Cosmic Ray Physics, overview



Next: CR’s are out there:
how do we detect them?

Two Basic Approaches:
A) Stuck on Earth:
1) Identify the CR primary particle you’re most interested in
2) Identify the energy range that you’re most interested in for that CR
3) Look up the interaction cross-section of that CR, at that E, with matter (air, e.g.)
4) Figure out decay products (aka, ‘secondaries’)
5) Determine layout of an experiment designed to detect the maximum number of secondaries

B) Out in space:
1) No atmospheric target => detect primary directly!



What science do CR detectors target?

Emphasis on answering three basic questions:
1) How well can we define the composition of the primary
cosmic ray particles incident on Earth from the secondaries?
-What is the relative abundance of protons vs. gammas Vvs.
heavy (not Hydrogen) nuclei?
2) What is energy ‘spectrum’ (dN/dE) and what does that tell
us about how the CR’s are generated?
e.g., dN/dE~EY: “power law’=>shock traversal
y: “spectral index”
or could have multiple spectral indices=>multiple
processes
3) What is the angular distribution of the CR we measure, and
do they point back (i.e., cluster’) to sources?




In the beginning (while RF Scott et al were ice-locked in a tent)
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Victor Hess (April, 1912, Austrian [Fordham U, 1938]): 1)
lonization increases with altitude 2) Ascent during solar eclipse
shows that sun is not source



Figure 1: The Wulf electroscope. The 17 cm diameter cvlinder with depth 13 cm was made of
Zinc., To the right is the microscope that measured the distance between the two silicon glass wires
illuminated using the mirror to the left. The air was kept drv using Sodium in the small container
below the microscope. According to Wulf [I6], with 1.6 ion pairs per second produced, the tension
was reduced by 1 V. the sensitivity of the instrument, as measured by the decrease of the inter-wire
distance.
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Pierre Auger (1937, French)

Detection of Extensive Air

Showers via coincidence .
Too small to touch,

measurements taste, smell, or
feel...”
JULY-O0CTORER, 1930 REVIEWS OF MODERN PHYSICS YOLUME 1
Extensive Cosmic-Ray Showers
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Reed Richards (1961, USA) — The American approach
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Practical consequences: Cancer rates in

airline pilots x2 general population
Bush proposal to send man to Mars (2004)
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Space station mold survives 200 times the radiation
dose that would kill a human

By Richard A. Lovett | Jun. 28, 2019, 8:05 PM




nature

Letter | Published: 02 November 2017

Discovery of a big void in Khufu’s Pyramid
by observation of cosmic-ray muons

Kunihiro Morishima &=, Mitsuaki Kuno, [...] Mehdi Tayoubi
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Cosmic Rays in Everyday life

Runaway Breakdown
and the Mysteries
of Lightning

ectric fi
too weak to a e atmos lectrical breakdown.
i of

But cosmic rays can play a surprising role in the dra

Alexander V. Gurevich and Kirill P. Zybin




Primer on Cosmic Rays In Everyday life

Runaway Breakdown
and the Mysteries

f:e-fbs!:f:c%el;:i-ctﬁrelld: Rh%derclouds are generally G ree n S b u rg ] KS ) J u n e 7 ! 20 11

too weak to initiate the atmosphere’s electrical breakdown.

But cosmic rays can play a surprising role in the drams:_
lightning.

Alexander V. Gurevich and Kirill P. Zybin



Lightning Detection at the Telescope Array Cosmic Ray

events per 0.1 msec
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GRAPES-0 measured V !

thundercloud®

2014-12-01: GRAPES-3 (Gamma Ray Astronomy PeV EnergieS phase-3; Ooty) measures 1.3 gigaVolt thundercloud
potential!
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Negative muons with KE<1.3 GeV don’t reach ground!
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Your smartphone camera is a CR detector
* http://wipac.wisc.edu/deco - (2-3/24 brs)
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http://wipac.wisc.edu/deco

