Global experimental program for sterile neutrino searches

Accelerator-based searches

Joshua Spitz, University of Michigan KPS 10/27/2017

The 3 neutrino oscillation picture

Atmospheric neutrinos Solar neutrinos Accelerator neutrinos Reactor neutrinos

2

- Almost all of our observed oscillation results fit nicely within the three neutrino picture (two mass splittings and three mixing angles).
- Neutrinos from different sources are oscillating according to the same rulebook!

Neutrino oscillation is a big deal

The time evolution of the neutrino state implies that is has mass!

A new neutrino?

The three neutrino oscillation picture works extraordinarily well.

But, there are some anomalies that don't fit.

The Liquid Scintillator Neutrino Detector anomaly Antineutrinos from an accelerator seem to appear!

• LSND observed $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$ at 3.8 σ significance with a characteristic oscillation frequency of $\Delta m^{2} \sim 1 \text{ eV}^{2}$. The Liquid Scintillator Neutrino Detector anomaly Antineutrinos from an accelerator seem to appear!

- LSND observed $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$ at 3.8 σ significance with a characteristic oscillation frequency of $\Delta m^{2} \sim 1 \text{ eV}^{2}$.
- That's odd. There are two characteristic oscillation frequencies in the three neutrino picture and they are precisely measured.

 $\Delta m_{\text{LSND}}^2 \gtrsim 0.2 \,\text{eV}^2 \quad (\gg \Delta m_{\text{ATM}}^2 \gg \Delta m_{\text{SOL}}^2)$

The MiniBooNE anomalies

$$u_{\mu} \rightarrow \nu_{e}$$

Neutrinos and antineutrinos from an accelerator seem to appear!

$$\overline{\nu}_{\mu} \to \overline{\nu}_{e}$$

A new neutrino?

The oscillation modes associated with reactor neutrinos

A new neutrino?

Possible first shape indications from reactor neutrino experiments?

Basically, the anomalies seem to indicate that there may be a new characteristic oscillation frequency mode (indicative of a new neutrino state).

Experiment name	eriment name Type		Significance	
LSND	Low energy accelerator	muon to electron (antineutrino)	3.8σ	
MiniBooNE	High(er) energy accelerator	muon to electron (antineutrino)	2.8σ	
MiniBooNE	High(er) energy accelerator	muon to electron (neutrino)	3.4σ	
Reactors	Beta decay (antineutrino)		1.4-3.0σ (varies)	
GALLEX/SAGE	ALLEX/SAGE (electron capture)		2.8σ	

If it exists, what is this new neutrino?

We know the Z boson decays into three neutrinos.

A new, fourth neutrino would therefore have to be "sterile". That is, it doesn't feel Standard Model interactions.

Where does it fit?

- The observation of neutrino mass implies that there can be sterile, righthanded neutrinos. So, this is not completely unexpected.
- A light sterile neutrino would have profound effects on:
 - Radiation density in the early universe.
 - Supernova evolution.
 - Active neutrino oscillations and particle physics in general.

Present status

A number of experiments hint at a new neutrino mass state.

A number of other experiments don't seem to see anything. (including new muon disappearance limits from IceCube and MINOS)

A definitive probe of this new neutrino is necessary.

A tour of future acceleratorbased probes

- JSNS²
- SBN at Fermilab
- IsoDAR
- KPIPE
- NuPRISM

Pion and muon decay-at-rest

Pion and muon decay-at-rest

Why are these neutrinos special?

- Known energy shape!
- IBD xsec (for nuebar app) is well known.
- IBD events (for nuebar app) are easy to reco/ID.
- Background is low.

The JSNS² strategy

Primary goal: Test LSND in a cost effective and timely way, w/ an existing beam/building.

- LSND is THE experiment that drives the high-Δm² anomalies. J-PARC's MLF and ORNL's SNS are the best (only) places to *directly* study the LSND anomaly.
- Other physics:
 - Collect a large sample (~50k) of monoenergetic 236 MeV muon neutrinos from KDAR; nuclear probe and xsec measurements.
 - Highly relevant for current/future long baseline programs and all experiments that rely on a model of the neutrino-nucleus interaction. J-PARC MLF is the best place in the world to do this measurement.
 - Measure supernova neutrino xsec's.

• Perform R&D for future liquid scintillator detectors.

The JSNS² strategy

Primary goal: Test LSND in a cost effective and timely way, w/ an existing beam/building.

• LSND is THE experiment that drives the high- Δm^2 anomalies. J-PARC's MLF and ORNL's

JSNS² status

Obtained Stage 1 (of 2) approval from PAC in 2015;

Secured funding for first 17 ton detector module in 2016;

Submitted TDR to J-PARC PAC (seeking Stage 2 approval) in 2017;

Construction has begun! JSNS² expects first data in late-2018.

Measure supernova neutrino xsec's.

