JSNS²: J-PARC Sterile Neutrino Search at J-PARC Spallation Neutron Source (E56)

Carsten Rott

(for the Korean JSNS² Collaborators) Sungkyunkwan University, Korea

> KPS Fall Meeting 2019 Oct 23-25, 2019

- I. Motivation
- 2. Sterile neutrino searches
- 3. J-PARC MLF Facility
- 4. The JSNS² Experiment
- 5. Current Status
- 6. Outlook and Conclusions

Please also visit the following posters:

- PMT Pre-calibration in JSNS² (Daeun Jung, SKKU)
- Energy spectrum of anti-electron neutrinos from mu- decay in the JSNS² experiment (Sanghoon Jeon, SKKU)
- IBD event study at the JSNS² experiment (Hyoungku Jeon, SKKU)

Outline

Motivation / Sterile Neutrino Searches

Neutrino Anomalies

Experiments	Neutrino source	Signal	Significance	E(MeV), L(m)
LSND	μ Decay-At-Rest	$\overline{\nu_{\mu}} \rightarrow \overline{\nu}_{e}$	3.8 σ	40,30
MiniBooNE	π Decay-In-Flight	$\nu_{\mu} \rightarrow \nu_{e}$	4.5 σ	800,600
		$\overline{\nu}_{\mu} \boldsymbol{\rightarrow} \overline{\nu}_{e}$	2.8 σ	
		combined	4.7σ	
Ga (calibration)	e capture	$v_e \rightarrow v_x$	2.7 σ	<3,10
Reactors	Beta decay	$\bar{\nu}_e \rightarrow \bar{\nu}_x$	3.0σ	3,10-100

Indication of a sterile neutrino $(\Delta m^2 \sim 1 eV^2)$?

Updated MiniBooNE + LSND Result 6.0σ PRL 121, 221801 (2018) arXiv:1805.12028

LSND reported an excess of 87.9±22.4 ±6.0 anti-electron neutrino events (3.80) in 1998

Extension of neutrino V mixing matrix

$$\begin{pmatrix} |\mathbf{v}_{e}\rangle \\ |\mathbf{v}_{\mu}\rangle \\ |\mathbf{v}_{\tau}\rangle \\ |\mathbf{v}_{\tau}\rangle \\ |\mathbf{v}_{\tau}\rangle \\ |\mathbf{v}_{s}\rangle \\ \vdots \end{pmatrix} = \begin{pmatrix} U_{e1}^{*} U_{e2}^{*} U_{e3}^{*} U_{e4}^{*} \cdots \\ U_{\mu1}^{*} U_{\mu2}^{*} U_{\mu3}^{*} U_{\mu4}^{*} \cdots \\ U_{\tau1}^{*} U_{\tau2}^{*} U_{\tau3}^{*} U_{\tau4}^{*} \cdots \\ U_{s1}^{*} U_{s2}^{*} U_{s3}^{*} U_{s4}^{*} \cdots \\ U_{s1}^{*} U_{s2}^{*} U_{s3}^{*} U_{s4}^{*} \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} \begin{pmatrix} |\mathbf{v}_{1}\rangle \\ |\mathbf{v}_{2}\rangle \\ |\mathbf{v}_{3}\rangle \\ |\mathbf{v}_{4}\rangle \\ \vdots \end{pmatrix}$$
The neutrino mixing matrix can be extended to introduce sterile neutrinos.
The theoretical framework predicts variations in the standard neutrino oscillation probabilities
$$For 3(\mathbf{v}_{\alpha})+1(\mathbf{v}_{s}) \& m_{4} \gg m_{1\sim3} \text{ case},$$

$$P_{\nu_{e} \rightarrow \nu_{e}} \sim 1 - 4(1 - |U_{e4}|^{2})|U_{e4}|^{2} \sin^{2} \left[\frac{m_{4}L}{4E_{\nu}}\right] \qquad \nu_{\mu} \text{ disappearance}$$

$$P_{\nu_{\mu} \rightarrow \nu_{\mu}} \sim 1 - 4(1 - |U_{\mu4}|^{2})|U_{\mu4}|^{2} \sin^{2} \left[\frac{m_{4}L}{4E_{\nu}}\right] \qquad \nu_{\mu} \text{ disappearance}$$

 \rightarrow v_s might be detectable via neutrino v oscillations effects

Carsten Rott - JSNS²

Importance of JSNS²

- Intense international efforts to search for sterile neutrinos
 - Reactor neutrino experiments
 - Neutrino Telescopes

 Atmospheric
 Neutrino
 Measurements
 - Short baseline neutrino experiments

Global data cannot be explained by addition of sterile neutrinos

The J-PARC Facility and the JSNS² Experiment

JSNS² Collaboration

~50 collaborators from 4 countries

J-PARC Facility (KEK/JAEA)

Detector location at J-PARC MLF

Searching for neutrino oscillation : $\overline{\nu_{\mu}} \rightarrow \overline{\nu_{e}}$ with baseline of 24m. no new beamline, no new buildings are needed \rightarrow quick start-up

Carsten Rott - JSNS²

Decay at Rest Neutrino Source (Hg target)

- Precisely known neutrino spectrum
- High intensity neutrino flux

Spectrum for each neutrino flavor precisely known and with specific time structure

Jnique for Material and Life Science Experimental Facility at J-PARC

Production / Detection

Carsten Rott - JSNS²

Science Objectives

Energy spectrum and sterile neutrino sensitivity

Carsten Rott - JSNS²

Science at JSNS²

• Discovery potential !