What Is the cosmic ray abundance on planet Zolar?
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Energy spectrum of various CR nhuclei
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Galactic vs.
Extragalactic
sources
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Flux'E*10% (eV? m? &' sr™)
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Universe is not transparent for HE photons or nuclei!
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Calculate the proton-energy
thrashold for p+y., . -

g A+/1NNDNN\
;ﬁ E Cross section for yp scattering in mb;
Prob interaction in dx=Nodx;
N=400/cm?
dx~(1/16) x 10%* m
1 Mpc=3 x 10> m

10

b) Do_free neutrons feel the GZK effect? (6 Mpc; 1 Mpc=3.085 x 10%* m)

If CMB photons are everywhere, how can cellphones work?
What is the GZK cutoff at z=5?



Proton — Neutrino Production In Pictures
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UHE nu from blazars
* CR acceleration occurs in jets =

— AGN or GRB Viman, .. T
* Abundant target material » .

— Most models assume photo-production:
' pHYT A+ p+T > p+YY
* pPHYT A+ n+T > n+U+V

wWaxman, Bahcall, PRD 59,

¢ ~ - mit”’ 023002 (1998). Also
Ideal case ( ~ “Waxman-Bahcall limit”) 923002 (1005) Also

— Strong magnetic fields retain protons in jets

— Neutrons escape, decay to protons & become UHECR
— Extra-galactic cosmic rays observed as protons

— Energy content in neutrinos = energy in UHECR


http://www.ucd.ie/math-phy

Calculate the photon-
energy threshold for

y+yCI\/IB — e+e_



—t
=]

Flux d/dE, - E, * m® s s Gev'™]
3

|

Existing explanation of CR spectrum
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Energies and rates of the cosmic-ray particles
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What does the expected Neutrino flux look like?

by Mealy Gal Te\w Fatf Ealy

F*__T__-T__q_

SN burst

terrestial || reactor

SN remnants l_l"
TDIGZK

ElmDEPHEriE PPFD

b (em~ 571 MeV')

3 3 4 12 15 18 E (&)



Neutrons?

e A free neutron has t=881 s. Determine the minimum
Enrgy for a neutron to reach Earth from Andromeda.

All Bright Galaxies
Mearer Than
20 Million Light Years

Top View

You Area Here
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g \"
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How do you get high-energy CR’s?

* Need to confine, e.d., a charged particle in a
magnetic field ‘accelerator’ for enough
revolutions so that it can obtain a high-energy

=>Need large product of B-field x gyroradius
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The size of the Universe “LHC”
accelerator?

DO

To use LHC magnets to deliver 10?° eV we need a radius of the
accelerator to be about 1.5 times the distance Earth -Sun (Why?)

~2q%y*a?l3c?; a~1lr

synchrotron




Gamma Ray Bursts (~100 s light curves)

25000
GREB 990123 Light Curve
sooon 4+ ROTSE optical data
15000 ——— 20 to 50 KeY
n ———50 to 100 KeY
5 ——— 100 to 300 Ke¥
g over 00 KeW
. 10000 =—#—optical
Cosmological sources!
BATSE
garnmma-
sa00 + ray data
But what are they? |
2574 BATSE Gamma-Ray Bursts
l:l T T T T 1
F5200 Z5250 F5E00 F5350 Z5400 Z5450

seconds of day 990123

1/10° yrs Milky Way (mass extinctions)?
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What do experiments look like?

Take advantage of LFSF “"Low Frequency
Sheep Focusing” (valid in Europe, onl

Lo-Band Antenna (30380 MHz).

7 il
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-CR’s are either protons (nuclel), y, v - protons interact with solid
matter over a distance of cm (targeted cancer therapies, e.g.)

-photons similarly interact over cm (and even sub-cm) length scales
(the paper to light trick)

a solar neutrino passes through ~1 light-year of lead before
Interacting.

Punchline: protons/nuclei/y interact in the atmosphere and produce
‘secondaries’ at the ground; neutrinos (generally) don’t

Primaries detected in-space



How do we reconstruct the primary from
the secondaries?

