ICE and ASTROPHYSICS

Reminder: What are standard tools of astronomy? (JWST, Hubble, e.g.)

• • • • • • • • • • • •

CMB: Limitation to Telescopes (if eyes saw λ =1 mm)

• • • • • • • • • • • •

Alternate astronomical tracers

July 7, 2025 3 / 70

イロト イヨト イヨト イヨト

Neutrinos point directly to sources (but rarely interact)

Ice, Ice, Bambino

Neutrino factoids

300 Big Bang Neutrinos (in addition to 400 CMB photons) per cc
each 13.7B vrs old, E_ν ~ 1→100 μeV

- Solar neutrinos, 50 trillion/body/second.
 - On average, only one will be stopped by biomass per lifetime.
- Aside: ⁴⁰K neutrinos in salt
 - each person emits 200 million neutrinos per day
- Supernova: Sources of 10^{15} eV neutrinos
- Higher Energies Gamma-Ray Bursts, Active Galactic Nuclei, 'cosmogenic' neutrinos

Small interaction probability >> need BIG target transparent to radio waves: Earth icecaps, e.g.

Detect radiowaves from debris following neutrino-ice collision!

Detection Strategy

・ロト ・ 四ト ・ ヨト ・ ヨト

RNO-G (Summit Station, Greenland)

- + High pt. on icesheet
- + well-characterized ice!
- + Less logistically strained than South Pole
- "North Winds"

• • • • • • • • • • • • •

July 7, 2025

7/70

- It rains!!

Radar Echo Telescope (Summit, Greenland)

July 7, 2025 8 / 70

Detection: Pure as the driven snow

Ice, Ice, Bambino

July 7, 2025 9 / 70

dzb

From Snow Queen to...

ъ

・ロト ・ 日 ト ・ ヨ ト ・

dzb

Dielectric permittivity

Qualitatively, dielectric constant ϵ for any material determined by response of electrons in medium to incoming EM radiation fields

- electrons bound to atomic nuclei by Coulomb force (~spring) in 3-d
- Incoming EM field drives atomic electrons into oscillation
- Re-radiation of field: index of refraction
- Absorbed signal: attenuation
 - Resonance (water in microwave oven, e.g.)
- Asymmetric (non-spherical)

response: birefringence

These dielectric properties largely determine ν detection rate.

ICE

- Chemistry: it gets bigger when it freezes!
- Physics: Dielectric stuff you hoped you could forget
 - SP ice .ne. Greenland ice!
- Biology
 - Stuff lives in it in ice cores!
 - Astrobiology: Enceladus?
- Climatology
 - Albedo and Negative feedback
 - Snowball Earth
- Astrophysics
 - Clear at optical and also radio frequencies
 - Ice as a good cosmic-ray target
 - Cosmic-ray collisions with ice molecules visible from km-scale distances

Inupiaq (Alaska) have 100 names for ice!

dzb

July 7, 2025 12 / 70

Chemistry: 18 Shades of Ice

- Terrestrial (familiar) ice: "Ice 1h"
- 1996: Ice XII discovered
- 2006: Ice XIII and Ice XIV
- 2009: Ice XV found extremely high pressures and 143 C.
 - At P>1.55×10¹²Pa (10M atm) ice→metal
- Ice, water, and water vapor coexist at the 'triple point': 273.16 K (0.01 C) at P=611.657 Pa.
 - 1° ≡1/273.16 of difference b/w triple point and absolute zero (defn as of May 2019)

Oddly, $\rho_{ice} < \rho_{water}$

(this happens for Ge, Bi, Si, Pu, liquids that bond into tetrahedrons in solid phase) (sadly, also for water in cells)

July 7, 2025 14 / 70

A I > A = A A

Socio-Cultural impact: Refrigeration, Curling, Marvel's Iceman (2024: new series)

Refrigeration: 400 BC: Persian engineers carve ice in winter and store in 5000 m^3 insulated ('sarooj' - sand, clay, egg whites, lime, goat hair, and ash) caverns in desert during summer

Why is ice bluish? Absorption(λ)

э July 7, 2025 16/70

-

・ロト ・日下 ・ ヨト ・

dzb

and snow white? Reflectivity and climate

э July 7, 2025 17/70

ъ

• • • • • • • • • • • •

Let it Snow, Let it...