- Sterile neutrino search
 - Discovery or resolve long standing anomaly
- Beyond the Standard Model Searches

Guaranteed science

- Cross section measurements with neutrinos with a few 10 MeV from muon decay at rest and with monochromatic 236MeV from kaon decay at rest (KDAR).
 - important for
 - Supernova explosion
 - Nuclear reaction cross sections
 - Dark Matter Searches

v-A interactions are important in

- core-cooling by v-emission
- v-heating on shock wave
- v-process of nucleosynthesis
- efficiency of neutrino detectors

Reaction rates are to be known with accuracy better than ~10%!

A. Aguilar et al. (LSND Collaboration) Phys. Rev. D 64, 112007 (2001)

Example: Pseudo-Dirac Dark Matter -J. Jordan et al. 1806.05185

Core collapsing supernova explosions (Type-II SNe).

$${}^{12}\mathrm{C}(
u_{e},\mathbf{e}^{-}){}^{12}\mathrm{N}$$

Example: C. Rott, J. Siegal-Gaskins, J.F. Beacom, Phys.Rev. D88 (2013) 055005

Experiment	$\sigma(^{12}C(v_e,e^-)^{12}N_{g.s.}) (10^{-42} \text{ cm}^2)$	
KARMEN (PLB332, 251 (1994))	9.1±0.5±0.8 (10.4%)	
LSND (PRC64, 065501 (2001))	8.9±0.3±0.9 (10.7%)	
JSNS ² (arXiv:1601.01046)	(~3%(stat.) expected in 5yrs)	

JSNS² Experimental Status

Stainless Steel Tank Construction

- Stainless steel tank construction at J-PARC (Dec 2017 - Jan 2018)
- Welding and water leak test completed in Feb 2018

Transport of the tank to the assembly building

Tank was moved about 2.2km

Carsten Rott - JSNS²

Installation Work

 Installation work has been ongoing since March 2018

July 24, 2018

Installation work inside of the Stainless steel tank

Inner tank work Spring/Summer 2018

Installation work inside of the Stainless steel tank

- Cleaning with pure water and ethanol
- Ultra-sonic cleaning of components and ethanol
- Completed installation of PMT support structure
- Installation of optical separators
- PMT installations

KPS Fall Meeting - Oct 23-25, 2019

T installation

Acrylic vessel

Acrylic tank ready

fabrication cleaning

Piping

Installation drill

Liquid Scintillator

LS was produced during Fall 2018 in Korea and was delivered to Japan **Quantity:** 21 batches in total (37000 L) **Storage:** 2 ISO tanks **Man-power**: 4 peoples per day (6x 1/2 weeks shift)

Schedule	Activities	
Sep. 12-18, 2018	Refurbishment and cleaning	
Sep. 28, 2018	ISO tank arrived at RENO site	
Oct. 1 - 22, 2018	LS production (6 shift periods)	
	Shipping of ISO tanks to Japan	

Liquid Scintillator

LS from Korea (unloaded)

Gd loaded LS (donated from Daya-Bay) [We thanks the DB group]

June 2019	Empty ISO-tank was sent to China	
June/July 2019	ISO-tank filled with Gd-LS by Daya-Bay team members	
July 2019	ISO-tank left Huanpu	
Aug 2019	the Gd-LS has arrived in Japan. Now at our storage yard (Kawasaki)	

Carsten Rott - JSNS²

PMTs / calibration /electronics

JSNS² uses 10" PMTs from RENO & Double CHOOZ spares + newly purchased PMTs

➡PMTs mostly in hand and securing more

➡Upgrade with Michigan JSNS2 (500MHz, 14bit electronics)

Online Data Quality Monitor /display

Online DQM framework is ready

- Analyzes online FADC data into Hit map / Waveform /3D display
- Stores data files in 12 TB disk
- Copies to KEKCC (not connected)

Almost ready

Overall schedule

Eager to start the experiment in early 2020

Conclusions

Conclusions

- The neutrino sector has proven numerous times to hold surprises
 - Global neutrino data is inconclusive on the existence of sterile neutrinos
 - During the past two decades, sterile neutrino searches wear driven by the LSND anomaly and results obtained in the follow up experiments
- The JSNS² experiment is a direct and ultimate test of the long standing LSND anomaly
 - The same neutrino source, target material and almost identical baseline length will be used
- Detector preparations nearly completed
- J-PARC beam power approaching design value
- JSNS² will start in early 2020 to search for sterile neutrinos
- Rich physics program associated with JSNS² besides the sterile neutrino search

Technical Design Report (TDR): Searching for a Sterile Neutrino at J-PARC MLF (E56, $JSNS^2$)

