

AMANDA and IceCube

Patrick Berghaus

University of Wisconsin, Madison

Patrick Berghaus University of Wisconsin, Madison

IceCube: People

USA:

Bartol Research Institute, Delaware Univ. of Alabama Pennsylvania State University UC Berkeley UC Irvine Clark-Atlanta University Univ. of Maryland IAS, Princeton University of Wisconsin-Madison University of Wisconsin-River Falls LBNL, Berkeley University of Alaska, Anchorage University of Kansas Southern University and A&M College, Baton Rouge, Louisiana

Uppsala Universitet Stockholm Universitet

Sweden:

UK: Oxford University

Netherlands: Universiteit Utrecht Germany: Universität Mainz DESY-Zeuthen Universität Dortmund

Universität Dortmund Universität Wuppertal Humboldt-Universität Berlin RWTH Aachen

Belgium:

Vrije Universiteit Brussel Université Libre de Bruxelles Universiteit Gent Université de Mons-Hainaut Japan: Chiba University

New Zealand: University of Canterbury

Antarctica: Amundsen-Scott Station

Patrick Berghaus University of Wisconsin, Madison

1 450 m

IceCube: Hardware

IceTop(Air Showers):

•2 Surface Tanks per InIce String, 2 DOMs per Tank

•2008: 80 Tanks Installed

Amanda:

•Ø=200m, h=500m (0.02 km³)

•677 OMs on 19 Strings (from 2000)

Inice:

324 m

- •1 km³ instrumented
- •4800 Digital Optical Modules (DOMs) on 80 strings

•2008: 40 Strings deployed ("IC40")

Patrick Berghaus University of Wisconsin, Madison

String Deployment

2 Days

Patrick Berghaus University of Wisconsin, Madison

Integrated Exposure

Patrick Berghaus University of Wisconsin, Madison

(Very Basic) Detection Principle

Patrick Berghaus University of Wisconsin, Madison

Neutrino Physics

Neutrino Event Energy Distributions

Patrick Berghaus University of Wisconsin, Madison

Muons From Neutrinos \sim 20/h

Patrick Berghaus University of Wisconsin, Madison

Background

Patrick Berghaus University of Wisconsin, Madison

Event Filters

#Strings	Year	Run Length	CR μ Rate	v rate	Trigger Rate
IC1	2005	-	-	2	-
IC9	2006	137 days	80 Hz	$\sim 1.5/day$	150 Hz
IC22	2007	319 days	550 Hz	$\sim 20/day$	670 Hz
IC40	2008	~ 1 year	1000 Hz		1400 Hz
IC80	2011	10 years	1650 Hz	$\sim 200/day$	TBD

Patrick Berghaus University of Wisconsin, Madison

lce

IceCube

dust peaks correspond to cold periods during last Ice Age

Patrick Berghaus University of Wisconsin, Madison

Analyses

Patrick Berghaus University of Wisconsin, Madison

Atmospheric Neutrinos

- Unfolded Energy
 Spectrum
- Consistent with

Theory

Only proven
 AMANDA/IceCube
 neutrino source

Patrick Berghaus University of Wisconsin, Madison

GRBs

Patrick Berghaus University of Wisconsin, Madison

Potential Neutrino Sources

nearby AGN M87 (HST)

ont Sources

Cygnus X-3 x-ray (Chandra)

Crab nebula SNR

BL Lac Markarian 421

Cygnus X-1

Amy Mioduszewski Michael Rupen Craig Walker Greg Taylor

Magnetar SGR 1806-20

Microquasar SS433 (VLBA)

No indication fe

IceCube

- 26 sources selected to reduce trial factor
 - No indication for neutrino point sources (consistent with random sky)

