ENHANCED PHOTON TRAP FOR HYPER-K

Carsten Rott (SKKU) in collaboration with

Peter Gumplinger (TRIUMF), Seongjin In (SKKU), Fırat Nurözler (TRIUMF), and Fabrice Retière (TRIUMF)

OUTLINE

- ► Motivation
- Enhanced photon trap design

Cerenkov

light

- ► Performance study
- ► Application to Hyper-K
- ► Conclusions Plans

MOTIVATION

- Price tag of large volume neutrino detectors could be significantly be reduced by utilising photon traps that rely on smaller PMTs
 <u>Pros</u>
 - Cost Reduction
 - Larger photo sensitive area
 with higher photon detection
 efficiency
 - Smaller PMTs (lower dark noise, smaller timing spread)
 Added complexity in reconstruction

Hyper-K Meeting July 12 - 13, 2016 @ London

Carsten Rott

<u>Cons</u>

- Timing resolution
- (slightly) larger position uncertainty on detected photon

ENHANCED PHOTON TRAP EXAMPLE

Hyper-K Meeting July 12 - 13, 2016 @ London

Carsten Rott (SKKU)

WAVELENGTH SHIFTER

Saint Gobain BC-482A

• BC-484: 380 nm \rightarrow 435 nm

BC-484 Optical Spectra

Hyper-K Meeting July 12 - 13, 2016 @ London

BROADBAND MIRROR

Designed by Iridian Spectral Technologies

Hyper-K Meeting July 12 - 13, 2016 (

Figure 4. Customized dichroic mirror reflectivity used for our study. 6

TEST CASES

- Consider four
 different setups
 - ► 20" PMT
 - ► WLS Trap
 - WLS with dichroic mirror

 Full trap (dichroic mirror
 encloses PMT)

SIMULATION PACKAGE

Customised simulation with GEANT4

Hyper-K Meeting July 12 - 13, 2016 @ London

TEST SETUP

- Cherenkov spectrum generated 200-700nm
- ► Photons are injected 20m away from the Photon trap
- Photons are injected perpendicular to the "Wall"

Define the "path" how photons are detected to evaluate the benefit of the different elements of the photon trap Hyper-K Meeting July 12 - 13, 2016 @ London
Carsten Rott

COLLECTION EFFICIENCIES

	Configuration	Primary	Internal	External	Total
1	20" PMT	1.00			1.00
2	12"PMT + WLS	0.38	0.32		0.70
3	12"PMT + WLS +Dichroic	0.38	0.36	0.10	0.84
4	Full Trap	0.31	0.37	0.30	0.98

Total collection efficiency is reduced compared to a single 20" PMT

Hyper-K Meeting July 12 - 13, 2016 @ London

DETECTION EFFICIENCIES

► Total detection efficiency is increased compared to a single 20" PMT

Hyper-K Meeting July 12 - 13, 2016 @ London

DEPENDENCE ON WLS THICKNESS (DETECTION EFF.)

 Efficiency can be enhanced by increasing the thickness of the Wavelength shifter

Benchmark design 3cm WLS

	Configuration	Primary	Internal	External	Total
	20" PMT	1.00			1.00
	Full Trap (0.5cm WLS)	0.32	0.28	0.61	1.21
A	Full Trap (3.0cm WLS)	0.32	0.64	0.52	1.48
B	Full Trap (15.0cm WLS)	0.32	0.79	0.66	1.77

► 20% increase in efficiency by going to "thick" WLS

Hyper-K Meeting July 12 - 13, 2016 @ London

Carsten Rott (SKKU)

TIMING DELAY (DETECTION EFFICIENCY)

TIMING DISTRIBUTION

- Timing distribution of detected photons
- Time relative to emission (20m away)
- WLS Remission time delay dominating for 60cm x 60cm designs and smaller.
 - ➤ Faster WLS (~3ns) be beneficial

Design	WLS Trap	Delay Time	Full Trap Delay Time		
Size (cm ²)	Mean (ns)	RMS (ns)	Mean (ns)	RMS (ns)	
100 x 100	26.2	20.5	29.2	22.0	
80 x 80	22.0	18.3	24.6	19.7	
60 x 60	17.6	15.8	19.4	16.8	
40 x 40	13.1	13.1	14.1	13.5	

times include the delay for reemission (\sim 12ns)

Hyper-K Meeting July 12 - 13, 2016 @ London

NOTE ON TIMING DISTRIBUTION

- Photons were injected 20m away from the photon trap
 - Light propagation is wavelength dependent
 - Reference time is set with single PMT which has peak efficiency at 300nm, however WLS has peak efficiency around 400nm

Artificial delay of 4ns introduced by injecting 20m away

$$n = \frac{c}{v} \quad \Delta t = \frac{L(n_1 - n_2)}{c}$$
calculate for 20m $\rightarrow \sim 2ns$
observed ~ 3 -4ns (?)

IAPWS 5C: "Release on refractive index of ordinary water substance as a function of wavelength, temperature and pressure" (September 1997) published by International Association for the Properties of Water and Steam (IAPWS)

D. Segelstein, "The Complex Refractive Index of Water", M.S. Thesis, University of Missouri, Kansas City (1981)

Hyper-K Meeting July 12 - 13, 2016 @ London

CUMULATIVE TIMING DISTRIBUTIONS

For WLS trap 50% of photons are detected within 10 ns window

ANGULAR DEPENDENCE OF INJECTION

Detection efficiency depends on the injection angle

- Inject uniformly right above the photon trap with the same incident angle
 - Negligible dependence on φ, stronger dependence on θ(incident angle)

50

60

40

10

20

0.02

0

90

80

Phi

70

APPLICATIONS TO HYPER-K

Inner detector

- Enhanced photo traps can be superior to large PMTs in photo coverage
- Timing worse, but depends on the physics goals
 - "Direct photons" for reconstruction
 - ► Hybrid detector
 - within same tank / individual tanks

Outer detector

Possibility to increase inner volume by reducing size requirement for outer volume

CONSIDERATIONS

- Enhanced photon trap can be further optimisation considerations
 - ► Impact of choice of PMT ~20%
 - Still need to investigate "Extended Green"
 - Investigate other WLS
- Incident angle dependence needs to be measured
- ► Feasibility to Hyper-K
 - Many small PMTs as part of a large photon trap ?
- Synergy with other R&D efforts
 - Example: Wavelength shifting optical module (WOM)

INGU LOI

http://arxiv.org/pdf/1401.2046.pdf

CONSIDERATIONS

Reflected photons

- Reflected photons add an additional "signal" but require more sophisticated reconstruction
- fiTQun uses 5% reflectivity of liners, full study needed with increased reflectivity.
- Radio purity of wavelength shifters
 - ► WLS typically have very high radio purity
- Durability of wavelength shifters
 - WLS have been used in long duration collider experiments with minimal degradation

CONCLUSIONS

- Enhanced photon traps could help to reduce costs
- Further optimisations of photon trap design
- Plan to publish design / performance of photon trap
- Seeking funding in Korea and Canada
- Aim to build prototype
- Detailed costing of enhanced photon trap
- Implementation to Hyper-K simulation framework need
 - Impact on physics

Hyper-K Meeting July 12 - 13, 2016 @ London

BACKUP SLIDES

PHOTOMULTIPLIER TUBE

https://www.hamamatsu.com/resources/pdf/etd/p-dev_2015_TOTH0023E.pdf

PHOTOMULTIPLIER TUBE

SPECTRA FOR THE DIFFERENT CASES

PHOTON COLLECTION EFFICIENCY MAPS