•

Perform R&D for future liquid scintillator detectors.

JSNS² collaboration

Technical Design Report (TDR): Searching for a Sterile Neutrino at J-PARC MLF (E56, $JSNS^2$)

S. Ajimura¹, M. K. Cheoun², J. H. Choi³, H. Furuta⁴, M. Harada⁵, S. Hasegawa⁵, Y. Hino⁴, T. Hiraiwa¹, E. Iwai⁶, S. Iwata⁷, J. S. Jang⁸, H. I. Jang⁹, K. K. Joo¹⁰, J. Jordan⁶, S. K. Kang¹¹, T. Kawasaki⁷, Y. Kasugai⁵, E. J. Kim¹², J. Y. Kim¹⁰, S. B. Kim¹³, W. Kim¹⁴, K. Kuwata⁴, E. Kwon¹³, I. T. Lim¹⁰, T. Maruyama^{*15}, T. Matsubara⁴, S. Meigo⁵, S. Monjushiro¹⁵, D. H. Moon¹⁰, T. Nakano¹, M. Niiyama¹⁶, K. Nishikawa¹⁵, M. Nomachi¹, M. Y. Pac³, J. S. Park¹⁵, H. Ray¹⁷, C. Rott¹⁸, K. Sakai⁵, S. Sakamoto⁵, H. Seo¹³, S. H. Seo¹³, A. Shibata⁷, T. Shima¹, J. Spitz⁶, I. Stancu¹⁹, F. Suekane⁴, Y. Sugaya¹, K. Suzuya⁵, M. Taira¹⁵, W. Toki²⁰, T. Torizawa⁷, M. Yeh²¹, and I. Yu¹⁸

¹Research Center for Nuclear Physics, Osaka University, Osaka, JAPAN ²Department of Physics, Soongsil University, Seoul 06978, KOREA ³Department of Radiology, Dongshin University, Chonnam 58245, KOREA ⁴Research Center for Neutrino Science, Tohoku University, Sendai, Miyagi, JAPAN ⁵J-PARC Center, JAEA, Tokai, Ibaraki JAPAN ⁶University of Michigan, Ann Arbor, MI, 48109, USA ⁷Department of Physics, Kitasato University, Sagamihara 252-0373, Kanagawa, JAPAN ⁸Gwanqju Institute of Science and Technology, Gwanqju, 61005, KOREA ⁹Department of Fire Safety, Seoyeong University, Gwangju 61268, KOREA ¹⁰Department of Physics, Chonnam National University, Gwangju, 61186, KOREA ¹¹School of Liberal Arts, Seoul National University of Science and Technology, Seoul, 139-743, KOREA ¹²Division of Science Education, Physics major, Chonbuk National University, Jeonju, 54896, KOREA ¹³Department of Physics and Astronomy, Seoul National University, Seoul 08826, KOREA ¹⁴Department of Physics, Kyungpook National University, Daegu 41566, KOREA ¹⁵High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki, JAPAN ¹⁶Department of Physics, Kyoto University, Kyoto, JAPAN ¹⁷University of Florida, Gainesville, FL, 32611, USA ¹⁸Department of Physics, Sungkyunkwan University, Gyeong Gi-do, KOREA ¹⁹University of Alabama, Tuscaloosa, AL, 35487, USA ²⁰Colorado State University, Tuscaloosa, AL, 35487, USA ²¹Brookhaven National Laboratory, Upton, NY, 11973-5000, USA

JSNS2 collab. photo, 5/2017 @ KEK

21 institutions, 53 collaborators, Japan/US/Korea

JSNS² beam timing

JSNS² detection principle

- Target volume is Gd-loaded liquid scintillator
 - Phase 0: 17 tons w/ 193 8" PMTs
 - Future phase: multi-detector (34 tons)
- Energy resolution ~15%/sqrt[energy in MeV]

23

	Time from beam	Energy
Prompt signal	1 <t<sub>p<10µs</t<sub>	20 <e<60mev< td=""></e<60mev<>
Delayed signal	T _p <t<sub>d<100µs</t<sub>	7 <e<12mev< td=""></e<12mev<>

JSNS² is highly sensitive to the smoking gun signature of oscillations: a wiggle in L/E

(dominant background: intrinsic nuebar)

(3 years of running)

JSNS² Phase-0 (*now under construction*) expected sensitivity

Pion decay-in-flight

SBN Program at Fermilab

3 LArTPCs in the Booster Neutrino Beamline

SBND (first data in 2019) MicroBooNE (first data in late-2015) ICARUS (first data in 2018)