	Source	Excess parameter -log10 P	Flux upper limit for $\Phi = \Phi_0 E^{-2}$ 90% CL [10 ⁻¹¹ TeV cm ⁻² s ⁻¹]
	Markarian 421	0.82	1.26
AGN	Markarian 501	0.22	3.56
	1ES1959+650	0.44	3.38
SNR µ-QSO	M87	0.43	2.18
	3C273	0.086	4.17
	SS433	0.64	1.57
	LSI +61 303	0.033	7.21
	Cygnus X-1	0.57	2.00
	Cygnus X-3	0.29	3.28
	Cassiopeia A	0.67	1.93
	Crab Nebula	0.10	4.47
••	Geminga	0.0086	6.07

Probability: 20%

Patrick Berghaus University of Wisconsin, Madison

IC9 Point Source Search

Flux limit:

 $IC9 \simeq AMANDA$

60% of random skies

have higher significance

Patrick Berghaus University of Wisconsin, Madison

IC22 Point Source Search

Patrick Berghaus University of Wisconsin, Madison

AMANDA/IceCube

Evolution

Malfa, September 2008

CR Connection

Patrick Berghaus University of Wisconsin, Madison

Auger vs. IceCube

Patrick Berghaus University of Wisconsin, Madison

Macro vs. IceCube

Patrick Berghaus University of Wisconsin, Madison

AMANDA/IceCube CRIS Malfa, September 2008 GeV] 28

A. A. Kochanov¹, A. D. Panov², T. S. Sinego

THE UNIVERSITY

MADISON

IceCube Muons

 \simeq 300 days IC22

Patrick Berghaus University of Wisconsin, Madison AMANDA/IceCube CRIS Malfa, September 2008 $\cos(\theta_{zen}(MC))$

Moon Shadow

nomi

3.975

1.423

observed: 88202 events

expected: 89521.6 events

deficit: -1319.62 events

error: 315.265 events

Patrick Berghaus University of Wisconsin, Madison AMANDA/IceCube CRIS Malfa, September 2008 adius from moon

"Poly-Gonato" Model

Steepening of Muon/Neutrino Spectrum above 100TeV

J.R. Hoerandel, astro-ph/0210453

Patrick Berghaus University of Wisconsin, Madison

Prompt Flux

Diffuse v

ר^{10"} זי sr⁻¹] Bartol Atms, v Bartol Atms. v Honda Atms, v Honda Atms, v SDSS Model °, CharmD Model °, SDSS 2000-3 AMANDA-II limit CharmD 2000-3 AMANDA-II limit cm⁻² E² dN/dE [GeV cm⁻² MPR AGN jets Model CharmC Model MPR AGN jets 2000-3 AMANDA-II limit CharmC 2000-3 AMANDA-II limit Starburst Model Naumov RQPM Model Starburst 2000-3 AMANDA-II limit E² dN/dE [GeV Naumov RQPM 2000-3 AMANDA-II limit Ahlers et al Model Martin GBW Model Ahlers et al 2000-3 AMANDA-II limit E⁻² 2000-3 AMANDA-II limit Martin GBW 2000-3 AMANDA-II limit 10⁻⁶ 10 10⁻⁸ J. Hodges, UW Madison 10-5 10⁻⁹ 7 8 9 3 5 6 9 3 5 6 7 8 Δ $\log_{10} [E_v (GeV)]$ log₁₀ [E_v (GeV)]

Atmospheric v

Patrick Berghaus University of Wisconsin, Madison

Prompt Neutrinos

Charm Production in DPMJET

P Berghaus¹, T Montaruli^{1,2} and J Ranft³

Patrick Berghaus University of Wisconsin, Madison AMANDA/IceCube CRIS Malfa, September 2008 THE UNIVERSITY

MADISON

E² dN/dE [GeV cm⁻² s⁻¹ sr⁻¹]

10⁻⁶

10⁻⁷

10-8

10⁻⁹

Pe

5

6

Prompt Muons

Bartol Atms, v

Honda Atms, v

CharmD Model

CharmC Model

Naumov RQPM Model

Conventional

(near horizon)

8

log₁₀ [E_v (GeV)]

Muons

7

Martin GBW Model

CharmD 2000-3 AMANDA-II limit

CharmC 2000-3 AMANDA-II limit

Naumov RQPM 2000-3 AMANDA-II limit

Martin GBW 2000-3 AMANDA-II limit

UCLA/02/TEP/23, CWRU-P13-02, NSF-ITP-02-97

Measuring the prompt atmospheric neutrino flux with down-going muons in neutrino telescopes

FIG. 4. Total neutrino-over-muon ratio as a function of lepton energy. Vertical marks denote the crossing energy from conventional to prompt muons.

