Muon Energy Spectrum

Patrick Berghaus IceCube Collaboration Meeting Spring 2009

Detector Calibration

High Statistics from atmospheric muons Distributions near the horizon sensitive to: Zenith Angle Resolution Misreconstructed Background High-Energy Events

> Systematics discovered in the course of this analysis: See PB talk in Muon Session

Diffuse Analyses

High-Energy Events Validity of lepton production models CR composition effects

CR Physics

CR composition Hadron production in nn interactions Air Shower Models

Muon Spectrum

Gyroradius: $R = \frac{p}{eZB} \simeq (10pc) \frac{E_{prim}[PeV]}{ZB[\mu G]}$

Extended Air Shower Measurements: Altitude of Shower Maximum

poly-gonato (Hoerandel)

$$\frac{d\Phi_Z}{dE_0} = \Phi_Z^0 \left[1 + \left(\frac{E_0}{E_{trans}}\right)^{\epsilon_c} \right]^{\frac{-\Delta\gamma}{\epsilon_c}}$$

cut–off:	rigidity	mass	constant	
	dependent	dependent		
$\hat{E}_Z =$	$\hat{E}_p \cdot Z$	 $\hat{E}_p \cdot A$	 \hat{E}_p	
	<u> </u>	124.66 14 366.87 /	3.50/±/0.38	kommon 2/
	-4.68 ± 0.23	99.1 & 28.7	$+3.06\pm0.02$	
	1.87 ± 0.18	(2.30 ± 0.23)	1.94 ± 0.51	
≠Xø&%x/	8116	0.290	0.086	
$\hat{E}_p [\text{PeV}] =$	4.49 ± 0.51	3.81 ± 0.43	3.68 ± 0.39	common $\Delta \gamma$
$\Delta \gamma =$	2.10 ± 0.24	5.70 ± 1.23	0.44 ± 0.02	
$\epsilon_c =$	1.90 ± 0.19	2.32 ± 0.22	1.84 ± 0.45	
$\chi^2/d.o.f. =$	0.113	0.292	0.088	

_

Rigidity Constant Mass

astro-ph/0210453

CASKADE Composition Measurement

10

10 ³

b) $\Delta \gamma$

3-9 10-24

25-27

28-92

CR Composition and Muon Energy

Prompt Muons: Out of Reach!

E² dN/dE [GeV cm⁻² s⁻¹ sr⁻¹] Bartol Atms, v Honda Atms, v CharmD Model CharmD 2000-3 AMANDA-II limit CharmC Model CharmC 2000-3 AMANDA-II limit Naumov RQPM Model Naumov RQPM 2000-3 AMANDA-II limit Martin GBW Model Martin GBW 2000-3 AMANDA-II limit **Conventional** 10⁻⁷ **Muons** (near horizon) 10-8 10⁻⁹ 5 3 Δ 6 7 8 log₁₀ [E_v (GeV)]

UCLA/02/TEP/23, CWRU-P13-02, NSF-ITP-02-97

Measuring the prompt atmospheric neutrino flux with down-going muons in neutrino telescopes

FIG. 4. Total neutrino-over-muon ratio as a function of lepton energy. Vertical marks denote the crossing energy from conventional to prompt muons.

Calorimetric Response for Bundles

Slant Depth

Slant Depth and Bundle Multiplicity

$\Delta \theta_{zen}$

L3 Cuts

- 0: $\theta_{zen,IIh}$ >70° && muonfilter
- 1: N_{chan}>15
- 2: $\sigma_{parab} < 6^{\circ}$
- 3: IIh_{red}(2.5)<8
- 4: $\Psi_{\text{If,IIh}}$ <0.2rad
- 5: 100m<L_{dir}(C)<800m
- 6: 0.15<v_{if}<0.4 &&

abs(smooth)<0.6

wiki.icecube.wisc.edu/index.php/Muon_Energy_Spectrum/Level_3

Final Cut Level

wiki.icecube.wisc.edu/index.php/Muon_Energy_Spectrum/Final_Cuts

Slant Depth

Zenith Angle

Passing Rate

Total Charge

"Reference Cut": From All-Sky Analysis

True Zenith

True Zenith – Reconstructed Zenith

Patrick Berghaus

Muon Energy Spectrum Patrick Berghaus

Data/MC: Slant Depth

Angular resolution too low to go further, better in the future!