July 7, 2025 18 / 70

Albedo, ice ages, and the extent of glaciation

- Last glacial max: 20ka
- pre-Illinois glac: 200ka ago

イロト イヨト イヨト イヨト

```
July 7, 2025 19 / 70
```

Glaciation, cont

Ice, Ice, Bambino

July 7, 2025 20 / 70

Snowball Earth (750Ma) - but, how?

One hypothesis (based on evidence that CO_2 concentration precipitously dropped at that time):

- Following pangea break-up, more 'interior' acid rain exposes basalt rocks
 - Basalt⇒Major CO₂ sink
 - Cooling + increased glaciation at Poles⇒cooling due to lack of greenhouse gases⇒ albedo ↑⇒ cooling ↑

Ice is everywhere in Solar System

Earth water/ice Likely NOT from comets - D:H higher ×2 for comets. pre-existing - possibly locked below surface and released from below (water vapor during volcanic eruptions, e.g.)

July 7, 2025 22 / 70

A (10) A (10) A (10)

Earth has (only) some water

HOW THE SOLAR SYSTEM'S LARGEST OCEAN WORLDS COMPARE IN SIZE

				Earth has a surprisingly small amont of water compared to other worlds in the Solar System. Each measurement is the spherical radius of the world and its water (including ice):				
Sector Se	DIONE	EARTH	EUROPA			CALLISTO	TITAN	GANYMEDE
Water radius:	Water radius:	Water radius:	Water radius:	Water radius:	Water radius:	Water radius:	Water radius:	Water radius:
140 mi./	300 mi./	430 mi./	550 mi./	630 mi./	730 mi./	1,120 mi./	1,180 mi./	1,460 mi./
220 km.	480 km.	690 km.	880 km.	1010 km.	1170 km.	1,800 km.	1,890 km.	2,350 km.
World radius:	World radius:	World radius:	World radius:	World radius:	World radius:	World radius:	World radius:	World radius:
157 mi./	349 mi./	3,959 mi./	972 mi./	738 mi./	840 mi./	1,498 mi./	1,601 mi./	1,635 mi./
252 km.	561 km.	6,371 km.	1,565 km.	1,187 km.	1,352 km.	2,410 km.	2,576 km.	2,631 km.

SOURCE: Steve Vance; NASA/JPL-Caltech

BUSINESS INSIDER

< 日 > < 同 > < 回 > < 回 > < □ > <

Europa: $2 \times$ Earth water Ganymede: $39 \times$ Earth water

dzb

Ice, Ice, Bambino

July 7, 2025 23 / 70

Enceladus: 10-50 km thick ice crust over water

speculate life in water below ice crust...

July 7, 2025 24 / 70

• • • • • • • • • • • •

Enceladus XSect

→ < Ē > Ē < つ < ⊂ July 7, 2025 25 / 70

イロト イヨト イヨト イヨト

Subglacial Antarctic Lakes Scientific Access (e.g)

https://salsa-antarctica.org/

Retrieve 1067 m deep sample from Mercer Sub-glacial lake 500 km from SP!

NEWS · 18 JANUARY 2019

EXCLUSIVE: Tiny animal carcasses found in buried Antarctic lake

The surprise discovery of ancient crustaceans and a tardigrade emerged from a rare mission to drill into a lake sealed off by a kilometre of ice.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Life traces @z=-1 km

Sediments crumble as an underwater camera touches the bottom of Whillans Lake in Antarctica.

IMAGE COURTESY ALBERTO BEHAR, JPL/ASU, AND NSF/NASA

dzb

Ice, Ice, Bambino

July 7, 2025 27 / 70

Ice Cores and (fuzzy) WAIS psychrophiles

dzb

Ice layers chronicle CO₂ & Volcanoes

July 7, 2025 29 / 70

Ice Likes to Move

dzb

Some Ice Likes to Move Fast

Ice transports radio waves

32/70

12/18 Test Ice as a CR target medium: $\text{Re}(\epsilon_{ice}) \Rightarrow$ 'horizon', $\text{Im}(\epsilon_{ice}) \Rightarrow L_{atten}$

Ice, Ice, Bambino

The SPICE core ice-hole

View of South Pole Station from SPICE core site

dzb

Double pulses and the mirage effect

July 7, 2025 36 / 70

-

Double pulses and mirages

▶ < ≣ ▶ ≣ ৩৭০ July 7, 2025 37 / 70

• • • • • • • • • • • •

Curved Signal paths owing to velocity gradient!

