determination, αS(MZ) = 0.119±0.014, based on NLO predictions. The improve-
ment is due to the use of more observables (see, e.g., Fig. 1) and to the inclusion of more
detailed systematic studies.

The most recent data 50 on hadronic events from LEP 2 around Q = 133, 161 and
172 GeV are well described by QCD predictions. Resummed calculations are quite valuable
because they can be used for studies of hadronic observables close to the 2-jet region (Fig. 2),
thus increasing the (otherwise very limited) statistics. The ensuing first measurements of
αS at these new energies are summarized in Sect. 6. Assuming the QCD running, the
combined LEP 2 average gives αS(MZ) = 0.115 ± 0.008.

3.2 Hadron collisions at high ET , Q2 and x

At high-energy hadron colliders, the region close to the kinematic boundary of the phase
space is the most sensitive to possible signals 51,52 of new physics. Reliable QCD pre-
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Figure 3: One-jet inclusive cross-section in pp̄ collisions at 1.8 TeV.

dictions are thus important not only to test the SM but also to correctly estimate SM
backgrounds. Note that these predictions depend on an extra non-perturbative input with
respect to e+e− collisions: the parton densities of the incoming hadrons to be convoluted
with hard-scattering cross-sections. The present knowledge of the parton densities is re-
viewed elsewhere 2 in these proceedings.

The top quark is produced relatively close to threshold at the Tevatron 53. Calculations
of its production cross-section, based on NLO QCD54 and including soft-gluon resummation,
were performed in Refs. 55−59. The results disagree on soft-gluon effects. The disagreement
does not regard the general framework 60,61 to carry out the resummation, but the proper
way to implement resummed formulae in actual computations of hadronic cross-sections.

The differences between Refs. 55,56,58 do not have a large impact on top-quark phe-
nomenology: the various numerical results are consistent within uncertainty estimates and
no sizeable reduction of the present experimental error is expected. However, the use of
different approaches 55,56,59 to soft-gluon resummation in hadron collisions can be more rel-
evant in other processes as, for instance, in the case of jet production at large transverse
energy ET .

The one-jet inclusive cross-section measured at the Tevatron 1 impressively agrees with
NLO QCD predictions 62 over almost 9 orders of magnitude (Fig. 3). However, the CDF
Collaboration reported 51 an excess of events at high ET (ET ∼> 250GeV). The present
situation 1,63 can be summarized as follows (Fig. 4): CDF still sees an excess while D0 does
not and, nonetheless, CDF and D0 data are consistent within experimental errors (Fig. 5).
Previous data from the two experiments could not be compared directly as they probe
different regions of jet pseudorapidity η. A new D0 analysis in the same pseudorapidity
range as that of CDF shows (Fig. 5) that the CDF data lie above the D0 results, but within
the D0 uncertainty band.

The origin of the differences between these experimental results has to be further clar-
ified. The angular distribution for two-jet events 64 is in good agreement with NLO QCD
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errors are not shown.

calculations, suggesting that the possible high-ET excess may have an explanation within
the framework of QCD rather than originating from new physics. Independently, the accu-
racy of the QCD predictions has to be carefully estimated.

Using different conventional sets 65,66,67 of parton distributions and different values of
factorization/renormalization scales, NLO predictions for the one-jet cross-section in the
range 50∼< ET ∼< 400 vary by approximately 15%. As for soft-gluon effects, one can at
present estimate an increase of the cross section by ∼ 20% 57 or by less than 10% 59,
depending on the resummation approch used. Further investigations are warranted. The
fact that the estimate in Ref. 59 is within the variation of the NLO predictions may suggest
that higher-order QCD corrections are under control.

Note, however, that the true uncertainty due to parton densities can be larger. As shown
by the CTEQ Collaboration68, including the CDF data in global fits to parton distributions,
there is enough flexibility to increase the gluon density at large x and enhance by 25–30%
the NLO predictions for the single-jet distribution at high ET .

The HERA experiments have reported 52 an excess of DIS events at large values of
Q2 (15 000∼< Q2 ∼< 50 000GeV2) and x (0.5∼< x∼< 0.7). This has raised considerable inter-
est in the high-energy physics community 69. The measured excess has decreased as the
integrated luminosity increased 70, but it still deserves attention 69.

The observed excess is with respect to the SM expectation based on QCD predictions.
Their accuracy relies on estimates of beyond-NLO perturbative corrections and on accurate
determinations of non-perturbative parton densities.