Patrick Berghaus University of Wisconsin, Madison

3

Δ

IceCube can detect Muons from all zenith angles

Muon and Neutrino spectrum up to PeV region measurable

Sensitive to CR Composition around Knee

And perhaps Charm Production in Atmospheric Showers

Backup Slides

Patrick Berghaus University of Wisconsin, Madison

IceCube uses SIBYLL

SIBYLL

≈

Bartol

Honda '06

 \approx

Patrick Berghaus University of Wisconsin, Madison AMANDA/IceCube CRIS Malfa, September 2008 10⁻¹

1.5

2.5

⁵ log^{5,5}[GeV]

4.5

4

3.5

Muon Monte Carlo: a high-precision tool for muon propagation through matter

hep-ph/0407075

THE UNIVERSITY WISCONSIN MADISON

Dmitry Chirkin¹, Wolfgang Rhode²

chirkin@physics.berkeley.edu rhode@uni-wuppertal.de

Patrick Berghaus University of Wisconsin, Madison

Digital Optical Module

PMI:	10" Hamamatsu
Power:	3W
Digitization:	
ATWD (custom):	300 Mhz / 400ns
fADC:	40MHz / 6,400ns
Dynamic Range :	200pe / 15ns
Noise Rate:	650Hz

Patrick Berghaus University of Wisconsin, Madison

Effective Area

Absorption probability in the Earth vs E. (for CC interactions only) IC22 - Point Source Cuts (preliminary) 1 ĩ 10³ Earth Transparency ′μ,e 10² μ,e 10 1 с ^{abs}(Е d 10⁻¹ **1** cos(θ)=0.1 10⁻² Averaged Effective Areas **2** cos(θ)=0.4 10⁻³ zenith range (90°, 180°) $\cos(\theta)=0.7$ zenith range (90°, 120°) 3 10-4 zenith range (120°, 150°) $\cos(\theta) = 1.0$ 4 10⁻⁵ zenith range (150°, 180°) 10⁻²1 C. Finley/J. Dumm, UW 10⁻⁶ 6 7 8 9 log₁₀ Primary Energy / GeV 3 5 6 7 8 2 9 1 Δ $\log_{10}(E_v, \text{GeV})$

Patrick Berghaus University of Wisconsin, Madison

Muons in CORSIKA

Muon Charge Ratio: Data and SImulation Minos Data **MINOS Data** sibyll µ+/µ- ratio 0705.3815 qgsjet01 µ+/µ- ratio 1.6 qgsjetll µ+/µ- ratio R. Birdsall, UW Madison 1.8 $r = 1.371 \pm 0.003$ 1.5 1.6 _^π/Ν -nW/+nW 1.4 1 1.2Ε_{μ,0} (TeV) 2 6 0 0.8 1.5 2.5 3.5 3 2 Energy

FIG. 15: The muon charge ratio $N_{\mu+}/N_{\mu-}$ at the Earth s surface. The errors shown are statistical.

Unbinned Search

Patrick Berghaus University of Wisconsin, Madison

KASCADE Composition

astro-ph/0505413

Prompt Neutrino Models

IceCube Muon Rates

Patrick Berghaus University of Wisconsin, Madison

Energy Resolution

μ tracks, IC22

Essential Observables for Muon Spectrum:

Slant Depth: mwe traversed

dE/dx: shower energy

Bundle Size: reject highmultiplicity showers

