

Dark Matter Search with MeV Neutrinos from the Sun

Jason Kumar (University of Hawaii) and Carsten Rott (Sungkyunkwan University) May 17, 2018 BSM Physics parallel session DUNE Collaboration meeting

Outline

- Executive Summary / Motivation
- Dark Matter capture in the Sun and current indirect searches
- Signal from low-energy (MeV) neutrinos from Dark Matter annihilations in the Sun
- Sensitivity
 - Estimate based on detector volume
 - Estimate using directionality
- Conclusions

- New Sensitivity to Solar WIMP Annihilation using Low-Energy Neutrinos
 C. Rott, J. Siegal-Gaskins, J. F. Beacom Phys.Rev. D88 (2013) 055005 / arXiv:1208.0827
- A novel way of constraining WIMPs annihilations in the Sun: MeV neutrinos N. Bernal, J. Martín-Albo, S. Palomares-Ruiz JCAP 1308 (2013) 011 / arXiv:1208.0834
- Dark Matter Searches for Monoenergetic Neutrinos Arising from Stopped Meson Decay in the Sun C. Rott, S. In, J. Kumar, D. Yaylali JCAP 1511 (2015) no.11, 039 / arXiv:1510.00170
- Directional Searches at DUNE for Sub-GeV Monoenergetic Neutrinos Arising from Dark Matter Annihilation in the Sun C. Rott, S. In, J. Kumar, D. Yaylali JCAP 1701 (2017) no.01, 016 / arXiv:1609.04876
- New Dark Matter Search Strategies at DUNE, C. Rott, S. In, J. Kumar, D. Yavlali, TAUP2017 Proceedings contribution / arXiv:1710.03822

Executive Summary I

- DUNE can have important scientific impact in the search for dark matter annihilation in the Sun
 - Dark matter scatters off solar nuclei, collects in core of the Sun, and annihilation produces neutrinos detectable on Earth
 - DUNE's excellent energy resolution, angular resolution, and particle identification can provide unique capabilities to search for this signal
- Scientific target → Ø(GeV) dark matter with spin-dependent (SD) scattering off nuclei, annihilating to light quarks
 - Most interesting signal: Monoenergetic O(10-100) MeV neutrinos produced by π^+ and K⁺ decay at rest
 - DUNE can do well in reconstructing these event
 - for $K^+ \rightarrow \nu_{\mu} \mu^+$, 236 MeV neutrinos will typically eject an argon proton in the forward direction, giving directionality from hadronic recoil
 - Directionality from hadronic recoil is a unique capability for DUNE

Executive Summary II

- Broader motivation
 - Direct detection (foremost PICO) and WC detectors can also cover much of this parameter space, but DUNE complements them
 - Direct detection is losing sensitivity at low recoil energy
 - Avoids some astrophysical uncertainties which face direct detection
 - Directionality from DUNE provides on/off-source background estimation
- Scenarios of interest
 - Can determine if DM annihilates to light quarks, even at very small cross section → unique capability
 - If a signal for 𝒪(GeV) DM is seen in any experiment, it could be asymmetric dark matter → DUNE can rule this out
 - If there is a local DM underdensity, DUNE can beat direct detection

Dark Matter capture in the Sun and current searches

Dark Matter Capture in the Sun

- basic idea
 - DM scatters off solar nuclei, loses energy through elastic scattering
 - falls below $v_{esc} \rightarrow captured$
 - orbits, eventually collects in core
 - rate depends on mass, $\boldsymbol{\sigma}$
 - DM annihilates to SM particles
 - − SM decay yields neutrinos \rightarrow seen at detector
 - DM in equilibrium $\rightarrow \Gamma_{c} = 2 \Gamma_{A}$
 - So neutrino event rate probes DM capture rate ($\propto \sigma_{SI}, \sigma_{SD}$)
 - Dark Matter capture in the Sun has little dependence on underlying dark matter halo models

