Indirect Searches for Dark Matter with IceCube

Carsten Rott Sungkyunkwan University, Korea rott@skku.edu Jan 26, 2016

IFIC Seminar

Outline

Motivation The IceCube Neutrino Telescope Selected Searches

- Self-annihilating Dark Matter in the Galactic Halo
- Astrophysical Neutrinos and Dark Matter Decay
- Dark Matter Captured in the Sun Conclusions and Outlook

Motivation

The Dark Matter Mystery

The Dark Matter Mystery

- Since Zwicky observed the Coma cluster evidence has hardened
 - Structure formations
 Cosmological simulations
 - Gravitational lensing
 - Rotation curves
 - Cosmic microwave background

The Dark Matter Mystery

- Since Zwicky observed the Coma cluster evidence has hardened
 - Structure formations
 Cosmological simulations
 - Gravitational lensing
 - Rotation curves
 - Cosmic microwave background

Dark Matter already gravitationally "observed", but ...

- What is it ?
- What are it's properties ?

Role of Neutrinos

WIMP - Weakly Interacting Massive Particle

$$\tilde{\chi} \qquad \qquad W^+, Z, \tau^+, b, \dots \Rightarrow e^\pm, \upsilon, \gamma, p, D, \dots$$
$$\tilde{\chi} \qquad \qquad W^-, Z, \tau^-, \overline{b}, \dots \Rightarrow e^\mp, \upsilon, \gamma, \overline{p}, D, \dots$$

- Production
 - Colliders
- Indirect Searches
 - Dark Matter Decay
 - Annihilation of Dark Matter in Galactic Halo, ...
 - Gamma-rays, electrons, neutrinos, anti-matter, ...
 - Annihilation signals from WIMPs captured in the Sun (or Earth)
 - Neutrinos
- Direct Searches
 - WIMP scattering of nucleons
 - → Nuclear recoils

Dark Matter Lifetime

X

Role of Neutrinos

WIMP - Weakly Interacting Massive Particle

$$\tilde{\chi} \qquad \qquad W^+, Z, \tau^+, b, \dots \Rightarrow e^\pm, v, \gamma, p, D, \dots$$
$$\tilde{\chi} \qquad \qquad W^-, Z, \tau^-, \overline{b}, \dots \Rightarrow e^\mp, v, \gamma, \overline{p}, D, \dots$$

- Production
 - Colliders
- Indirect Searches
 - Dark Matter Decay
 - Annihilation of Dark Matter in Galactic Halo, ...
 - Gamma-rays, electrons, neutrinos, anti-matter, ...
 - Annihilation signals from WIMPs captured in the Sun (or Earth)

Neutrinos

- Direct Searches
 - WIMP scattering of nucleons
 - → Nuclear recoils

Dark Matter Lifetime

X

Dark Matter Signals

Identify overdense regions of dark matter

> \Rightarrow self-annihilation can occur at significant rates

- Pick prominent Dark Matter target
- Understand / predict backgrounds
- Exploit features in the signal to better distinguish against backgrounds

Dark Matter Signals

Identify overdense regions of dark matter

> \Rightarrow self-annihilation can occur at significant rates

- Pick prominent Dark Matter target
- Understand / predict backgrounds
- Exploit features in the signal to better distinguish against backgrounds

Carsten Rott

Principle of an optical Neutrino Telescope

The IceCube Neutrino Telescope

Laboratory at the South Pole

Geographic South Pole

The IceCube Neutrino Telescope

The IceCube Neutrino Telescope

South $p + A \rightarrow \pi^{\pm} (K^{\pm}) + other hadrons ... \pi^{+} \rightarrow \mu^{+} \nu_{\mu} \rightarrow e^{+} \nu_{e} \nu_{\mu} \nu_{\mu}$ Pole fue Jan 29 08:39:34 2008 North Pole • Up-going events can be used to obtain "clean" neutrino sample Earth is used as muon filter • Atmospheric neutrinos create irreducible neutrino background to