In DIS processes at large x, logarithmically-enhanced contributions due to soft-gluon
emission can be sizeable. We have implemented 71 the corresponding resummation formu-
lae 72 to estimate the order of magnitude of the effect in the relevant HERA region. The
results of this excercise are illustrated in Fig. 6. The overall sign of the resummation effect
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Figure 5: Relative difference between CDF data and a fit of the D0 data in the range 0.1 < |η| < 0.7. The
systematic band is mainly due to the D0 jet energy scale uncertainty.

on the measured structure functions is negative because multigluon radiation increases the
scaling violation at large x. The decrease in the predictions is nonetheless extremely small
for x∼< 0.7, so that the NLO evolution is safe in this kinematics region.

The main source of uncertainty in the SM predictions 52 thus comes from the extraction
of the parton (quark) densities from low-Q2 data. From a dedicated fit73 to SLAC, BCDMS,
NMC data at large x, the uncertainty is estimated to be ∼ 10%. This value is larger than
the differences (∼ 6%) obtained by calculations that use different sets65,66,67 of conventional
parton densities (cf. Fig. 3 in Ref. 73). Sizeable additional effects due, for instance, to a
new component 74 in the quark densities at extremely large values of x, can be excluded 69

by combining HERA data in the neutral- and charged-current channels.

4 Low-x physics and structure functions

Strong-interaction dynamics in the small-x regime 75 is a main challenge to QCD. Much
progress in the field has been prompted by measurements of stucture functions2 and diffrac-
tive interactions 5 at HERA in a kinematic range that extends down to x ∼ 10−4. The
present status of small-x physics for hard-scattering processes involving two transverse-
momentum scales (e.g. forward jet production in DIS, two-jet inclusive mesurements at
large rapidity gaps) is reviewed in Ref. 1.

I shall consider single-scale processes and, in particular, DIS structure functions at low
x. In this case, one can study2 the transition between the perturbative and non-perturbative
regimes, and this may eventually lead to a QCD understanding of soft hadronic physics at
high energy.

4.1 Confronting DGLAP with BFKL

The QCD analysis of low-x structure functions has to deal with a non-trivial interplay
between perturbative evolution towards the hard scale Q2 and non-perturbative behaviour
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Figure 6: The ratio F res(x, Q2)/FNLO(x,Q2) at Q2 = 30 000 GeV2. The DIS structure functions FNLO

and F res are respectively obtained by Q2-evolution in NLO and including soft-gluon resummation. The
Q2-evolution is performed by starting from the scale Q2

0 = 10 GeV2 with an input structure function
F (x,Q2

0) ∼ (1 − x)3.

of the parton densities. This complicates the answer to a basic question that regards the
region of applicability of the QCD parton model. How far in x can we safely use the DGLAP
evolution equations 76 before they have to be supplemented with BFKL-type 77 effects?

To discuss this point let me recall the main steps in the QCD analysis of the structure
functions. The measurement of the proton structure function F2(x,Q2) ∼ fS(x,Q2) directly
determines the sea-quark density fS = x(q + q̄). Then one can use the DGLAP evolution
equations (the symbol ⊗ denotes the convolution integral with respect to x),

dF2(x,Q2)/d ln Q2 ∼ Pqq ⊗ fS + Pqg ⊗ fg , (12)

dfg(x,Q2)/d ln Q2 ∼ Pgq ⊗ fS + Pgg ⊗ fg , (13)

to extract a gluon density fg(x,Q2) = xg(x,Q2) that agrees with the measured scaling vio-
lation in dF2(x,Q2)/d ln Q2 (according to Eq. (12)) and fulfils the self-consistency equation
(13).

The perturbative-QCD ingredients in this analysis are the Altarelli–Parisi splitting func-
tions Pab(αS(Q), x). They are computable as power-series expansions in αS and are known
up to NLO accuracy. The truncation of the splitting functions at a fixed perturbative or-
der is equivalent to assuming that the dominant dynamical mechanism leading to scaling
violations is the evolution of parton cascades with strongly-ordered transverse momenta.
However, at high energy this evolution takes place over large rapidity intervals (∆y ∼ ln 1/x)
and diffusion in transverse momentum becomes relevant. Formally, this implies that higher-
order corrections to Pab(αS , x) are logarithmically enhanced:

Pab(αS , x) ∼ αS

x
+

αS

x
(αS ln x) + . . . +

αS

x
(αS ln x)n + . . . . (14)

At asymptotically small values of x, resummation of these corrections is mandatory to
obtain reliable predictions.

Small-x resummation is, in general, accomplished by the BFKL equation 77, whose
structure is completely known only to leading logarithmic (LL) accuracy. In the context of
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structure-function calculations, the BFKL equation provides us with resummed expressions
for the splitting functions.