Jason Kumar / Carsten Rott

Solar Dark Matter Summary

The Sun has been a target for dark matter searches for a long time

- Some of the the world's strongest bounds on dark matter scattering with nucleons have been obtained
- Dark Matter searches from the Sun are complementary to direct dark matter searches.
 - Dark matter capture in the Sun depends very differently on underlying dark matter distributions compared to rates at direct detection experiments

Dark Matter Mass (log(m_{DM}/GeV))

Jason Kumar / Carsten Rott 🦻

og10($\sigma_{\mathrm{SD,p}}/\mathrm{cm}^2$

-41

Signal from low-energy (MeV) neutrinos from Dark Matter annihilations in the Sun

MeV Neutrinos from the Sun

Possible annihilation channels: qq,gg,cc,ss,bb,tt,W+W-, ZZ, τ+τ-,μ+μ-, νν, e+e-,γγ

> some "high energy" neutrinos in decays \Rightarrow basis of present day searches

- dominant decay into hadrons
- Hadrons in the Sun ...
 - interaction length short compared to energy loss length
 - produces secondary particles in collision with protons
 - Dominant energy loss term is π^0 production
 - At the end of the shower charged (+) pion and kaon decay at rest

• π^0 lifetime too short to interact

Simulation (Pythia + GEANT4) to determine pion and kaon yields per channel. Define r-value as the fraction of center-of-mass energy that goes into pions (π^+) or kaons(K⁺) decaying at rest.

C. Rott, J. Siegal-Gaskins, J. F. Beacom Phys.Rev. D88 (2013) 055005 / arXiv:1208.0827 N. Bernal, J. Martín-Albo, S. Palomares-Ruiz JCAP 1308 (2013) 011 / arXiv:1208.0834

Pion and Kaon yields

 π^+ **r-value** - fraction of center-of-mass energy which goes into π^+ K⁺ **r-value** - fraction of center-of-mass energy which goes into K⁺

Jason Kumar / Carsten Rott

Sensitivity estimate based on detector volume

11

sensitivity for non-directional search

- Assume 34 kT yr exposure, e-channel
 - ~ 50 bgd. events (K⁺)
 - 90%CL exclusion, assuming observation consistent with bgd.
 - sig. signif. \propto (exposure / ϵ)^{1/2}
- our benchmarks
 - total energy res. $\epsilon \sim 10\%$
- competitive with direct detection at ~ 4-5 GeV (but PICO-60 wins above)
- SK, HK \rightarrow win with exposure
 - WC detectors \rightarrow size advantage
- Other current neutrino searches not sensitive (focused on high-energy neutrinos) and different annihilation channels

Annihilation to u or d quarks

Jason Kumar / Carsten Rott

Sensitivity estimate using directionality

Directionality

- for 34 kT yr exposure, DUNE atm. ν background is significant
- would be great to get a directionality cut
 - preferentially select events where v arrives from the direction of the Sun
- reduces systematic uncertainties in background by comparing on-axis to offaxis event rates
 - want S / B > $\delta B_{sys.}$ / B \rightarrow excess not just a systematic error
 - can measure B by going off axis (reduces $\delta B_{sys.}$ / B)
 - increases S / B by picking events from the direction of the Sun
- can improve statistical significance
- most searches for neutrinos arising from dark matter annihilation utilize directionality...
- ... but usually when looking for a very energetic neutrino
 - CC-interaction produces a forward-peaked charged lepton

directionality for sub-GeV Neutrinos

- for sub-GeV V, the charged lepton produced is mostly isotropic
- but the hadronic recoil is not!
- at 236 MeV, get a lot of events where a single proton is ejected
 - v_{ℓ} + ⁴⁰Ar $\rightarrow \ell$ + p⁺ + ³⁹Ar
- ejected in the forward direction
 - cut on proton direction
- but analytic approximations to the cross sections and distributions are lacking
- rely on numerical techniques
- NuWro