un 110261 Event 32391 [Ons. 13012ns]

extra terrestrial neutrino fluxes

South $p + A \rightarrow \pi^{\pm} (K^{\pm}) + other hadrons ... \pi^{+} \rightarrow \mu^{+} \nu_{\mu} \rightarrow e^{+} \nu_{e} \nu_{\mu} \nu_{\mu}$ Pole fue Jan 29 08:39:34 2008 North Pole • Up-going events can be used to obtain "clean" neutrino sample Earth is used as muon filter • Atmospheric neutrinos create irreducible neutrino background to

un 110261 Event 32391 [Ons. 13012ns]

extra terrestrial neutrino fluxes

Event Topologies in IceCube

СС: v_µ

Track topology (e.g. induced by muon neutrino)

Good pointing, 0.2° - 1° Lower bound on energy for through-going events

CC: ν_e ν_τ NC: ν_e ν_μ ν_τ Cascade topology (e.g. induced by electron neutrino)

Good energy resolution, 15% Some pointing, 10° - 15°

> time delay vs. direct light

 $\nu_e\,\nu_\tau\,CC\text{--int}\,\&\,\nu_i\,NC\text{--int}$

IceCube Science

Carsten Rott

Very diverse science program, with neutrinos from 10GeV to EeV, and MeV burst neutrinos

Dark Matter Self-annihilations $<\sigma_A v>$

Junuar y 20, 2017

17

~8kpc

Dark Matter self-annihilation $\sim \rho^2$

јаниан у 20, 2017

Dark Matter in the Milky Way

Dark Matter in the Milky Way

Dark Matter in the Milky Way

3

Dark Matter self-annihilation $\sim \rho^2$

0.3GeV 1011

10²

 r_{\odot}^{10}

Search for a neutrino anisotropy (outer halo)

~8kpc

- 2) Galactic Center (down-going events)
- 3) Dwarf Spheriodals, Galaxy Clusters

Analyses follow theoretical discussions in Beacom et al., Phys. Rev. Lett. 99, 231301 (2007) and Yuksel et al., Phys. Rev. D 76, 123506 (2007)

2

10⁴

103

10²

10

 $r_{\rm DDW} = \frac{10^2}{10^2}$ $r_{\rm DDW} = \frac{10^2}{10^{-1}}$

 10^{-2}

 10^{-3}

10-3

10-2

 10^{-1}

r in kpc

Dark Matter Annihilation

Dark Matter Annihilation

IceCube Collaboration arXiv1505.07259 Eur.Phys.J. C75 (2015) 10, 492

Galactic Center

 $\log_{10}(J\!(\Psi))$ for NFW

Use IceCube external strings as a veto:

- 3 complete layers around DeepCore (~ 375m)
- Full sky sensitivity: access to southern hemisphere

 \rightarrow refined muon veto from surrounding layers Use scrambled data for background estimation

10¹

10²

Carsten Rott

 10^{4}

10³

 m_{γ} [GeV]

Neutrino Telescopes can probe models motivated by the observed lepton anomalies

Neutrino Telescopes can probe models motivated by the observed lepton anomalies

Neutrino Telescopes can probe models motivated by the observed lepton anomalies

Neutrino Telescopes can probe models motivated by the observed lepton anomalies

DeepCore Analysis

Dark Matter Decay / Astro-physical Neutrinos

Search for highest energy neutrinos

IceCube Coll. Phys.Rev.Lett. 111 (2013) 021103 / arXiv 1304.5356

Dataset / Results (670days of IC79/IC86 data) expected 0.08 events observed 2 events (→ 2.70)

- Ernie ~1.15 PeV (~1.9 ·10 J)
- Bert ~ I.05 PeV (~I.7 ·I0⁻⁴J)
- Energy is the visible energy of the cascade, could originate from NC event, V_{T} CC, or V_{e} CC
- Angular resolution on cascade events at this energy ~10
- Energy resolution is about 15% on the deposited energy

Carsten Rott

Ernie & Bert are not GZK, but ...

