Neutrino Astronomy

- + Neutrinos penetrate the whole Universe
- + Neutrinos point back to the source
- + Neutrinos are produced at the sources of the cosmic rays
- + Neutrinos are not reprocessed at the sources
- + Neutrinos expected from dark matter particle annihilation
- Low expected flux of extragalactic neutrinos
- Small cross section
- => Needs gigantic detector volumes
- Backgrounds: Atmospheric Neutrinos, Atmospheric Muons, Prompt charm decays

Sources of neutrinos

- "Low energy" Big Bang Neutrinos (BBN), 300 per cubic centimeter, 13 billion years old. E~.001 eV
- "Medium energy" Solar neutrinos, 60 billion per thumb per second.
 - On average, only one will be stopped by biomass per lifetime.
 - Aside: 40K neutrinos in salt=>each person emits 200 million neutrinos per day
- "High energy" Supernova neutrinos, 10¹⁵ eV, 1/m²/sec
- "Ultra-High energy neutrinos" 10²⁰ eV blazar/GRB/topological defect neutrinos: 1/km²/year

What does the expected Neutrino flux look like?

Neutrino Fluxes at Earth: expectations

Waxman-Bahcall upper "bound" for neutrinos derived from CR flux

If neutrons can escape: Source of cosmic rays Neutrinos produced in ratio ($v_e:v_{\mu}:v_{\tau}$)=(1:2:0)

 $\mu^+ \rightarrow e^+ + \nu_e + \bar{\nu}_\mu$

 $\rightarrow \mu^+ + \nu_\mu$,

 π^+

$$n \rightarrow p + e^- + \overline{\nu}_e$$

 $p + \gamma_{\rm CMB} \rightarrow \Delta^+ \rightarrow$ Cosmogenic neutrinos

Delta resonance approximation:

$$p + \gamma \to \Delta^+ \to \begin{cases} n + \pi^+ & 1/3 \text{ of all cases} \\ p + \pi^0 & 2/3 \text{ of all cases} \end{cases}$$

 π^+/π^0 determines ratio between neutrinos and gamma-rays

$$\pi^0 \rightarrow \gamma + \gamma$$

Cosmic messengers

High energetic gamma-rays; might cascade down to lower E

Photohadronic features

For detection rates, must fold in Neutrino Cross-Section (note Glashow resonance)

Photohadronics (more realistic)

MPIK Heidelberg - Walter Winter

(Mücke, Rachen, Engel, Protheroe, Stanev, 2008; SOPHIA)

Cross-section measured up to 300 GeV. Up to about 10 TeV based on structure functions from HERA. Above different extrapolations.

Shadowing effect of the Earth

PeV acceptance around horizon EeV acceptance above horizon

Earth attenuation

Earth

- High energy neutrinos interact in the Earth:
- 10^{17} 10^{16} ν 10^{15} 10^{14} 10^{13} $\ell_{
 m int}~[{
 m cmwe}]$ Solar diameter 10¹² 10^{11} Earth diameter 10¹⁰ 10^{9} Lunar diameter 10^{8} Detector 10^{7} 10^{6}

 E_{ν} [GeV]

• However: Tau neutrino regeneration through $\nu_{\tau} \Rightarrow \tau \Rightarrow$ (17%) $\mu + \nu_{\mu} + \nu_{\tau}$

Earth is opaque to neutrinos above 1 PeV!

Neutrino propagation (vacuum)

- Key assumption: Incoherent propagation of neutrinos $P_{\alpha\beta} = \sum_{i=1}^{3} |U_{\alpha i}|^2 |U_{\beta i}|^2 \qquad (see Pakvasa review, arXiv:0803.1701, and references therein)$
- Flavor mixing:
- Example: For $\theta_{13} = 0$, $\theta_{23} = \pi/4$: (In principle, sensitive to Re exp(-i δ) ~ cos δ)

275 GeV v_{μ} BEBC (Big European Bubble Chamber) event

Markov & Zheleznkyh (INR, Moscow) propose using Antarctic Icecap as neutrino target (1986)

Neutrino detectors: 1: the moon

Detector Design Considerations: Muon range in ice

Muon propagator: MMC, Chirkin, D. 27th ICRC, HE 220, Hamburg 2001

Radio Coherence (also in-air)

Caution: LPM: electron-showers

- Consider successive scatterings of electron off target nuclei
 - Electron momentum p
 - Momentum transfer b/w nucleus and incident e-: q
 - Each scattering gives a photon of momentum k
 - $q=p_i-(p_f+k) \sim sqrt(E^2-m^2)-sqrt([E-k]^2-m^2)-k$
 - ~k/2γ²
 - =>as γ increases, q decreases (billiard balls)
 - BUT, as q decreases, the uncertainty principle requires that the interaction zone (L_f) increases
 - If L_f>atomic separation, no longer independent interactions and interference effects mitigate σ