## JSNS<sup>2</sup> Detector Construction

Jungsic Park

# High Energy Accelerator Research Organization (KEK) with JSNS<sup>2</sup> Collaboration

## 27 Oct, 2017 KPS Fall 2017, HICO, Korea

KPS Fall 2017

## Contents

- Concept of the JSNS<sup>2</sup> Detector
   Target / Catcher / Veto
  - Optical separator
- PMT Installation scheme
- Production of Gd-LS / LS
   DayaBay / RENO
- Filling / extracting scheme
- Calibration / Monitoring
- Summary

## Concept of the JSNS<sup>2</sup> Detector



## Concept of JSNS<sup>2</sup> Detector

|                        | Radius[m] | Height[m] | Filled with | Volume [m <sup>3</sup> ] | Material           |
|------------------------|-----------|-----------|-------------|--------------------------|--------------------|
| Target                 | 1.6       | 2.5       | Gd-LS       | 19.3                     | Acrylic            |
| Catcher                | 1.85      | 3.0       | LS          | 35                       | **                 |
| Veto                   | 2.3       | 3.5       | LS          | in total                 | Stainless<br>steel |
| Anti oil-<br>leak tank | 3.3       | 2.7       | air         | 84                       | Stainless<br>steel |

Target + Catcher 193, 8 inch PMTs
(Barrel : 24 × 5 , Top / Bottom : 36 with 3 rings)
Veto 48, 5 inch PMTs

\*\*

→ LS can passing through between
"Catcher" and "Veto" region



## Status of Preparation of Detector vessels

Acrylic vessel

- Under preparation of detailed design / bidding documents
- Bidding will be started around next Apr

Stainless steel

- Finished the bidding procedure
- Morimatsu win the bid (http://www.morimatsu.jp)



## Construction schedule of Veto vessel + Anti-oil leak Tank

|                      | Oct-17 | Nov-17 | Dec-17            | Jan-18 | Feb-18   | Mar-18 |
|----------------------|--------|--------|-------------------|--------|----------|--------|
| material arrangement |        |        | →                 |        |          |        |
| parts manufacturing  |        |        |                   |        |          |        |
| assemble at J-PARC   |        |        |                   |        |          |        |
| base                 |        |        | $\longrightarrow$ |        |          |        |
| side wall            |        |        |                   |        |          |        |
| Tank                 |        |        |                   |        |          |        |
| bottom               |        |        |                   |        |          |        |
| side wall            |        |        |                   |        |          |        |
| top                  |        |        |                   |        | <b>→</b> |        |
| small parts          |        |        |                   |        |          |        |
| welding              |        |        |                   |        |          |        |
| finishing            |        |        |                   |        | <b></b>  |        |
| transport            |        |        |                   |        |          |        |
|                      |        |        |                   |        |          |        |

Detailed schedule was made by company.

→ Construction will be finished until Mar, 2018.

## **Optical separator with PMT Support Structures**

#### Barrel

- 5 PMTs in one column
- Frame is made by L-angle



3mm thickness

- Top / Bottom
  - Three ring shape
    - (6, 12, 18 PMTs)
  - Frame is made by L-angle



## **PMT** positions

#### - Drew with MC

| (12.0 ¥070);  | 1            | <u>k ø</u>    |          |    | eller    |            | A Zond               | k.S     |                      | 6780 2.71 J |
|---------------|--------------|---------------|----------|----|----------|------------|----------------------|---------|----------------------|-------------|
| rá <b>s</b> e | 8            |               | ÷        | ۲  |          | ۲          |                      |         |                      | Ð           |
| de.           |              |               | <u>.</u> |    |          | ۲          | 1000<br>1000<br>1000 |         | Single Section       | <b>(1</b> ) |
|               | 1979<br>1979 |               | <b>8</b> | ۲  |          | ۲          |                      |         |                      | <b>(</b> )  |
| r(ĝe          |              |               |          | ۲  |          | ۲          |                      |         | 1999<br>1999<br>1999 | <u>ور</u>   |
| r (ta)        |              |               |          | () |          |            |                      |         |                      | <b>(1</b> ) |
| 1 1910 80203  | 1            | <u>e</u> r 80 | 100° @   | 2  | e la efe | an a Taudi | s, ktor i            | 94 ° 25 |                      | 9249) 2020  |