In the small-x region the gluon channel dominates. Considering the fixed-order expan-
sion of the splitting function, one-gluon exchange gives Pgg(αS , x) ∼ αS/x. Then, assuming
a flat x-behaviour of fg at low momentum scales, the evolution equation (13) produces a
gluon density fg ∼ exp(

√

ln 1/x) that steeply increases in 1/x at higher momentum scales78.
The steep behaviour drives strong scaling violations in F2 and leads to structure functions
that strongly rise as x decreases. This prediction is usually referred to as DGLAP prediction.

The increase of the gluon density is steeper after BFKL resummation. Summing the LL
terms in Pgg, one eventually gets the power-like behaviour fg ∼ x−λg , where λg ≃ 2.65αS .

The fixed-order approach has been extensively compared with structure function data
during the last few years. The NLO approximation of the DGLAP equations describes very
well 65,66,67,79−81 the HERA data (Fig. 7), down to low values of Q2 ∼ 2GeV2. The NLO
QCD fits simply require slightly steep input parton densities at these low momentum scales.

From a phenomenological viewpoint, one may conclude that there is no need for BFKL-
type corrections to scaling violations in the HERA kinematic region. The main reason for
this is that the LL power-like behaviour of the BFKL gluon density is valid in the asymptotic
regime and the approach to asymptotia is much delayed82−85 by cancellations of logarithmic
corrections that occur at the first perturbative orders in the gluon splitting function Pgg.

Nonetheless, a better way to estimate the relevance of BFKL-type corrections is to
quantify the theoretical uncertainty of the NLO predictions, for instance by comparing LO
and NLO results. Doing that, one can thus argue that this uncertainty is sizeable. This
feature has recently been re-emphasized in Ref.81, but it was evident since the still-successful
GRV parametrization 65 of parton densities. Going from LO to NLO, one can obtain stable
predictions for the proton structure function F2, but one has to vary the parton densities a
lot, in particular the gluon. As shown in Fig. 8, the NLO gluon density sizeably differs from
its LO parametrization, not only in absolute normalization but also in x-shape. This can be
understood 86 from the fact that the scaling violation of F2 is produced by the convolution
Pqg ⊗ fg (see the right-hand side of Eq. (12)). The quark splitting function Pqg behaves as

Pqg(αS , x) ≃ αSP (0)
qg (x)

[

1 + 2.2
CAαS

π

1

x
+ . . .

]

, (15)

where the LO term P
(0)
qg (x) is flat at small x, whereas the NLO correction is steep. To

obtain a stable evolution of F2, the NLO steepness of Pqg has to be compensated by a gluon
density that is less steep at NLO than at LO.

In the large-x region, there is a well known correlation between αS and fg. At small
x, there is an analogous strong correlation between the x-shapes of Pqg and fg. In the
fixed-order DGLAP analysis of F2, large NLO perturbative corrections at small x can be
balanced by the extreme flexibility of parton density parametrizations.

This has to be kept in mind when concluding on the importance of BFKL dynamics. The
NLO steepness of Pqg is the lowest-order manifestation of next-to-leading BFKL corrections
in the quark channel. Using k⊥-factorization 87 methods, these corrections were resummed
to all orders 88 and implemented 82−85,89−92 in studies of structure functions. The results of
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Figure 7: NLO QCD fit to low-x structure function data for different values of Q2.
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Figure 8: Comparison between the LO (GRV94LO) and NLO (GRV94HO) GRV parametrizations of the
gluon and sea-quark densities at Q2 = 5 GeV2.
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the E665, H1 and ZEUS experiments are compared with a QCD fit that includes resummation of small-x
contributions to LL accuracy in the gluon channel and to NLL accuracy in the quark channel.
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a recent fit 92 are shown in Fig. 9. The present overall picture is that small-x resummation
leads to a description of the HERA data that is comparable to that from NLO analyses,
provided that the input gluon density is less steep than the NLO fg.

More accurate data on F2 are necessary to clarify the phenomenological relevance of
BFKL effects. Measurements of other inclusive observables (for instance, the longitu-
dinal structure function FL

93,94) can be valuable to disentangle perturbative from non-
perturbative dynamics, that is, to reduce the correlation between Pqg and fg in F2 analyses.
At the same time, theoretical progress in higher-order calculations is very important.

4.2 BFKL dynamics at NLL accuracy: recent theoretical progress

The complete evaluation of BFKL contributions to next-to-leading logarithmic (NLL) accu-
racy requires the computation of basic building blocks from tree-level, one-loop and two-loop
amplitudes at high energy. This difficult calculational program 95−98, led by the work of
Fadin and Lipatov, has been completed 99.

We are now in a position to start detailed investigations on phenomenological and
conceptual issues related to the resummation of high-energy logarithms.

