Water Room

Access Tunnel

Status of Indirect Dark Matter Searches and Prospects for Hyper-K Carsten Rott Sungkyunkwan University, Korea rott@skku.edu 0,2016 TEAGOX ONDER DAVATE COLUER COLUER COLUER Water Depth 60m Height

7th Open Meeting for the Hyper-Kamiokande Project 10-11 July 2016 Queen Mary University of London Diameter 74m

- Motivation
- Dark Matter Search with Neutrinos
- Current Results and Sensitivities
 - Galactic Halo
 - Earth WIMPs
 - Solar WIMPs
- Conclusions

Motivation

Motivation

- Dark Matter already gravitationally "observed", but ...
 - What is it ?
 - What are it's properties ?

Motivation

- Neutrino detectors are extremely competitive for probing WIMP Nucleon scattering cross section
- Neutrino signals can be used to set a conservative limit on the total dark matter self-annihilation cross section
- Neutrino signals have been able to test "claims" from other indirect channels or direct detection
 - Positron fraction (PAMELA, AMS-02, Fermi, ...)
 - DAMA/Libra
- Complementary to direct detection, different dependence on astrophysical uncertainties

Dark Matter Searches with Neutrinos

Role of Neutrinos

WIMP - Weakly Interacting Massive Particle

X

$$\tilde{\chi} \qquad \qquad W^+, Z, \tau^+, b, \dots \Rightarrow e^\pm, v, \gamma, p, D, \dots$$
$$\tilde{\chi} \qquad \qquad W^-, Z, \tau^-, \overline{b}, \dots \Rightarrow e^\mp, v, \gamma, \overline{p}, D, \dots$$

- Production
 - Colliders
- Indirect Searches
 - Annihilation of Dark Matter in Galactic Halo, ...
 - Gamma-rays, electrons, neutrinos, anti-matter, ...
 - Annihilation signals from WIMPs captured in the Sun (or Earth)

• Neutrinos

- Direct Searches
 - WIMP scattering of nucleons
 - → Nuclear recoils

Dark Matter Annihilation Signals

Identify overdense regions of dark matter

> \Rightarrow self-annihilation can occur at significant rates

- Pick prominent Dark Matter target
- Understand / predict backgrounds
- Exploit features in the signal to better distinguish against backgrounds

Dark Matter Signals at Hyper-K

0

Dwarf Spheroidal

Open Hyper-Kamiokande Meeting July 10 - 11, 2016

Current Results and Sensitivity Estimates

Neutrino Detectors

ANTARES

KM3Net

Active

Retired

Prototype

Construction

Planned

Lake Baikal

GVD

Galactic Halo / Galactic Centre

Sources

Dark Matter Halo Analyses

IceCube Collaboration arXiv:1606.00209v1

Dark Matter Halo Analyses

IceCube Collaboration arXiv:1606.00209v1

Solar WIMPs

Solar WIMP Signal

IceCube Solar WIMP Limits

PRL 110, 131302 (2013)

- IceCube 79-strings configuration (partially completed DeepCore)
 - 318 days (May 2010 May 2011)
- Search for an excess of events from the direction of the Sun
 - use track events for better pointing
- Separate summer and winter analysis
 - use outer detector to veto down-going muons for summer analysis

Spin-dependent scattering

Observed events

Carsten Rott

Open Hyper-Kamiokande Meeting July 10 - 11, 2016 og10 (σ_{Sip} / cm²)

Improved Solar WIMP Bounds

Carsten Rott

http://nulike.hepforge.org./

Solar WIMPs

update from IceCubeColl., PoS(ICRC2015) 1099

pMSSM model scans

• Hard / Soft defined by fraction of hard and soft final states

No evidence for dark matter

Earth WIMPs

Earth WIMPs

- Dark Matter could be captured in the Earth and produce a vertically up-going excess neutrino flux
- IceCube:Two statistically independent analyses
 - Low energy & High energy
 - IC86-I (327 days of livetime during 2011/12)

Earth WIMPs

Astro-physical Neutrinos / Heavy Dark Matter ?

High-energy neutrino search 4yrs

54 events (15 track-like, 39 showers) observed Expectation from conventional atm. muons and neutrinos ~21.6

ICRC 2015 proceedings

IceCube Collaboration, *Science 342, 1242856 (2013)*, IceCube Collaboration, *Phys. Rev. Lett 113, 101101 (2014)*

- Mesons including charm quarks in the atmosphere decay immediately to produce neutrinos, known as prompt neutrinos which are not observed yet.
- ERS, or Enberg et al. Phys. Rev. D 78, 043005 (2008) is used as a baseline prompt model
- Significance are based on the exact neutrino flux model, not including the uncertainty of the model.
- Atmospheric Bkg : CR Muon (12.6 ± 5.1), Conv. Neutrino ($9.0^{+8.0}$ -2.2),
- Over 60 TeV < E < 2000 TeV, the spectrum best fit with E^{-2.58}
- E⁻² spectrum predicts too may neutrinos above ~2 PeV. So, a cutoff or steeper spectrum needed.