BN Program at Fermilab

3 LArTPCs in the Booster Neutrino Beamline

induction plane + collection plane + time = 3D image of event

ArgoNeuT experiment at Fermilab

LArTPC technology

ArgoNeuT; Phys. Rev. D 95 072005 (2017)

reach of the SBN Program SBN ₽rogramaterFi⊕rmilab

reach of the SBN Program SBN Program at Fight Milab

$\begin{array}{l} IsoDAR \\ \mbox{(doubling as the injector cyclotron design for} \\ \mbox{the DAE} \delta ALUS \ \delta_{CP} \ \mbox{experiment} \end{array}$

IsoDAR

$$p + {}^{9}\text{Be} \rightarrow {}^{8}\text{Li} + 2p$$

 $p + {}^{9}\text{Be} \rightarrow {}^{9}\text{B} + n$
 $n + {}^{7}\text{Li} \rightarrow {}^{8}\text{Li} + \gamma$

IsoDAR

IsoDAR

(3+1) Model with $\Delta m^2 = 1.0 \text{ eV}^2$ and $\sin^2 2\theta = 0.1$

 $\overline{\nu}_e p \to e^+ n$

820,000 IBD events in 5 years at KamLAND (16 m baseline to center of detector)

How many steriles?

Observed/Predicted event ratio vs L/E, including energy and position smearing

IsoDAR's high statistics and good L/E resolution provide the potential for distinguishing (3+1) and (3+2) oscillation models

How many steriles?

Observed/Predicted event ratio vs L/E, including energy and position smearing

IsoDAR's high statistics and good L/E resolution provide the potential for distinguishing (3+1) and (3+2) oscillation models

What about muon disappearance?

Experiment name	Туре	Oscillation channel	Significance	
LSND	Low energy accelerator	muon to electron (antineutrino)	3.8σ	
MiniBooNE	High(er) energy accelerator	muon to electron (antineutrino)	2.8σ	
MiniBooNE	High(er) energy accelerator	muon to electron (neutrino)	3.4σ	
Reactors	Beta decay	electron disappearance (antineutrino)	1.4-3.0σ (varies)	
GALLEX/SAGE	Source (electron capture)	electron disappearance (neutrino)	2.8σ	

If sterile neutrinos exist, there must be some amount of v_{μ} disappearance!

What about muon disappearance?

	Experiment name	Туре	Oscillation channel	Significance
٨٠٠٠	olorator based evr	muon to electron (antineutrino)	3.8σ	
(e.g. MicroBooNE, SBN program at Fermilab, JSNS ² ,)			muon to electron (antineutrino) 2.8σ	
			muon to electron (neutrino)	3.4σ
Remeasuring reactor neut up close, high intensity ne sources up close (e.g. Pros Chandler, NEOS, DANS SoLid, SOX, IsoDAR,		neutrinos / neutrino	electron disappearance (antineutrino)	1.4-3.0σ (varies)
		Prospect, ANSS, R,)	electron disappearance (neutrino)	2.8σ

If sterile neutrinos exist, there must be some amount of v_{μ} disappearance!

Kaon decay-at-rest

KPIPE

Axani, Collin, Conrad, Shaevitz, Spitz, Wongjirad, Phys. Rev. D 92 092010 (2015)

The idea:

Use a very long liquid scintillator detector to look for v_{μ} disappearance (in L) using 236 MeV KDAR v_{μ} CC events

@ J-PARC MLF

Long LS detector surrounded by SiPMs

Axani, Collin, Conrad, Shaevitz, Spitz, Wongjirad, Phys. Rev. D 92 092010 (2015)

(1) pure, mono-energetic flux of muon neutrinos (2) long detector to measure the oscillation wave

Since you know the energy of the neutrino, you don't need to worry about energy resolution. KPIPE calls for 0.4% photocoverage. Estimated cost of experiment: \$4.5M

KPIPE cost document: <u>http://hdl.handle.net/1721.1/98388</u>

KPIPE; what would a signal look like?

KPIPE sensitivity

- 6 years of running
- Extends limit at high-Δm² by an order of magnitude.
- Highly complementary to SBN program.
 - 6 years of MicroBooNE
 - 3 years of T600 and SBND.

KPIPE sensitivity

• 6 years of running

KPIPE status

KPIPE is working towards a conceptual design.

Son program.

- 6 years of MicroBooNE
- 3 years of T600 and SBND.

	JSNS ²	SBN	IsoDAR	KPIPE	NuPRISM
Detector technology	Liquid scintillator	3 LArTPCs	Liquid scintillator (KamLAND)	Liquid scintillator	Water
Neutrino source	pi/mu/K-DAR	pi-DIF	⁸ Li DAR	K-DAR	pi-DIF
Primary osc. channel	$\overline{\nu}_{\mu} ightarrow \overline{\nu}_{e}$	$ u_{\mu} \rightarrow \nu_{e}$	$\overline{\nu}_e \rightarrow \overline{\nu}_e$	$ u_{\mu} ightarrow u_{\mu}$	$ u_{\mu} \rightarrow \nu_{e}$
Energy and baseline	0-53 MeV; 24 m	~700 MeV; 110, 470, 600 m	0-16 MeV; 16 m	236 MeV; 32-152 m	500-1500 MeV; ~1-2 km
Fiducial mass	17 tons in Phase 0	112, 87, 476 tons	KamLAND 897 tons	684 tons	~1000 tons
Additional physics	supernova nu KDAR	xsec, R&D	weak mixing angle	xsec	flux/xsec determination is primary goal
First data	late-2018	2019,2015, 2018	~2021	?	?