The computation of next-to-leading corrections should permit a quantitative control
of normalizations, scales and factorization-scheme 86,100,101 uncertainties. A preliminary
evaluation of the NLL corrections to the power-like behaviour of the gluon density has been
performed in Ref. 98. The effective power λg of the asymptotic x-shape of fg can be written
as λg = 2.65 αS(Q)(1−c αS(Q)) and, considering the scale-invariant part of the NLL BFKL
contributions, the correction to λg is negative and estimated to be quite large 98 (c ∼ 3.5).
Negative corrections to λg are also obtained by related investigations 102,103 on coherence
effects 104 and the CCFM equation 104,105.

A general theoretical understanding of NLL terms can clarify to what extent the BFKL
formalism can be used in a purely perturbative framework and how it can be matched
to the non-perturbative infrared regime. In the context of structure-function studies, one
should thus be able to precisely identify the kinematic range in x and Q2 where perturbative
factorization is valid and not spoiled by k⊥-diffusion in the low-momentum region 106,107.

5 Power corrections

A generic infrared- and collinear-safe observable R that depends on some large momentum
scale Q has the following expression

R(Q) = Rpert(αS(Q)) + Rnon−pert(Q) . (16)

The term Rpert denotes the perturbative component that can be calculated as power-series
expansion in αS(Q) and, thus, behaves as (1/ ln Q)n. The remaining contribution Rnon−pert

is due to non-perturbative phenomena (hadronization, multiparton scattering, ...) and is
power-behaved, i.e. proportional to (1/Q)p. Since the power p is positive, Rnon−pert is
suppressed when Q → ∞ but it can be quantitatively relevant at finite values of Q.
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We have precise theoretical information on Rnon−pert only for the processes in which
OPEs are valid 17. In these cases, one can write 108

Rnon−pert(Q) ∼
∑

p≥2

Cp

(

1

Q

)p

〈Op〉 , (17)

where 〈Op〉 denotes the vacuum expectation value of some local operator Op, obtained by
the basic quark and gluon fields. Note that in Eq. (17) we have p ≥ 2, because in the theory
there is no (quasi-)local operator with dimension smaller than 2. Note also that OPEs apply
to few quantities such as the total cross section in e+e− annihilation (p ≥ 4) and the DIS
structure functions (p ≥ 2). For all the other quantities, power-correction contributions
are usually estimated by using phenomenological approaches (e.g. hadronization models of
Monte Carlo event generators in e+e− annihilation).

It is evident that we need a better general understanding of power-suppressed contri-
butions. On theoretical grounds, one would like to justify power corrections with p < 2,
which are experimentally observed in e+e− data on event shapes (see Fig. 10), and possibly
evaluate their size.

A handle on Rnon−pert can be provided by the study of Rpert. It is known that the
αS-series for the perturbative component Rpert is not a convergent series but rather an
asymptotic expansion 108. This implies that it is not defined in an unambiguous way. Since
R is a physical observable, any ambiguity in Rpert has to be cancelled by a corresponding
ambiguity in Rnon−pert. Examining the series for Rpert at large perturbative orders, one can
thus extract some information on Rnon−pert.

Two known sources of non-convergent behaviour of the perturbative expansion are in-
stantons and (infrared) renormalons. Roughly speaking, ‘instantons’ are related to large
perturbative coefficients due to the large number of Feynman diagrams at high orders. They
lead to non-perturbative corrections that are strongly power-suppressed, i.e. that have high
values of p. Infrared renormalons are related to the low-momentum behaviour of the running
coupling αS in Feynman diagrams.

5.1 Infrared renormalons

Much theoretical activity has recently been devoted to studying infrared renormalons 109.
A comprehensive review of the field is not feasible because even a simple list of the relevant
references cannot fit into several pages of these proceedings. I shall limit myself to recalling
few general points and phenomenological results.

The basic idea of the renormalon approach to power corrections is the following. The
evaluation of the lowest-order perturbative contribution to R(Q) amounts to integrating
tree-level Feynman diagrams over the momentum k exchanged at the elementary QCD
vertices (see the left-hand side of Eq. (18)). Higher-order contributions to R(Q) are given
by more complicated Feynman diagrams, including those that produce the running of the
coupling constant αS . Therefore, one can approximate the effects of higher orders by the
replacement αS → αS(k) in the lowest-order term, as in Eq. (18):