Pulses

"Elbert-Formula"

$$\bar{N}_{\mu} \propto \frac{A}{E_{\mu} \cos \theta} \left(\frac{E_0}{A E_{\mu}}\right)^{\alpha}$$
$$\frac{\bar{N}_{\mu}^1}{\bar{N}_{\mu}^2} = \left(\frac{A_1}{A_2}\right)^{1-\alpha}$$

2.5-3 times more muons for Fe than p

ratio to dCORSIKA

Total Charge

"Elbert-Formula"

$$\bar{N}_{\mu} \propto \frac{A}{E_{\mu} \cos \theta} \left(\frac{E_0}{A E_{\mu}}\right)^{\alpha}$$
$$\bar{N}_{\mu}^{1} = (A_{\mu})^{1-\alpha}$$

$$\frac{N_{\mu}^{2}}{\bar{N}_{\mu}^{2}} = \left(\frac{A_{1}}{A_{2}}\right)^{2}$$

2.5-3 times more muons for Fe than p

Muon Energy Spectrum Patrick Berghaus

Muon Energy Spectrum Patrick Berghaus

Muon Energy Spectrum Patrick Berghaus

Patrick Berghaus

Data/MC: $\tilde{e}(N_{pulse})$ and $\tilde{e}(Q_{tot})$

Patrick Berghaus

Average Charge per Pulse

Invariant!

Muon Energy Spectrum Patrick Berghaus

"Balloon"/Droop Correction

Additional Cut: Average Charge per Pulse < 3

Muon Energy Spectrum Patrick Berghaus

Data/MC: $\tilde{e}(N_{pulse})$ and $\tilde{e}(Q_{tot})$ ----- Data (October) - Data (October) events per bin [Hz] events per bin [Hz] Constant Composition Constant Composition 0^{-2} 10^{-2} Mass Dependent $\Delta \gamma$ Mass Dependent Δγ 10^{-3} 10^{-3} Neutrinos - Neutrinos 10^{-10} 10 ____ 10-5 10-2 10-6 10-6 10^{-7} 10 10^{-8} 10^{-8} $\widetilde{e}_{surf}(n_{nulses})$ 5.5 3.5 4.5 5 3.5 4.5 5 4 $\tilde{e}_{mrf}(q_{...})$ Data/MC Data/MC 1.4 1.4 1.2 1.2 0.8 0.8 - Constant Composition Constant Composition Mass Dependent Mass Dependent 0.6 0.6 Rigidity Dependent 0.4 0.4 0.2 0.2 03 03 5.5 ẽ_{surf}(n___) 3.5 4.5 5 3.5 4.5 5 5.5 4 4 $\tilde{e}_{_{ourf}}(q_{...})$

Muon Energy Spectrum Patrick Berghaus

Data/MC: N_{pulse} and Q_{tot}

Muon Energy Spectrum Patrick Berghaus

Final Distribution (1 month IC22)

Ratio Data/MC (1 month IC22)

Muon Spectrum

Muon Spectrum

Conclusion

Atmospheric muons are indispensable for investigation of detector systematics

Diffuse analysis is very difficult without understanding HE muons

IceCube has huge potential for CR physics

More information:

wiki.icecube.wisc.edu/index.php/Muon_Energy_Spectrum

Backup Slides

cog_z <-100m: N_{pulse} and Q_{tot}

Muon Energy Spectrum Patrick Berghaus

Muon Energy Spectrum Patrick Berghaus

Patrick Berghaus

Patrick Berghaus

Patrick Berghaus