Summit S11/S12 measurements

Mohammad, Matthew, Curtis Mark Stockham, Scott Voigt

- 1. S12&S11 set-up and data-taking, S12 results.
- 2. Curtis: S11 data analysis and results coming.
 - 3. Possible follow-up for 2026

June 2, 2025

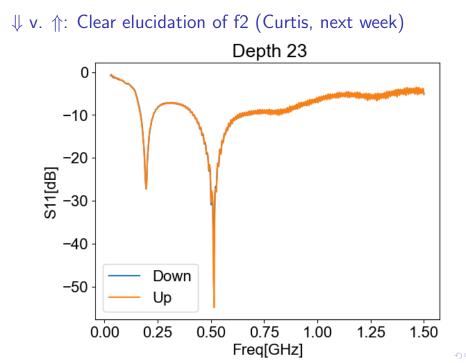
▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Science goals:

S11: n(z) from $f_{ant}(z); l = (2m + 1)\lambda/2$ gives nodal resonances

- 1. Can we improve on 2024 n(f1(z)) measurement?
- 2. Can we extract refractive index profile n(f2(z)) from second resonance?
- 3. Is z > -20 m structure real (if so, what are implications for propagation of Askaryan from in-ice uhecr)?

4. Is
$$-79 \ m > z > -84 \ m$$
 structure real?


S12/S21:

1) how does signal originating in firn propagate (in-ice uhecr)?

2) can we extract n(z) from S12/S21 phase?

3) published SPICE \rightarrow ARA data: As signal propagation becomes increasingly horizontal:

- ► A_{Hol} : $A_{VPol} \rightarrow 0.8$
- spectral shift to lower frequencies
- Signals sensitive to small vertical displacements (\sim 10 cm)
- Oddities in surface pulsing (Matthew's analysis)

Systematic Concerns

- bends in coaxial cable?
- VNA droop @-25 C?
- At throat of Saltzman hole, d=21 cm; unknown depth at which d=9.7 cm?
- Effects of multiple connectors? (should be calibrated out, but...)
- Snow accumulation in centralizer brushes with time?

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Top of hole

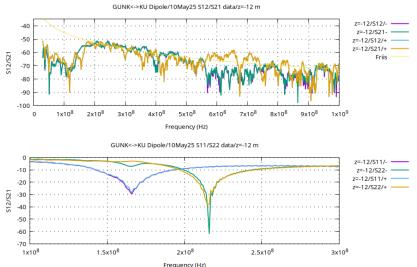
Parameters of S12/S21 Data-taking

- ► FieldFox VNA port 1→30 m LMR-600→GUNK dipole antenna→Saltzman hole
- ► FieldFox VNA port 2→80 m LMR-600→KU dipole antenna→DISC
- (unfortunately, second KU dipole confiscated at KCI airport)
 - N9913B 'standard operating range' -10→55 C; our operation at -31 C (-45 C wind chill);
 - cloth sleeve (modified gaitor) + hand-warmers to warm unit
 - Cable was marked with tape at 1 meter intervals; depths are approximate (probably to 10 cm)

• Measurements taken both \downarrow and \uparrow for consistency check

NB: 1. VNA sweeps S12, then S21; as we were hand-holding (lifting/lowering) antennas, not entirely stationary.

- 2. DISC data thru casing
- 3. S11 & S22 data to check S12/S21 measurements
- 4. My recollection: VNA@P_{max} (9 dBm)/MM: lower P_{out}

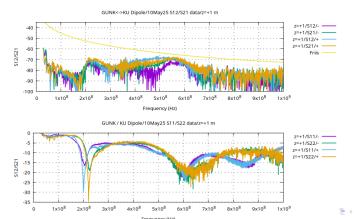

z=-1 m (shadow zone): S12/S21 Data

Good msrmnt: S12==S21 && $\uparrow=\downarrow$ (within depth errors) shadowed, but agrees with Friis??

GUNK<->KU Dipole/10May25 S12/S21 data/z=-1 m z=-1/S12/- -----40 z=-1/S21/z=-1/S12/+ -50 z=-1/S21/+ Friis -60 S12/S21 -70 -80 -90 -100 1x10⁸ 2x10⁸ 3x10⁸ 4x10⁸ 5x10⁸ 6x10⁸ 7x10⁸ 8x10⁸ 9x10⁸ 1x10⁹ 0 Frequency (Hz)

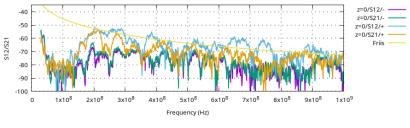
z=-12 m (unshadowed)

Slight offset (<10 cm) in vertical location of GUNK (\uparrow v. \downarrow), based on S22

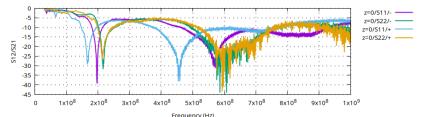

, (....)