Rpert(αS(Q)) ∼ αS

∫ Q

0

dk

Q

(

k

Q

)p

+ . . . higher orders
−→

∫ Q

0

dk

Q

(

k

Q

)p

αS(k) . (18)
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The perturbative series Rpert(αS) =
∑

n Rnαn
S is then obtained by inserting the QCD ex-

pression for running coupling,

αS(k) ∼ αS(Q)/[1 + 2β0αS(Q) ln k/Q] =
∞
∑

n=1

αn
S(Q) (−2β0 ln k/Q)n−1 , (19)

into the right-hand side of Eq. (18) and by integrating term by term. This leads to pertur-
bative coefficients that grow factorially at high orders:

Rn+1 = n! (1/p) (2β0/p)n . (20)

The factorial growth implies that the series for Rpert(αS) is not convergent but can be
interpreted as an asymptotic expansion. One should truncate the series at the order n =
nmax at which the ratio of two successive terms become of order unity and estimate the
truncation ambiguity δRpert by the size of the last term that is neglected. The evaluation
of nmax from Eq. (20) gives

(Rn+1α
n+1
S (Q))/(Rnαn

S(Q)) ∼ 1 =⇒ nmax ∼ p/ (2β0αS(Q)) . (21)

Using this value of nmax and the QCD expression αS(Q) ∼ 1/(2β0 ln Q/ΛQCD), one even-
tually obtains an ambiguity of the perturbative component that has a power-like behaviour
with respect to the large scale Q:

δRpert ∼
(

Rn+1α
n+1
S (Q)

)

n=nmax

∼ e−nmax ∼
(

ΛQCD/Q
)p

. (22)

The recipe αS → αS(k) of Eq. (18) to estimate the large-order behaviour of the pertur-
bative series can be justified by summing Feynman graphs in the limit of a large number
Nf of flavours 110 (Nf → ∞). Further justifications 111,112 follow from the structure of
soft-gluon resummation formulae (cf. Eq. (8)).

Two main features of the renormalon approach to power corrections are its predictivity
and its non-universality. The power p in Eq. (22) is exactly equal to that on the right-hand
side of Eq. (18). Therefore, the approach unambiguously predicts the type of power correc-
tion by relating it to the dominant low-momentun behaviour of the lowest-order Feynman
diagrams for any given observable. Nonetheless, the actual size of the power correction is not
computable unambiguously: the ‘true’ coefficient in front of the factor 1/Qp is not related
in a straightforward and universal way to that obtained by evaluating the sole lowest-order
Feynman diagrams 113.

5.2 Hadronic event shapes in e+e− and DIS

The renormalon predictions on the power behaviour of non-perturbative corrections are in
agreement 114 with those from OPEs when the latter apply, but can be extended also to
other quantities.

Among these quantities, hadronic event shapes in e+e− annihilation are particularly
relevant because their measured mean values receive significant non-perturbative contribu-
tions of the form 1/Q. As shown in Fig. 10, parton level predictions of Monte Carlo event
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Figure 10: Energy dependence of the mean value of e+e− event shapes. The upper (lower) curves are the
predictions of Monte Carlo event generators at hadron (parton) level.

generators fail to describe the data, but a good agreement is obtained by taking into ac-
count 1/Q effects produced by the hadronization models that are built into the Monte Carlo
programs. The phenomenological success of these hadronization models is well known 115,
but their relation with QCD dynamics is still poorly understood on a theoretical basis.

An important result of the renormalon approach is that it theoretically predicts 116 the
existence of 1/Q non-perturbative corrections to the mean values of event shapes. As for
the actual size of these corrections, an attempt to overcome non-universality in renormalon
calculations was proposed by Dokshitzer and Webber 117,114 (DW). The factorial growth of
the perturbative coefficients in Eq. (20) is produced by the k-integration (see Eq. (18)) of
the perturbative coupling αS(k) down to the Landau pole at k = ΛQCD. The DW model
assumes that a meaningful non-perturbative definition of αS(k) can be introduced for all
values of k. Thus the integral

∫ µI

0

dk

µI
αS(k) ≡ α0(µI) (23)

exists for all µI ≥ 0 and, using Eq. (18) with p = 1, the mean value 〈R(Q)〉 of any event
shape can be written as follows

〈R(Q)〉 = 〈Rpert(αS(Q))〉NLO + 〈Rnon−pert(Q)〉 , (24)

〈Rnon−pert(Q)〉 = aR α0(µI) (µI/Q) − aR [α0(µI)]NLO (µI/Q) + . . . . (25)

The first term on the right-hand side of Eq. (24) is the customary perturbative contribution
evaluated up to NLO24,45, while the power correction 〈Rnon−pert(Q)〉 is expressed in terms of
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Figure 11: QCD fits for the mean value of e+e− event shapes. The solid lines correspond to NLO calculations
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the effective non-perturbative parameter α0(µI). To avoid double-counting of perturbative
contributions, one has to consider the NLO expansion [α0(µI)]NLO of the integral (23)
and then subtract the second term on the right-hand side of Eq. (25). The coefficient aR

depends on the event shape R and is obtained by a direct calculation of the corresponding
LO Feynman diagrams.