~7 sigma rejection of atmospheric-only hypothesis

Heavy Dark Matter Decay

- Heavy Decaying Dark Matter (example $\chi \rightarrow vh$)
- Focus on most detectable feature (neutrino line)
- Backgrounds steeply falling with energy, highest energy events provide best sensitivity
- Continuum and spacial distribution could help identify a signal
- Bounds from Fermi-LAT and PAMELA derived from search for bb annihilation channel (dominant decay channel of Higgs).

Bound on lifetime ~10²⁸s derived with IceCube data

Heavy Dark Matter Decay

- Heavy Decaying Dark Matter (example $\chi \rightarrow \nu h$)
- Focus on most detectable feature (neutrino line)
- Backgrounds steeply falling with energy, highest energy events provide best sensitivity
- Continuum and spacial distribution could help identify a signal
- Bounds from Fermi-LAT and PAMELA derived from search for bb annihilation channel (dominant decay channel of Higgs).

Bound on lifetime ~10²⁸s derived with IceCube data

Through-going muon tracks

Up-going Track-like neutrino event Edep= 2.6 ±0.3 PeV

unfolded data assuming unbroken best-fit power law

The event above was detected in IceCube on June 11, 2014. Image: IceCube Collaboration.

Beyond Standard Model Physics at the PeV scale

- Intense interest in high-energy neutrino region
 - Observations defy any simple explanation from a single generic source class
 - Multiple sources classes ?
 - Hints of new physics ?
 - PeV Scale Right Handed Neutrino Dark Matter
 - Super Heavy Dark Matter
 - Neutrino Portal Dark Matter
 - Right-handed neutrino mixing via Higgs portal
 - Heavy right-handed neutrino dark matter
 - Leptophilic Dark Matter
 - PeV Scale Supersymmetric Neutrino Sector Dark Matter
 - Dark matter with two- and many-body decays
 - Shadow dark matter
 - Boosted Dark Matter
 - ..

Future Plans

IceCube Gen 2

Open Hyper-Kamiokande Meeting July 10 - 11, 2016

PINGU - Precision IceCube Next

IceCube PINGU Collaboration arXiv:1401.2046

Generation Upgrade

• PINGU upgrade plan

- Instrument a volume of about 5MT with 20-26 strings
- Rely on well established drilling technology and photo sensors
- Create platform for calibration program and test technologies for future detectors
- Physics Goals:
 - Precision measurements of neutrino oscillations (mass hierarchy, ...)
 - Test low mass dark matter models

PINGU LOI to be updated this summer

PINGU Dark Matter Sensitivity

Indirect Detection of Dark Matter

ORCA Schedule

- Phase 1:
 - 7 strings (funded)
 - operational by 2017/2018
- Phase 2:
 - 115 strings (funding request ongoing)
 - operation by 2020

ORCA 3 years - tracks+showers

Open Hyper-Kamiokande Meeting July 10 - 11, 2016

35

Solar WIMPs Hyper-K

Direct Detection Neutrino Floor

Neutrinos from stopped meson decay in the Sun

Low-Energy Neutrinos from the Sun

Neutrino signals - Example W-Boson

Let's have a closer look at this:

 e^+V_e I high energy v + em shower

 $\mu^+ \nu_{\mu}$ I high energy ν + muon

 T^+V_T I high energy v + tau decay

qq hadronic shower

Neutrino yield

WIMP Sensitivity Super-K/Hyper-K

Pion and Kaon yields

π⁺ r-value - fraction of center-of-mass energy which goes into $π^+$

K+ r-value - fraction of center-of-mass

For low dark matter masses difference between flux from stopped pion and kaon decay at rest can be used to disentangle annihilation final states

Sensitivity

1398

Conclusions

- Indirect Searches for Dark Matter with Neutrinos provide some unique discovery potential
- Hyper-K will be most competitive for dark matter (in particular SD WIMP-nucleon scattering) captured in the Sun for masses (4-25GeV)
 - Beat "direct detection neutrino" floor
 - Lines from stopped meson decay enhance signals and give sensitivity to branching fractions
- Earth WIMPs (for SI WIMP-nucleon scattering) of interest due to different dependence on dark matter velocity distributions
- Expect best sensitivity for dark matter annihilation in the Milky Way halo for low WIMP masses

Thanks !

Importance of Neutrinos

- Galactic halo, Galactic center, Dwarf spheriodals, Cluster of Galaxies, ...
 - Gamma-rays extremely competitive for low WIMP masses, but any detection would likely require an independent confirmation of neutrino signals
 - high masses(>ITeV) large neutrino telescopes are most competitive
- Dark Matter in the Sun
 - Discovery channel for neutrinos
 - Due to significant neutrino absorption at high energies, Solar WIMP signals are detected in the energy range below 100GeV
- Dark Matter in the Earth
 - Capture mechanism highly favors low-mass (<60GeV) WIMPs
 - Very large uncertainties for any flux prediction as annihilation and capture rate are not expected to be in equilibrium

GC Sensitivity Hyper-K