z = +1 m

1. Signal power 100-300 MHz suppressed relative to other traces

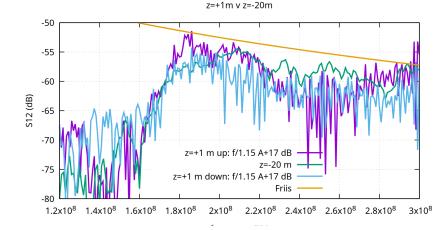

2. Only trace to show strong ripples (df \sim 2.5 MHz)

Lowest S12 of all traces \Rightarrow destructive interference b/w D/R?, BUT not observed for z=-1 m, nor 8/21 LPDA surface S12 (phase shift across Fresnel zone should suppress interference due to surface inversion)



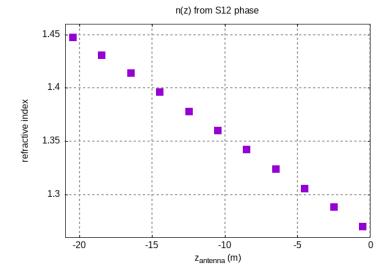
 $\begin{array}{l} z=\!0 \ m: \ \uparrow \sim \! 15 \ dB > \downarrow; \ S21 \uparrow \ \text{loses power beyond } 200 \ \text{MHz} \\ (\text{Only sweep with such a large difference } b/w \uparrow / \downarrow) \\ \text{No clear indication of surface wave propagation } (E(r) \propto \! 1/r) \\ \text{From S11} \! \Rightarrow \! \text{clear offset } b/w \uparrow / \downarrow \ \text{vertical positioning} \end{array}$

GUNK<->KU Dipole/10May25 S12/S21 data/z=0 m


z < -11m: S12=S21, BUT $\downarrow \neq \uparrow$

- variation b/w $\uparrow \downarrow \sim 5$ dB
- ▶ In such cases, $S12_{\downarrow} > S12_{\uparrow}$
- Two interpretations:
 - VNA was beginning to fail at low temperature, but:
 - did not see this on bench
 - If so, then shape of \uparrow =shape of \downarrow (not obviously the case)
 - differences of a few cm can significantly impact horizontal propagation through the firn
 - If this is a Huygens effect, then shapes should diverge more at higher frequencies (studying now)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00


 (aside: observed that meter-scale depth differences significantly impacted RICE shadow zone propagation)

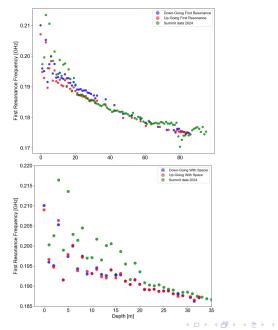
z=+1 m v z=-20 m: Check migration of S11(n)

- * ロ * * 個 * * 目 * * 目 * - 回 * - つ & つ

n(z) from S12 phase? Map $\Delta \phi$ to Δn , BUT need to select m(2 π) wrap-around!

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ(で)

Comments and Future Work


- ► In S12/S21 measurements, no evident shadow zone transition (maybe not surprising, since $L_{\alpha}^{shadow} \sim 500$ m)
- ► ⇒Should be in-ice CR signals emanating from shadow zone, with larger geometric aperture than non-shadowed!
- 2026+ S12/S21 work: 3×20-30 m deep holes w/ Kovacs drill (Eric has one + one currently at KU)
 - Set VNA max points (1600), limit BW 150-500 MHz to better map out φ(S12/S21) ⇒n(z) from phase only!

Over-constrained system, since large # frequencies

- \blacktriangleright Current data too sparse to unwrap ϕ
- Take data in firn with finer step size (20 cm?)
- Working at higher outside temperature
- In addition to co-lower, explore range of elevation angles.
- Store Re(Z) and Im(Z) rather than \mathcal{R}

IMHO, still need rno-g SPICE-like pulsing; GISP-2? 2026: return to DISC (to be re-cased in July), and try to (finally) scope hole

top: Raw data/bottom: zoom shallow

2024 v 2025 parameters of S11 data-taking

	2024	2025
N _{avg}	1	16
cable	120-m LMR-400	30-m LMR-600
		$+$ 2 \times 30-m LDF4-50A
drop	GV530	lower by hand
σ_z	1 cm	10 cm
Pout	-15 dBm	0 dBm
Т	-8 C	-25 C
Sweep	$0{ ightarrow}1~{ m GHz}$	$0{ ightarrow}1~{ m GHz}$
Z _{min}	-100 m	-85.5 m
runs	no spacers	run A/B w/o and with spacers
data	drop \rightarrow 100 m/dz++ \rightarrow 0 m	A: dz-1→z=-25 m; &↑
		B: dz-1 \rightarrow -32 m; dz-5 m \rightarrow -77 m
		dz-77→-85.5 m; &↑