The DW model does not predict the absolute value of 〈Rnon−pert(Q)〉 for each event
shape R but parametrizes all these power corrections in terms of the single ‘universal’
parameter α0(µI) and of calculable process-dependent coefficients aR. The dots on the right-
hand side of Eq. (25) stand for contributions that are more power-suppressed (i.e. (µI/Q)p

with p > 1) and for non-universality corrections to the coefficient aR of the dominant power.
These corrections come from higher-order Feynman diagrams 113 and, in particular, involve
integrals of the type

∫ µI

0

dk

µI
α2

S(k) ∼ O(α0
2(µI)) . (26)

If the non-perturbative parameter α0(µI) turns out to be relatively small, the corrections
in Eq. (26) can be neglected in a first approximation. In phenomenological applications,
the infrared matching scale µI of Eq. (25) has to be chosen in the range Q ≫ µI ≫ ΛQCD:
Q ≫ µI , because power corrections of higher order have to be negligible and µI ≫ ΛQCD,
because αS(µI) still has to be in the perturbative region.

The DELPHI Collaboration performed a detailed study118,119 of the energy dependence
of the mean value of e+e− event shapes measured in the centre-of-mass energy range Q = 14–
172 GeV. The data are well described by NLO perturbative calculations 24,45 supplemented
with power corrections (Fig. 11). Using the predictions of the DW model for the thrust T
and the heavy jet mass Mh (Fig. 11b), a combined fit of αS(MZ) and the non-perturbative
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parameter α0(µI) gives 118 αS(MZ) = 0.116 ± 0.002(exp.) ± 0.006(th.) and

α0(µI = 2GeV) =

{

0.534 ± 0.012 (from T ) ,
0.435 ± 0.015 (from Mh) .

(27)

This determination of αS(MZ) is consistent with those (cf. Sect. 3.1) obtained from analyses
of shape distributions in which non-perturbative effects are estimated by using Monte Carlo
event generators. The value of α0 in Eq. (27) suggests that corrections in the DW model can
be kept under control. Similar results have been obtained by the JADE 49 and ALEPH 120

Collaborations.
Note that the fit of Fig. 11b for the jet mass difference Md corresponds to an empirical

parametrization of the power correction simply proportional to 1/Q rather than to the
predictions of the DW model. In fact, in this case the model gives a poor quantitative
description of the data. This fact signals the presence of non-universality corrections, which
are not included in the naive version of the model.

The data in Fig. 11c are obtained by averaging out the event shapes over a restricted
kinematic range 118 that excludes the two-jet region. Note that, in the cases of T and
Mh, the energy dependence of the data in Fig. 11c is stronger than that in Fig. 11b. The
empirical fits of Fig. 11c are consistent with a dominant power-behaviour of the type 1/Q2.
This behaviour agrees with that predicted by calculations of renormalon contributions 113.

Lepton–nucleon DIS processes are an ideal place to study the Q-dependence of hadronic
observables because one can vary Q over a wide range in a single experiment, thus reduc-
ing systematic uncertainties. Event shapes in DIS are analogous to those in e+e− an-
nihilation, but they are usually defined in the current fragmentation region of the Breit
frame. A study 121 of DIS event shapes in the momentum region Q= 7–100 GeV has re-
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Figure 13: Q-dependence of the mean value of DIS event shapes. The solid lines are QCD fits that include
NLO predictions and power corrections according to the DW model.

cently been performed by the H1 Collaboration at HERA. As shown in Fig. 12, shape
distributions become narrower and jet-like when Q increases. As expected, NLO pertur-
bative calculations 122,123,124 describe the data only at sufficiently large values of Q. At
smaller Q, non-perturbative contributions are sizeable. The Q-dependence of the mean
value of the shape variables is shown in Fig. 13, together with a combined fit that uses
NLO predictions 122,123,124 and the DW model for power corrections 125. The fit describes
the data well and gives 121 αS(MZ) = 0.118 ± 0.001(exp.)+0.007

−0.006(th.) and α0(µI = 2GeV) =
0.491 ± 0.003(exp.)+0.079

−0.042(th.). These values are consistent with those obtained from e+e−

event shapes.

Determinations of αS from QCD predictions that include power corrections are sum-
marized at the end of Table 1. Besides the results from the mean values of shape variables,
I have also reported a preliminary determination 126 from the longitudinal cross section in
e+e− annihilation. This determination is based on the NLO calculation in Ref. 127 and on
estimates 128 of power-suppressed terms.