IceCube Collaboration Phys.Rev. D91 (2015) no.2, 022001 (arxiv:1410.1749)

High-energy neutrino search 4yrs

54 events (15 track-like, 39 showers) observed Expectation from conventional atm. muons and neutrinos ~21.6

ICRC 2015 proceedings

IceCube Collaboration, *Science 342, 1242856 (2013)*, IceCube Collaboration, *Phys. Rev. Lett 113, 101101 (2014)*

- Mesons including charm quarks in the atmosphere decay immediately to produce neutrinos, known as prompt neutrinos which are not observed yet.
- ERS, or Enberg et al. Phys. Rev. D 78, 043005 (2008) is used as a baseline prompt model
- Significance are based on the exact neutrino flux model, not including the uncertainty of the model.
- Atmospheric Bkg : CR Muon (12.6±5.1), Conv. Neutrino (9.0^{+8.0}-2.2),
- Over 60 TeV < E < 2000 TeV, the spectrum best fit with E^{-2.58}
- E⁻² spectrum predicts too may neutrinos above ~2 PeV. So, a cutoff or steeper spectrum needed.

~7 sigma rejection of atmospheric-only hypothesis

Skymap HESE-4yrs

IceCube Collaboration, Science 342, 1242856 (2013)

Origin of the high-energy neutrinos ?

IFIC Seminar January 26, 2017

Heavy Dark Matter

 Intriguing overlap in energy of the two I PeV cascade events of IceCube high energy event sample

Could this be dark matter ?

- **Evidence:** example: B. Feldstein, A. Kusenko, S. Matsumoto, and T. Yanagida arXiv:1303.7320v1 / Phys.Rev. D88 (2013) 1, 015004
- 2.4PeV Dark Matter Particle mass
- Flux can be related to the lifetime τ_{DM}
- $\tau_{\rm DM} \simeq 1.9 N_{\nu} \times 10^{28} {\rm s}$
- Models
 - Singlet fermion in an extra dimension
 - Hidden Sector Gauge Boson
 - Gravitino Dark Matter with R-Parity Violation

FIG. 4. The two observed events from (a) August 2011 and (b) January 2012. Each sphere represents a DOM. Colors represent the arrival times of the photons where red indicates early and blue late times. The size of the spheres is a measure for the recorded number of photo-electrons.

Heavy Dark Matter Decay

- Heavy Decaying Dark Matter (example χ→νh)
- Focus on most detectable feature (neutrino line)
- Backgrounds steeply falling with energy, highest energy events provide best sensitivity
- Continuum and spacial distribution could help identify a signal
- Bounds from Fermi-LAT and PAMELA derived from search for bb annihilation channel (dominant decay channel of Higgs).

Dedicated IceCube analysis should improve on these bounds Analyses on-going

Bound on lifetime ~10²⁸s derived with IceCube data

<u>Heavy DM bounds with neutrinos, see also</u> Murase and Beacom JCAP 1210 (2012) 043 Esmaili, Ibarra, and Perez JCAP 1211 (2012) 034 El Aisati, Gustafsson, Hambye <u>1506.02657</u>

Heavy Dark Matter Decay

- Heavy Decaying Dark Matter (example χ→νh)
- Focus on most detectable feature (neutrino line)
- Backgrounds steeply falling with energy, highest energy events provide best sensitivity
- Continuum and spacial distribution could help identify a signal
- Bounds from Fermi-LAT and PAMELA derived from search for bb annihilation channel (dominant decay channel of Higgs).