- generate 10⁵ events per flavor (v_e or v_{μ})
- select events with...
 - one charged lepton track identified
 - one ejected proton track identified (kills \overline{v} bgd.)
 - cuts at event generation level (no attempt to model detector)
 - just need particles generated above a threshold
- lepton threshold \rightarrow 30 MeV
- proton threshold \rightarrow
 - "tight" (50MeV) ... according to DUNE CDR
 - "loose" (20MeV) ... optimistic scenario
- determine efficiency for signal events (η_S) and bgd events (η_B) to satisfy event selection and angular cuts

sensitivity and systematics

- Two efficiencies
 - event selection (η_{sel})
 - common to S and B
 - directional (η_{dir})
 - fraction of events in forward cone from the Sun
 - better for S than for B
- Total efficiency $\eta_{S,B} = \eta_{sel} \times \eta_{dir(S,B)}$
- Care about improvement to signal significance, and to S-to-B ratio
- We'll choose cuts to maximize improvement for signal significance for fixed exposure
 - other choices possible...

cut	proton threshold	selection efficiency (η _{sel})
tight:electron	E _{kin} > 50 MeV	0.43
tight:muon	E _{kin} > 50 MeV	0.28
loose:electron	E _{kin} > 20 MeV	0.83
loose:muon	E _{kin} > 20 MeV	0.75

Sensitivities

Jason Kumar / Carsten Rott 🤼

Conclusion

- dark matter annihilation in the Sun can produce monoenergetic 30 MeV and 236 MeV neutrinos
 - produce numerous stopped π⁺ and K⁺
- LArTPC v-detectors can reconstruct energy and direction of products
 - can detect a neutrino line with good total energy resolution
 - can get directionality from ejected proton

reduced backgrounds and systematic uncertainties
 sub-GeV v directionality is a unique capability of DUNE
 stopped pion/kaon experiment would help with calibration

Mahalo!

- above all, need lots of exposure
- We have prepared a draft summary for the TDR

Back-up slides

Solar Dark Matter Summary

Jason Kumar / Carsten Rott 🤼

what's the point of doing this at DUNE?

- There are good reasons to search at DUNE
- Directionality gives a new handle on systematic uncertainties and bgd.
 - no directionality possible with WC detectors in IBD detection channel
 - PICO sensitivity is degrading rapidly < 10 GeV
 - different astrophysics uncertainties than direct detection
- If a signal is seen in the future, can get a handle on annihilation channel
 - is it asymmetric dark matter?
 - a 236 MeV line signal at DUNE from the Sun would be striking evidence of dark matter annihilation producing producing light quarks
 - cross section could be \ll I pb, with Sun still in equilibrium
 - especially for low mass DM, hard to see this any other way
- Important as a complementary search strategy

resolving uncertainties

- A lot of uncertainty in the neutrino-nucleus scattering cross section, etc.
 - really a proof-of-principle
- Can "calibrate" by comparing rates on-axis vs. background off-axis
- Can also calibrate directly with a stopped kaon experiment
 - A stopped pion experiment is also a stopped kaon experiment
 - Stopped pion proposals like DAEδALUS are under consideration for DUNE.
- Can also put an LArTPC at a stopped pion experiment
 - CAPTAIN at SNS

Note: total KDAR cross section recently measured at MiniBooNE 1801.08348

cuts and efficiencies - directional DM Search

$$\frac{S}{B} \rightarrow \left(\frac{\eta_{s}}{\eta_{B}}\right) \times \frac{S}{B}$$
$$\frac{S}{\sqrt{B}} \rightarrow \left(\frac{\eta_{s}}{\eta_{B}}\sqrt{\eta_{B}}\right) \times \frac{S}{\sqrt{B}}$$

cut	S/B enhancement	sensitivity enhancement
tight:electron	4.8	1.2
tight: muon	4.5	1.0
loose:electron	3.4	1.4
loose:muon	3.5	1.4

tight \rightarrow win on S/B (up to S/B ~0.4)loose \rightarrow win on sensitivity