At present, it is difficult to quantify the theoretical accuracy of these analyses. Uni-
versality of power corrections is certainly violated in its naive form 129. In the DW model,
the effective non-perturbative parameter is α0 ∼ 0.5 and, on a phenomenological basis, one
may conclude that non-universality effects are typically smaller than 50%. Future investi-
gations on differential event shape spectra 119,120,130 can produce more definite quantitative
results and give additional insights into the connection between hadronization and power
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corrections.

6 Summary of αS

A summary of αS determinations is presented in Table 1. I shall limit myself to few
comments on the comparison with last year summaries 131,132.

The most relevant new result regards a redetermination 133 of αS from ν-nucleon DIS.
The preliminary result, αS(MZ) = 0.119 ± 0.005, presented by the CCFR Collaboration at
the Warsaw Conference (ICHEP96), has indeed been confirmed. This result is based on a re-
analysis of the CCFR data, due to a new energy calibration of the detector, and supersedes
a previous and lower determination (αS(MZ) = 0.111 ± 0.006). The main outcome of this
is an increased average value of αS from DIS measurements. Among DIS determinations,
only µ-nucleon data from BCDMS still prefer 134 a value of αS(Mz) that is (slightly) lower
than those from e+e− annihilation.

Another new result 135 included in Table 1 is from scaling violation of polarized DIS
structure functions. In the case of polarized DIS processes, a more accurate determination14

of αS is in principle feasible from the Bjorken sum rule. At present, however, this deter-
mination suffers from uncertainties 135 due to the extrapolation of the data in the small-x
region, where polarized structure functions have not yet been measured.

The entry from pp̄ → jet + X does not refer to an actual measurement, but it illus-
trates136 the potential of jet data from hadron colliders in the determination of αS . Detailed
analyses at the Tevatron experiments are in progress. The updated entry from τ decay is
from Ref. 137. The theoretical uncertainty on the value138 from J/Ψ and Υ decays has been
slightly increased according to estimates 139 of additional contributions from colour-octet
operators.

All the other new or updated entries in Table 1 have been discussed in the previous
sections. In particular, the error on αS from global fits to electroweak observables (cf.
Sect. 2.1) includes the theoretical uncertainty due to the SM assumptions.

The values of αS , as a function of the energy scale Q at which they are measured, are
compared with the QCD prediction of a running coupling in Fig. 14. The energy dependence
of αS is distinct (αS(Q) varies by a factor of 3) and in very good agreement with the QCD
running over two orders of magnitude in Q. It is thus meaningful to evolve all the results
to αS(MZ) according to perturbative QCD. A significant subset of these values is shown in
Fig. 15. The subset is chosen by considering the most relevant determinations of αS from
each type of process and/or energy range. Using these results, my preferred world average
determination is

αS(MZ) = 0.119 ± 0.005 . (28)

The central value corresponds to the weighted average of the results in Fig. 15 (the average
does not include the result from bb̄ mass splitting because of the difficulty in estimating
uncertainty in lattice calculations 140). The errors on the most precise determinations of αS

are mainly of a theoretical nature and, hence, not Gaussian and highly correlated among
themselves. Because of this reason, I have not considered any further reduction of the error
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Figure 14: Summary of αS(Q). The lines indicate the QCD predictions in NNLO for three different values
of αS(MZ).

coming from the weighting procedure. The uncertainty quoted in Eq. (28) is equal to the
smallest of the errors in Fig. 15.

Different methods, used in recent summaries141,142 to quote the world average of αS , give
results similar to that in Eq. (28). Less conservative error estimates (∆αS(MZ) = 0.003)
are considered in Refs. 131,132.

7 Concluding remarks

Owing to high-precision experiments and accurate theoretical calculations, perturbative
QCD is nowadays very well tested in high-energy hadronic processes. An oustanding ex-
ample of this is the accuracy on the determination of the strong coupling αS(MZ) and
its running. Taken literally, this accuracy implies that in many processes we can control
strong-interactions dynamics at short distances to a precision better than 5%. The achieved
reliability of perturbative QCD is extremely valuable to estimate SM backgrounds for new-
physics signals, although in some cases the insufficient knowledge of the non-perturbative
parton densities remains a source of sizeable uncertainty.

Small-x physics deals with a kinematic regime near the borderline between hard and soft
collisions and can lead to a QCD understanding of the high-energy behaviour of soft hadronic
interactions. In the very near future substantial progress is expected as a consequence of
the increasing amount of data and of recent theoretical developments in this field.