Side view

Top view

## Assemble Covers to PMTs

#### Three different layers to cover individual PMTs

- Black PET : Avoid flashing from PMT
- FINEMET : Shielding of magnetic field
- **RuireMirror** : Increase reflectivity to increase light collection efficiency of Veto

Inner to Outer



## Attach PMT to L-angle



L-angle

- U-shape supporter
- Support ring

#### **Front View**



#### **Rear View**



## Installation test of Barrel / Bottom pieces



## Monte Carlo studies with poster presentation

- Study of PMT configuration in the JSNS<sup>2</sup> experiment. by HyoungKu Jeon, P2-pa.124

- Study of Effect of PMT Tilt on Charge Collection in the JSNS<sup>2</sup> Detector by Sanghoon Jeon, P2-pa.128



## Production of Gd-LS / LS

Produce at RENO site after refurbishing the production facility.







## Production of LS

#### Production scheme at RENO site



## Production of Gd-LS

#### Production scheme at RENO site



Or, there is possibility of Donation from DayaBay.

- Got positive response from Spokes person of Daya Bay at Jul, 2017.
- Letter of donation is under discussion.

## Filling and extracting of Gd-LS / LS

- If emergency is happen at mercury target, detector is required to be moved within one week.
   → Filling or extracting should be finished within few days.
- Flow path of Gd-LS should be not any metallic material.
   → MEGA 960 from TREBOR company. (DC also used it) Flow path is made by PFA / PTFE Max 95 LPM (5.7 ton / hour), 5.5 m suction lift.



- Liquid height of target, gamma-catcher, veto should be similar.
  - → Need to install flow meter, and distance measurement sensor.
- Filter will be used to prevent dust.



## Filling stage

 We assumed that even with optically separation, liquid can go through between gamma-catcher and veto. (stage 1,2 and stage 4, 5 can be combined)



## Flow rate

Flow rate is roughly proportional to area.

- Volume of PMT, optically separation, installation part (~ 4000 L) is considered evenly.
- Max flow rate is assumed to 30 LPM in reality (30% of maximum capacity).

|         | Target<br>[LPM] | Catcher +<br>Veto<br>[LPM] | Height<br>[cm] | Volume<br>Tatget<br>[L] | Volume<br>C + V<br>[L] | Time<br>[h] |
|---------|-----------------|----------------------------|----------------|-------------------------|------------------------|-------------|
| stage 6 | 0.1             | 1                          | 12             | 4 + tank                | tank'                  | few         |
| stage 5 | 0.1             | 30                         | 25             | 8                       | 4000                   | 2.2         |
| stage 4 | 0.1             | 30                         | 25             | 8                       | 4000                   | 2.2         |
| stage 3 | 30              | 29.5                       | 250            | 19350                   | 19000                  | 10.8        |
| stage 2 | 0               | 30                         | 25             | 0                       | 4000                   | 2.2         |
| stage 1 | 0               | 30                         | 25             | 0                       | 4000                   | 2.2         |
| Total   |                 |                            |                | 19370                   | 35000                  | 19.6        |

Detector Information.

Target : 160 cm (Outer radius) , 250 cm (Inner height), chimney (10 cm radius), 30 mm thickness Catcher : 25 cm , 25 cm (top/bottom , side)

Veto : 25 cm, 45 cm thickness (top/bottom, side)



#### **Overview of Calibration**

Energy conversion function : Number of photoelectrons (PMTs) -> MeV

- Need to consider non-linearity due to quenching
- almost constant value at higher energy
- Prompt signal coms from "positron"

One of candidate 
$$\rightarrow p.e. / MeV = P1 - \frac{P2}{1 - \exp(-p3^*E - P4)}$$

Possible Information from

- Radioactive source : <sup>137</sup>Cs, <sup>68</sup>Ge, <sup>60</sup>Co, <sup>252</sup>Cf, ...
- Neutron captured from data : n-H, n-C, n-Gd, ...
- Continuous spectrum : <sup>12</sup>B, Michel electon

Possible correction from Monte-Carlo simulation

- Difference between "gamma" and "positron"
- Difference between "single gamma" and "several gammas"
- Difference between "fixed vertex position " and "uniformly distributed at target"

Check of stability according to "time" and "spatial distribution".