- cuts: cone half-angle (>> ang. res)
- tight: muon \rightarrow 45°
- tight: electron \rightarrow 50°
- loose: muon \rightarrow 55°
- loose: electron \rightarrow 55°
- S/B can improve by up to $\times 5$
 - very good for on-/off-axis
- but signal significance only sees a modest improvement
 - big hit from small selection efficiencies
- win more on systematics than statistics

references

- New Sensitivity to Solar WIMP Annihilation using Low-Energy Neutrinos
 C. Rott, J. Siegal-Gaskins, J. F. Beacom Phys.Rev. D88 (2013) 055005 / arXiv:1208.0827
- A novel way of constraining WIMPs annihilations in the Sun: MeV neutrinos N. Bernal, J. Martín-Albo, S. Palomares-Ruiz JCAP 1308 (2013) 011 / arXiv:1208.0834
- Dark Matter Searches for Monoenergetic Neutrinos Arising from Stopped Meson Decay in the Sun C. Rott, S. In, J. Kumar, D. Yaylali JCAP 1511 (2015) no.11, 039 / arXiv:1510.00170
- Directional Searches at DUNE for Sub-GeV Monoenergetic Neutrinos Arising from Dark Matter Annihilation in the Sun C. Rott, S. In, J. Kumar, D. Yaylali JCAP 1701 (2017) no.01, 016 / arXiv:1609.04876
- New Dark Matter Search Strategies at DUNE, C. Rott, S. In, J. Kumar, D. Yaylali, TAUP2017 Proceedings contribution / arXiv:1710.03822

Neutrino signals - Example W-Boson

$$W^{+} \longrightarrow e^{+}V_{e}, \mu^{+}V_{\mu}, \tau^{+}V_{\tau} \sim 33\%$$
$$\longrightarrow qq \qquad \sim 67\%$$

Let's have a closer look at this:

- e^+V_e I high energy v + em shower
- $\mu^+ \nu_{\mu}$ I high energy ν + muon
- T^+V_T I high energy v + tau decay
- **qq** hadronic shower

Neutrino yield

spectrum

- use Pythia to simulate showering and hadronization; output the spectrum of long-lived hadrons
- GEANT deals with interaction in dense solar medium

•

why (not) $xx \rightarrow \overline{f}f$ (f=u,d,s)?

- can understand just from angular momentum
- for Majorana fermion, wavefunction is anti-symmetric
 - L=0, S=0 or L=1, S=1
- if outgoing fermions on z-axis
 L_z=0 (Y_{Im}(θ=0,φ)≠0 only if m=0)
 - $-S_z = J_z$
- if $S_z=0$ need f, f with same helicity
 - not CP-conjugate
 - need Weyl spinor mixing
 - in MFV, mixing scales with mass
- if S_z=±1 need f, f with opp. helicity
 - no mixing needed

monoenergetic neutrinos

- this argument underlies the theoretical prejudice towards searches for the \overline{b} b, $\overline{\tau}$ τ and W⁺ W⁻ channels
- but the chirality suppression arises from the assumption of Majorana fermion dark matter and minimal flavor violation
 - certainly true for the CMSSM, but need not be true in general
 - WIMPs need not be Majorana, and MFV can fail even in the general MSSM
- if dark matter is a Dirac fermion, then the initial state can be L=0, S=1, J=1, so s-wave annihilation, but no mixing needed
- if we drop minimal flavor violation, then mixing need not scale with quark mass
- either way, $xx \rightarrow \bar{q}q$ (q = u, d, s) branching fraction could be $\mathcal{O}(1)$
- worth studying these annihilation channels

issues with the cross section at $\mathcal{O}(100)$ MeV (a novice's view)

- basic idea \rightarrow impulse approximation (IA)
 - neutrino interacts with a single struck nucleon
 - subsequent interactions between struck nucleon and rest of nucleus
- can model the nucleus state as...
 - Fermi gas
 - using a more detailed spectral function obtained from theory and electron scattering experiments
- spectral function is a better model...
- ...but analysis still based on IA
- IA becomes less valid an approximation for $E_v < 100 \text{ MeV}$
 - Ankowski, Soczyk -- 0709.2139
 - no good tool for going beyond IA, though
 - best to just calibrate

r-factors

r decreases with m_{χ} about $\times 10$ more 30 MeV vs than 236 MeV vs per annihilation for u and d channels

the pieces we need....