The interplay between perturbative and non-perturbative phenomena is one of the main
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Figure 15: Summary of measurements of αS(MZ). The band corresponds to the world average αS(MZ) =
0.119 ± 0.005.

open issues in QCD. In the past few years, methods inspired by perturbation theory have
been developed to control non-perturbative power corrections to perturbative predictions.
These methods are at present in a stage that is similar to that of LO perturbative calcula-
tions at the end of the 70’s. Forthcoming phenomenological and theoretical studies along
these lines can play an important role in understanding the hadronization mechanism.
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Table 1: A summary of measurements of αS .

Q ∆αs(MZ0) Order of
Process [GeV] αs(Q) αs(MZ0) exp. theor. perturb.

GLS sr 1.73 0.32 ± 0.05 0.115 ± 0.006 0.005 0.003 NNLO

Rτ 1.78 0.35 ± 0.04 0.122 ± 0.005 0.002 0.005 NNLO

DIS [polar.] 2.11 0.31 + 0.08
− 0.06 0.120 + 0.010

− 0.008
+ 0.004
− 0.005

+ 0.009
− 0.006 NLO

DIS [ HERA F2] 4.5 0.23 ± 0.04 0.120 ± 0.010 0.005 0.009 NLO
DIS [ν] 5.0 0.215 ± 0.016 0.119 ± 0.005 0.002 0.004 NLO
DIS [µ] 7.1 0.180 ± 0.014 0.113 ± 0.005 0.003 0.004 NLO

bb̄ mass splitting 4.1 0.223 ± 0.009 0.117 ± 0.003 0.000 0.003 LGT

e+e− [Υ + X] 4.1 0.228 + 0.045
− 0.030 0.119 + 0.010

− 0.008 0.002 + 0.010
− 0.008 NLO

J/Ψ, Υ [had. decay] 10.0 0.167 ± 0.020 0.113 ± 0.010 0.001 0.010 NLO

e+e− [σhad] 10.5 0.20 ± 0.06 0.13 ± 0.03 0.02 0.02 NNLO
e+e− [ev. shapes] 22 0.161 + 0.016

− 0.011 0.124 + 0.009
− 0.006 0.005 + 0.008

− 0.003 resum.
e+e− [ev. shapes] 29 0.160 ± 0.012 0.131 ± 0.010 0.006 0.008 resum.
e+e− [σhad] 34.0 0.146 + 0.031

− 0.026 0.124 + 0.021
− 0.019

+ 0.021
− 0.019 – NLO

e+e− [ev. shapes] 35.0 0.143 + 0.011
− 0.007 0.122 + 0.008

− 0.006 0.002 + 0.008
− 0.005 resum.

e+e− [ev. shapes] 44.0 0.137 + 0.010
− 0.007 0.122 + 0.008

− 0.006 0.003 + 0.007
− 0.005 resum.

e+e− [ev. shapes] 58.0 0.132 ± 0.008 0.123 ± 0.007 0.003 0.007 resum.

pp, pp̄ → γ + X 4 0.206 + 0.042
− 0.024 0.112 + 0.012

− 0.008 0.006 + 0.010
− 0.005 NLO

pp̄ → bb̄ + X 20.0 0.145 + 0.018
− 0.019 0.113 ± 0.011 + 0.007

− 0.006
+ 0.008
− 0.009 NLO

pp̄ → jet + X 120 0.116 ± 0.009 0.121 ± 0.010 0.008 0.005 NLO

e+e− [scal. viol.] 36 0.147 ± 0.014 0.125 ± 0.010 0.006 0.008 NLO

Z0 [e.w. obs.] 91.2 0.120 + 0.005
− 0.004 0.120 + 0.005

− 0.004 0.003 + 0.004
− 0.002 NNLO

Z0 [ev. shapes] 91.2 0.122 ± 0.006 0.122 ± 0.006 0.001 0.006 resum.

e+e− [ev. shapes] 133 0.111 ± 0.007 0.117 ± 0.008 0.004 0.007 resum.
e+e− [ev. shapes] 161 0.106 ± 0.007 0.115 ± 0.008 0.004 0.007 resum.
e+e− [ev. shapes] 172 0.103 ± 0.007 0.112 ± 0.008 0.004 0.007 resum.

DIS [av. ev. shapes] 7 - 100 0.118 + 0.007
− 0.006 0.001 + 0.007

− 0.006 NLO + p.c.
e+e−[av. ev. shapes] 14 - 172 0.116 + 0.006

− 0.005 0.001 + 0.006
− 0.005 NLO + p.c.

e+e− [σL] 91.2 0.110 ± 0.016 0.110 ± 0.016 0.013 0.010 NLO + p.c.
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