July 7, 2025 38 / 70

Double pulses and the mirage effect

39 / 70

(Coolest ever) example-Huygens construction

Figure: Huygens Construction/Feynman Path Integral

Ice, Ice, Bambino

July 7, 2025 40 / 70

electron waves propagates like Huygens wavelets Particle "path" is the one for which waves interfere constructively "Principle of Least Action"⇔Fermat's Least Time Principle

July 7, 2025 41 / 70

< □ > < □ > < □ > < □ >

ARA registered signals

dzb

Ice, Ice, Bambino

July 7, 2025

42 / 70

n(z) profile (https://arxiv.org/pdf/2406.00857)

43/70

SPICE borehole and Summit Station Density Data

And BIREFRINGENCE! v depends on polarization

dzb

Inside the ice, only two stresses

Ice c-axes (symmetry axes)

BIREFRINGENCE! velocity depends on polarization

ICS1 signals measured in co-located HPol (red) vs. VPol (blue)

Making holes in the ice

A hole

Summary of ice dielectric properties

- Ice attenuation length: 1000 m @ λ=1 m; 100 m @ λ=500 nm
- Ice scattering length: (TBD @ 1 m); 50 m @ λ =500 nm
- Ice index-of-refraction: n=1.78 @ λ =1 m; n=1.45 @ λ =500 nm
- Birefringence: δn/n~0.002 both radio/optical

< □ > < □ > < □ > < □ >

Measuring ICE ϵ : 1. n(z) $\propto \rho(z)$?

Determines double pulse structure and extent of 'shadow zone'

Volume Scattering? https://arxiv.org/pdf/2405.19472

What happens when radio waves interact with electrons in ice molecules?

- Coherent layer scattering: $P \propto 1/r^2$
- 2 Coherent/Incoherent volume scattering $P \propto 1/r^4$

Volume Scattering may add background to neutrino signals

Bistatic radar: Xray-ing the ice

-

• • • • • • • • • • • • •

dzb

at Taylor Dome, Antarctica

Bottom Reflection Studies.

Horn antennas send waves polarized along two perpendicular axes

July 7, 2025 53 / 70

• • • • • • • • • • • •

SP bedrock echo as $f(\phi)$

Internal layer echo as $f(\phi)$

dzb

July 7, 2025 55 / 70

 $A(\phi)$

Bedrock echo strength as $f(\phi)$

57 / 70

cf Summit Station echogram, August 2021

dzb

Ice, Ice, Bambino

July 7, 2025 58 / 70

Stretch Radar echoes to layer conductivity

▶ < Ē▶ Ē ∽ Q (C July 7, 2025 60 / 70

イロト イヨト イヨト イヨト

Attenuation/Absorption Length

Greenland (RNO-G) vs. South Pole (ARA, ICG2R)

- Firn layer (∝ shadowing) thickness (n_{surface} → n_{deep ice}: 100 m/150 m)
- Attenuation Length, upper 1500 m: 1.5 km/0.9 km
- Attenuation Length, all depths: 0.65 km/0.8 km
- Birefringence: 0.002/<0.0002 (Summit!)
- ice thickness: 2.85 km/3.1 km

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Shadow zone is unshadowed!

Signals traveling horizontally over 3 km

July 7, 2025 62 / 70

< 6 b

Shadow zone signals vary rapidly with depth and frequency!

Mysteries: Amplitude(depth)

Dec 2018 VPol SNR vs. SPUNK zTx (r corrected)

Mysteries: Amplitude(polarization,depth)

Ice, Ice, Bambino

Why is the R signal so much stronger than D, particularly at the Refract \rightarrow Reflect transition (where there should be a DROP in R signal, since some is now escaping!)

July 7, 2025 66 / 70

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

RICE B2xB4 - Tx↓

Note features on surface reflection!

July 7, 2025 67 / 70

RICE B2xB4 - Tx↑

Reproducible!

July 7, 2025 68 / 70

Inversion in timing?

dzb

Ice, Ice, Bambino

July 7, 2025 69/70

My summary

1. Radio wave measurements offers a path towards detection of ultra-high energy neutrinos

- 2. However, a) we've never detected one, and b) radio wave propagation through the ice have many more complexities than current simulations and estimates include
- 3. If we had a more complete fundamental understanding of all the impurities and anisotropies in the ice, we might be able to explain all this, but we are (many) years away from that!