Conclusions

 The discovery of a light sterile neutrino would be a monumental result for particle physics and cosmology.

- The light sterile neutrino issue needs to be resolved.
- A truly definitive resolution is difficult to achieve and will likely require multiple detectors/experiments.
- We can look forward to multiple experimental searches for a new neutrino in the next ~5 years!

Backup

LSND and JSNS² comparison

	LSND	JSNS ²	Advantage of JSNS ² ?
Detector mass	167 ton (liquid scintillator)	17 ton in Phase-0 (liquid scintillator)	_
Baseline	30 m	24 m	_
Beam kinetic energy	0.8 GeV	3 GeV	Higher energy enables KDAR measurements
Beam power	0.056 MW	1.0 MW (eventually)	Higher
Beam pulse	600 µs,120Hz	80 ns (x2), 25 Hz	A factor of 300 less steady state background for IBD
Capture nucleus	H (2.2 MeV)	Gd (~8 MeV)	Higher S:N and a factor of 6 shorter neutron capture time

Theoretical annoyance

- Where do sterile neutrinos come in?
 - Warm dark matter, probe of hidden sector, impacts supernova explosion, may aid in synthesis of heavy elements and explaining pulsar kicks, cosmology. They certainly affect oscillation measurements in the 3 neutrino picture.
- Why are they light? You expect them to be heavy.
 - The need to describe oscillations of the 3 active neutrinos means that at least 3 eigenvalues in the 6x6 mass matrix have to be less that 1 eV. But, there can be 0-3 eigenvalues corresponding to light sterile neutrinos.
- Can we say anything about their properties?
 - We can measure their mass and mixing parameters with the active neutrinos.
- Steriles may be part of a hidden sector. Is there evidence for a hidden sector?
 - A hidden sector is a collection of unobserved fields and their associated particles that does not interact with the SM. The sector may be relevant for dark matter and supersymmetry. We don't know what it is...but we're looking!

Global, non-reactor nuebar searches from Kopp paper

Experiment	Ref.	# Data	Comments	New?	
Solar neutrino expe	riments				
Chlorine	[49]	1	rate	_	
GALLEX/GNO	[50]	2	rates	—	
SAGE	[51]	1	rate	—	
Super-K phases 1–3	[52 - 54]	119	energy and zenith spectra	_	
Super-K phase 4	[55]	46	energy and day/night spectrum	\checkmark	
SNO phases I–III	[56-58]	75	energy and day/night spectra	—	
Borexino phase I	[59, 60]	39	low-energy and high-energy spectra	—	
Borexino phase II	[61]	42	low-energy spectrum	\checkmark	
Radioactive source	experim	ents (gal	lium)		
GALLEX	[50, 62]	2		—	
SAGE	[63, 64]	2		—	
ν_e scattering on C-12 ($\nu_e + {}^{12}\text{C} \rightarrow e^- + {}^{12}\text{N}$)					
KARMEN	[65-67]	26		—	
LSND	[67, 68]	6		—	

Table 4: Experimental data which we combine with the reactor data from table 2 in our global $\nu_e/\bar{\nu}_e$ disappearance analysis. In the last column we indicate updates with respect to ref. [16]. The total number of data points of non-reactor data is 361.

Global, reactor searches from Kopp paper

Experiment	Ref.	# Data	Comments	New?
Bugey-4	[37]	1	rate	_
ILL	[38]	1	rate	_
Gösgen	[39]	3	rates	_
Krasnoyarsk	[34, 40, 41]	4	rates	_
Rovno88	[42]	4	rates	_
Rovno91	[43]	1	rate	_
SRP	[44]	2	rates	_
RENO	[35, 36]	2	rate at near detector $+$ near-far rate ratio	_
Double Chooz	[30]	1	rate at near detector	_
Daya Bay flux	[29]	8	individual fluxes for each isotope (EH1, EH2)	\checkmark
Bugey-3	[45]	35	spectra at 3 dist. with free bin-by-bin norm.	_
NEOS	[21, 26]	60	spectral ratio of NEOS and DayaBay	\checkmark
DANSS	[28]	30	spectral ratio at two distances	\checkmark
Daya Bay spect.	[46]	70	spectral ratios $EH3/EH1$ and $EH2/EH1$	\checkmark
KamLAND	[47]	17	spectrum at very long distance	_