1) Measure the ionization/scintillation produced when one of
the charged particles (e/u) passes through your ground detector
Includes fluorescence of nitrogen left in wake of shower
2) Measure Cherenkov light produced as (e/u) traverse the
atmosphere, or when (e/u) pass through, e.g., ground water tank
3) Measure the radio-frequency radiation (' geosynchrotron’,
e.g.) produced as charged particles in shower accelerate and
bend in geomagnetic field
Pretty much all surface detector arrays are based on 1)-3)
N.B. Since footprint is so large, need to sample=>need model to
figure out how much you lost!
4) Radar techniques? (will discuss, time permitting)




























electrons/positrons

Muons neutrons

1) Assuming Heitler model (e), estimate the number of positrons, electrons and photons at a depth of 4X (assume the

atmosphere has uniform density) 2) Estimate optimal detector height for detecting a 1 Joule electron, assuming we
want to place the detector at shower maximum and using the data on the graphs on the next page, 3) How does t

grow with E : a) linearly, b) quadratically, c) logarithmically?

primary



EM-only vs. hadronic showers

em cascade hadronic cascade

primary X,
nucleus




gamma-detection, e.g.

Primary particle of
*— high energy low energy ——




Surface Detector arrays now include radio!

primary
particle

. lelescope
radio light particle for fluores-

antenna detector detector cence light



Radio (no phasing)

Equivalentc.m. energy Vs, (GeV)
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Q: The nominal energy threshold of in-air radio detection is 100 PeV. Assuming an E>’ charged spectrum, how many more
events (roughly) do you detect by phasing (perfectly) 16 antennas?



20 separate, independent sub-arrays, each of 10
000 radio antennas deployed over 10 000 km?

In-air
UHECR
detection
using radio
technigues

dOI0 ATITay TOr NeuLrino wveiLtecuion PR

~ Cosmic ray

Radio emission "C

= L i = Antenna optimized tor horizontal showers
= Bow-tie design, 3 perpendicular arms
= Freguency range: 50-200 MHz

» Inter-antenna spacing: 1'kr'n



New technigue offLocal Muon; Density: Spectra

Wwasirealized by means: of

5 . /
FLssian-lializan Collanoraiiorn
MNatlof E{'F ééea_rc I NUCEer Imyersiy MEP(JJ SIS
Istituio di Fisica dello Spazio Interplanetario, INAF, Torino, lialy
Dipartirnenio di Fisica Generale dell’ Urnverqlrrl ci Torino | lialy



Side SM: 8.4 m? each
e 0o, ~1cm; o, ~1°




A typical muon bhundle event in Side DECOR

(9 muons, 78 degrees)




Muon bundle event (geometry reconstruction)

Nlam=40,N5=26,N6=23,NR1=0 ,NR2=0 ,Suml1=0 ,Sum2=0 ,Sob-00000001,00000000
N1=35,N3=14 nCup= 0 SumAmMp=1.26e+03 01110100,00000000 NGroup2=8,n=8,n1=8,n2=9,n0=8,nx=9,ny=8,0ne=0
N2=32,N4=13 nCdown= 0O NPMT=143 ETel= 0.0% ERec= 60.8%

Date=06-12-04 23:25:26.027 Nevent=219242 Group: fm=53.15 tm=77.87 Recon: fi=54.41 t=80.70 F= 0.0



A “record” muon bundle event

++++++4++ 44+ HHEEEEEE FEEEEE R R R R HEEEEEEE




Muon bundle event (geometry reconstruction)

Nlam=31,N5=30,N6=3L NR1=0 NR2=0 NGroup2 =13
N1=30N3=26 nCup= 3 SumAmp=557e+04
N2=30N4=28 nCdown= 3 NPMT=175 ETel= 0.0% ERec=49.7%

— I
-..____m||||=

—

Date= 00-05-03 06:11:04.043 Nevent= 847205 fm= 181 fm= 9.7
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