- we have the neutrino fluxes from the Sun arising from DM....
- we have estimates of the $v_{e,\mu}$ background at E \sim 236 MeV (atm. v)
- charged current neutrinonucleus scattering cross section $(v_{\ell} + n \rightarrow \ell + p)$
 - for E \sim 236 MeV, theory complicated
 - dominant contribution is quasielastic
 - not very well understood
 - rely on numerical packages
 - NuWro

Battistoni, Ferrari, Montaruli, Sala

$$\frac{d^2 \Phi_B}{d\Omega} \stackrel{e}{\approx} \stackrel{1}{E} \cdot n \hat{\mathbf{Z}}^2 \bar{\mathbf{S}} \, \mathbf{S}^{-1} \mathbf{r} \, \mathbf{M}^1 \bar{\mathbf{e}} \,$$

 $(\overline{v} \text{ similar})$

 $\sigma_{\rm C}^{\rm e}$ (236 M) ×4 .×2 1³0 č I $\sigma_{\rm CC}^{\mu}$ (23M6e) ×2 ×1 ⁻³0 ⁸ (NuWro

90% CL numbers

non-directional search, electron channel

experiment	status	exposure	N_B^{π}	$N_{ m obs}^{\pi}$	f_S^π	N_S^{π}	N_B^K	$N_{\rm obs}^K$	f_S^K	N_S^K
KamLAND	$\operatorname{current}$	4 kT yr					5.1	6	0.68	5.5
DUNE	future	$34 \mathrm{kT} \mathrm{yr}$	0.2	0	1	2.3	50	50	0.68	10.3
Super-K	$\operatorname{current}$	240 kT yr				—	305	305	0.68	28.7
Hyper-K	future	$600 \mathrm{kT} \mathrm{yr}$					762.5	763	0.68	45.4

directional search, 340 kT yr exposure

cuts	expected N_B	assumed N_{obs}	expected N_S for exclusion
tight: electron	14.8	15	6.5
tight: muon	14.9	15	6.4
loose: electron	41.6	42	10.0
loose: muon	47.5	48	10.7

dark matter and monoenergetic neutrinos

- can search for dark matter using neutrino detectors
 - dark matter scatters off solar nuclei and collects in the core of the Sun
 - annihilates to Standard Model products
 - neutrinos get out and reach detector on earth
- focus is typically on a smooth distribution of high-energy events above background
- I'll focus on a different possibility
 - models in which dark matter can produce monoenergetic sub-GeV neutrinos
 - detectors and strategies which can resolve a line signal
 - obtaining direction information about neutrino
- DUNE is an ideal setting for this type of search

standard lore

- expect to get a continuum signal
 - dark matter annihilates to intermediate particles
 - decays give a continuum neutrino spectrum
- look for high energy neutrinos
 - larger cross section with detector
 - smaller background from atmospheric neutrinos
- use directionality, but only for high energy neutrinos
 - try to identify neutrinos arriving from the direction of the Sun
 - looking for charged lepton produced by charged-current interaction
 - points away from source, but only for E > GeV
 - for lower energies, charged lepton is roughly isotropic

basic points

- theory
 - u, d, s final state quarks produce plenty of K^+
 - light hadrons stop before they decay (producing more K⁺)
 - decay produces 236 MeV monoenergetic neutrino
- experiment
 - DUNE will do very well at total energy reconstruction for a chargedcurrent interaction
 - sensitive to a line signal
 - DUNE can also get the direction of the neutrino from the nucleon recoil
 - new type of directionality search
 - great for reducing systematic uncertainty

DUNE

1601.02984

- Deep Underground Neutrino Experiment
- perfect for this type of search
 - large exposure
 - good total energy resolution
 - can identify outgoing particle tracks with good energy and angular resolution
- our benchmarks
 - angular resolution $\sim 5\,^\circ$
 - total energy res. $\epsilon \sim 10\%$

a theorist, for scale