Dedicated IceCube analysis should improve on these bounds Analyses on-going

Bound on lifetime ~10²⁸s derived with IceCube data

Flavor Ratio

IceCube Collaboration Astrophys.J. 809 (2015) 1,98

- Global fit of several IceCube analyses
 - Variety of selection criteria for both shower-like and track-like events
 - Data are fit to three observables
 - Energy, zenith angle, event topology

Note that energy dependence needs to be considered ! Continuous spectrum vs injection at specific DM mass

Flavor Ratio

IceCube Collaboration Astrophys.J. 809 (2015) 1,98

- Global fit of several IceCube analyses
 - Variety of selection criteria for both showerlike and track-like events
 - Data are fit to three observables

Flavor ratio source and at Earth $V_e : V_\mu : V_\tau$

Source	Ratio at Source	Ratio at Earth
Pion decay	1:2:0	1:1:1
DM decay nunu	1:1:1	1:1:1
DM decay tau tau	1:1:6	2:3:3
DM decay bb	1:1:0	0.8:0.6:0.6
	SourcePion decayDM decay nunuDM decay tau tauDM decay bb	SourceRatio at SourcePion decay1:2:0DM decay nunu1:1:1DM decay

Boosted DM

Boosted Dark Matter

10

10

 10^{6}

10⁵

10

 $dL/dlog_{10}t$ [arb. units]

prompt shower

muon

decay echo

 10^{-6}

Time [s]

10⁻⁵

neutron

capture echo

 10^{-4}

 10^{-3}

- "Boosted Dark Matter Search"
 - Following search proposed by Kopp, Liu, Wan (2015)
 - using "Echo Technique" Li, Bustamante, Beacom (2016)

May sound crazy, but is just an example for exotic interactions in IceCube detectable via recoil

Dark Matter Capture in the Sun

Solar WIMPs

3yrs IceCube Solar WIMP Analysis

IceCubeColl., arXiv:1612.05949v⁻

- Three years of data in 86-string configuration used (May 2011 - May 2014)
 - Only **up-going** events (Sun below the horizon) results in 532days of livetime
- Two independent analysis performed
 - ① IceCube: Higher energy focus ($m_{\chi} > 100 \text{GeV}$)
 - ② **DeepCore**: Low-energy focus ($m_{\chi} = 30 \text{GeV}$ -100GeV)

Median angular resolutions

- Up-going
- IceCube Dominated
- No Containment

- Up-going
 - DeepCore Dominated
- Strong Containment

Effective Areas

3yrs IceCube Solar WIMP Analysis

IceCubeColl., arXiv:1612.05949v1

IFIC Seminar January 26, 2017

Solar WIMPs Summary

IceCubeColl., arXiv:1612.05949v1

Spin-dependent scattering

Solar WIMPs (Spin-dependent)

IceCubeColl., arXiv:1612.05949v1

Neutrino bounds extremely competitive with Dark Matter direct detection & Can test models beyond the reach of LHC

Soft

pMSSM model scans

 Hard / Soft defined by fraction of hard and soft final states

No evidence for dark matter

nulike

Carsten Rott

http://nulike.hepforge.org./

41

January 26, 2017

Impact of velocity distribution

 Explore the change in capture rate using different velocity distributions obtained from dark matter simulations

• A comparison of captures rates for different WIMP velocity distributions show that overall changes in the capture rate are smaller than 20%

Impact of astrophysical uncertainties

https://mdanning.web.cern.ch/mdanning/public/Interactive_figures/

Impact of astrophysical uncertainties

https://mdanning.web.cern.ch/mdanning/public/Interactive_figures/

Future Plans for IceCube ...

Beyond Standard Model Physics at the PeV scale

Intense interest in high-energy neutrino region

- Observations defy any simple explanation from a single generic source class
 - Multiple sources classes ?
 - Hints of new physics ?
 - PeV Scale Right Handed Neutrino Dark Matter
 - Super Heavy Dark Matter
 - Neutrino Portal Dark Matter
 - Right-handed neutrino mixing via Higgs portal
 - Heavy right-handed neutrino dark matter
 - Leptophilic Dark Matter
 - PeV Scale Supersymmetric Neutrino Sector Dark Matter
 - Dark matter with two- and many-body decays
 - Shadow dark matter
 - Boosted Dark Matter
 - ..