S. Ajimura¹, M. K. Cheoun², J. H. Choi³, H. Furuta⁴, M. Harada⁵, S. Hasegawa⁵, Y. Hino⁴, T. Hiraiwa¹, E. Iwai⁶, S. Iwata⁷, J. S. Jang⁸, H. I. Jang⁹, H. K. Jeon¹⁰, S. H. Jeon¹⁰, K. K. Joo¹¹, J. R. Jordan⁶, S. K. Kang¹², T. Kawasaki⁷, Y. Kasugai⁵, E. J. Kim¹³, J. Y. Kim¹⁰, S. B. Kim¹⁴, W. Kim¹⁵, K. Kuwata⁴, E. Kwon¹⁴, I. T. Lim¹¹, T. Maruyama^{*16}, S. Meigo⁵, S. Monjushiro¹⁶, D. H. Moon¹¹, T. Nakano¹, M. Niiyama¹⁷, K. Nishikawa¹⁶, M. Nomachi¹, M. Y. Pac³, J. S. Park¹⁶, S.J.M. Peeters¹⁸, H. Ray¹⁹, C. Rott¹⁰, K. Sakai⁵, S. Sakamoto⁵, H. Seo¹⁴, S. H. Seo¹⁴, A. Shibata⁷, T. Shima¹, J. Spitz⁶, I. Stancu²⁰, F. Suekane⁴, Y. Sugaya¹, K. Suzuya⁵, M. Taira¹⁶, T. Torizawa⁷, J. Waterfield¹⁸, R. White¹⁸, M. Yeh²¹, and I. Yu¹⁰

¹Research Center for Nuclear Physics, Osaka University, Osaka, JAPAN ²Department of Physics, Soongsil University, Seoul 06978, KOREA ³Department of Radiology, Dongshin University, Chonnam 58245, KOREA ⁴Research Center for Neutrino Science, Tohoku University, Sendai, Miyagi, JAPAN ⁵J-PARC Center, JAEA, Tokai, Ibaraki JAPAN ⁶University of Michigan, Ann Arbor, MI, 48109, USA ⁷Department of Physics, Kitasato University, Sagamihara 252-0373, Kanagawa, JAPAN ⁸Gwangju Institute of Science and Technology, Gwangju, 61005, KOREA ⁹Department of Fire Safety, Seoyeong University, Gwangju 61268, KOREA ¹⁰Department of Physics, Sungkyunkwan University, Suwon 16419, KOREA ¹¹Department of Physics, Chonnam National University, Gwangju, 61186, KOREA ¹²School of Liberal Arts, Seoul National University of Science and Technology, Seoul, 139-743, KOREA ¹³Division of Science Education, Physics major, Chonbuk National University, Jeonju, 54896, KOREA ¹⁴Department of Physics and Astronomy, Seoul National University, Seoul 08826, KOREA ¹⁵Department of Physics, Kyungpook National University, Daegu 41566, KOREA ¹⁶High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki, JAPAN ¹⁷Department of Physics, Kyoto University, Kyoto, JAPAN ¹⁸Department of Physics and Astronomy, University of Sussex, Brighton, UK ¹⁹University of Florida, Gainesville, FL, 32611, USA ²⁰University of Alabama, Tuscaloosa, AL, 35487, USA ²¹Brookhaven National Laboratory, Upton, NY, 11973-5000, USA

February 13, 2018

*Spokesperson:(takasumi.maruyama@kek.jp)

For details please see the JSNS² TDR: <u>arXiv:1705.08629</u>

Phys. Rev. D 98, 075020 (2018)

Pseudo-Dirac Dark Matter

M. Battaglieri et al., (2017), arXiv:1608.08632 [hep-ph].

KPS Fall Meeting - Oct 23-25, 2019

Phys. Rev. D93, 103011 (2016), arXiv:1603.04859

LSND

JSNS² / LSND comparison

- Same neutrino signal (muon decay at rest)
- Same detection mechanism (Inverse beta decay (IDB))
- Similar baseline (24m vs 30m)
- Low beam backgrounds (detector location / short pulses)
- Much better S/N (pulsed beam, neutron tagging via Gd, PSD)
- Better energy resolution. (Scintillator vs Ch.-level light)
- High statistics

JSNS2 / LSND comparison

	JSNS ² (1st phase)	LSND
Target Mass.	17t	167t
Baseline	24m	30m
Beam energy	3GeV	0.8GeV
Beam power	1MW	
Beam Duty Factor	1/8,800	1/14
Stopping µ⁻/µ⁺	1.7x10 ⁻³	6.5x10 ⁻⁴
Delayed signal	8MeV, $\Delta t \sim 30 \mu s$	2.2MeV, $\Delta t \sim 200 \mu s$
Liquid Scintillator	Gd Loaded	Cherenkov + Low LO Scinti.
Cosmic fast n rejection	Pulse Shape Discri.	Cherenkov
$\overline{\nu}_e$ signal events	$\frac{29}{year}{(sin^2 2\theta = 0.003)}$	15/year
$\Delta E/E$	3%@35MeV	7%@45MeV