#### Study for Calibration (Low Energy)

MC : Positron (Prompt signal) at center (10,000 p.e. / MeV)



#### Study for Calibration (High Energy)



#### Monitoring sensors



#### Summary

- The JSNS<sup>2</sup> experiment is preparing to perform sterile neutrino search at J-PARC.
   Direct test of LSND
- Stainless steel vessel will be constructed until Mar, 2018.
- PMT installation scheme is under development with mock-up test.
- LS will be produced from RENO site after refurbishment.
   (Gd-LS also can be produced from RENO or possible donation from DayaBay)
- Many efforts is on-going for filling / extracting / calibration.
- Aim to start experiment at JFY 2018.

backup slide

## Magnetic field strength measurement (For Decision of FINEMET)

Usual magnetic filed strength → around 1000 mG

- Measurement was performed with magnetometer.
- Fluxmaster, up to 2000mG.
- Reproducibility was measured ~10 mG at each direction.



Magnetic field strength → 300 to 500 mG without FINEMET

| 24 m<br>1.3m height | X (mG) | Y (mG) | Z (mG) | Total (mG) |
|---------------------|--------|--------|--------|------------|
| 1                   | - 309  | - 3    | - 233  | 387        |
| 2                   | - 317  | - 20   | - 186  | 368        |
| 3                   | - 292  | - 22   | - 159  | 333        |
| 4                   | - 336  | 18     | - 140  | 364        |
| 5                   | - 378  | - 5    | - 92   | 389        |

| 24 m<br>Floor | X (mG) | Y (mG) | Z (mG) | Total (mG) |
|---------------|--------|--------|--------|------------|
| 1             | - 227  | 15     | - 233  | 326        |
| 2             | - 291  | - 97   | - 82   | 318        |
| 3             | - 71   | - 36   | - 465  | 472        |
| 4             | - 353  | - 24   | 225    | 419        |
| 5             | - 478  | 10     | - 40   | 480        |

## Effect of FINEMET : prevent effect from magnetic field



Measured magnetic filed at on-site :  $30 - 50 \mu$ T → Prepared 2 layers of FINEMET

Measured magnetic field before / after cover with FINEMET. - One component of direction

| Before | After | Before | After |
|--------|-------|--------|-------|
| 387    | 111   | -360   | -170  |
| -486   | -49   | 471    | 284   |



cf) We put outer layer to inside only for demonstration purpose.

## Effect of FINEMET to PMT gain

- Data taking with FADC
- 2 layers of FINEMET
- Used Blue LED with NIM module to match single photon electron



#### Effect of FINEMET to PMT gain



Jungsic Park, KEK

JPS Fall 2017

#### How many michel electron will be happened inside of detector

Generate vertex, momentum of muon after considering cos<sup>2</sup>θ dependence
 2M event



#### Rough estimation of rate of michel electron at detector.



Rough estimation of rate of michel electron at detector.



Muon flux at sea level

Rough estimation of rate of michel electron at detector.

Efficiency of michel electron with muon flux

→ Area of "muon flux \* michel efficiency" / Area of "muon flux"
 → 5.1 %

```
Assumed muon rate : 1 Hz / 10*10 cm<sup>2</sup>
```

Area of detector surface : 160cm \* 160cm \* 3.14 (top) + 2 \* 3.14 \* 160 cm \* 250 cm (side) = 331584 cm<sup>2</sup> → 3.3 KHz

Michel electron rate : 3.3 KHz \* 5.1 % = 172 Hz (order of 100 Hz)

#### ➔ Enough statistics to get while data taking

#### **Cross-check by Furuta-san**

# Michel e rate (>20MeV Edep in ID) in RZ map