Next generation - IceCube Gen2 Facility

IceCube Gen2 arXiv:1412.5106

- IceCube has provided an amazing sample of events, but is still limited by the small number of events
- Observed astrophysical flux is consistent with a isotropic flux of equal amounts of all neutrino flavors
 - So far non of the analyses has shown any evidence for point sources
- Where are the point sources?
- What is the flavor composition?
- What is the spectrum? Cutoff?
- Transients ?
- Multi-messenger physics?
- GZK neutrinos?

Carsten Rott

IFIC Seminar January 26, 2017

PINGU - Precision IceCube Next Generation

IceCube PINGU Collaboration arXiv:1401.2046

- PINGU upgrade plan
 - Instrument a volume of about 5MT with 20-26 strings
 - Rely on well established drilling technology and photo sensors
 - Create platform for calibration program and test technologies for future detectors
- Physics Goals:
 - Precision measurements of neutrino oscillations (mass <u>hierarchy,</u>...)
 - Test low mass dark matter models

PINGU LOI to be updated shortly

Short version https://arxiv.org/pdf/1607.02671.pdf

Upgrade

Neutrino Oscillation Physics with IceCube/DeepCore

- 3 years of DeepCore data
 - 5174 events observed 6830 expected for no oscillation
 - perform 2D fit in E and $cos(\theta)$

Neutrino Physics with PINGU

Carsten Rott

PINGU DM Sensitivity

Carsten Rott

Ice Camera System

- Ice properties dominant source of sys. uncertainties for most analyses
 - Low cost camera system
 - Monitor freeze in
 - Hole ice studies
 - Local ice environment
 - Position of the sensor in the hole
 - Geometry calibration
 Survey capability

"Camera System to Study Properties of the Antarctic Ice" D. Bose, M. Jeong, W. Kang, J. Kim, M. Kim, C. Rott. ICRC Proceeding 2015 arXiv:1510.05228 [astro-ph.IM]

Conclusions

- Striking DM signatures might provide high discovery potential for indirect searches
- Models motivated by positron excess and gamma-ray observations can and have been tested with neutrino telescopes
- Lifetimes of heavy decaying dark matter can be constrained to 10^28s using neutrino signals
- Neutrino Telescopes provide world best limits on SD WIMP-Proton scattering cross section
- Neutrinos extremely sensitive to test low-mass WIMP scenarios at current and future detectors
- Efforts underway to expand searches beyond WIMP hypothesis ...

Thanks !

Tokai-to-Hyper-K & Korea (T2HKK)

Candidate Sites in Korea

Site	OAB	Baseline	Height	Rock	
Mt. Bisul	~1.3°	1088 km	1084 m	Granite porphyry, Andesitic breccia	1398
Mt. Hwangmae	~1.8°	1140 km	1113 m	Flake granite, Porphyritic gneiss	
Mt. Sambong	~1.9°	1180 km	1186 m	Porphyritic granite, Biotite gneiss	1200 1100 1000 Seoul
Mt. Bohyun	~2.2°	1040 km	1126 m	Granite, Volcanic rocks, Volcanic breccia	
Mt. Minjuii	~2.2°	1140 km	1242 m	Granite, Biotite gneiss	× 3- 405 01
Mt. Unjang	~2.2°	1190 km	1125 m	Rhyolite, Granite porphyry, Quartz porphyry	Taejon Mt. Bohyun Pohang
				3.0	20 0 TOM Bisul

4.0

- Baselines length 1,000 ~ 1,200 km
- Off axis angle 1.3° ~ 3°
- Considering tunnel entrance positions overburdens are expected to be greater than 820 m (2,200 m.w.e.)

arXiv:1611.06118

Tokai-to-Hyper-K & Korea (T2HKK)

- Improved CP Precision, Mass hierarchy, ...
- Better control of systematics
- Potential site benefits (larger over burden)
- Non-standard neutrino interactions

FIG. 19: The fraction of δ_{cp} values (averaging over the true mass ordering) for which the wrong hierarchy can be rejected with a given significance or greater.

57

Carsten Rott