Workshop on Next Generation Nucleon decay and Neutrino Detectors (NNN 09)

Estes Park, CO

IceCube and Deep Core

A REAL PROPERTY AND ADDRESS OF

selected results and perspectives

Paolo Desiati desiati@icecube.wisc.edu

October 8-11, 2009

University of Wisconsin - Madison

Friday, October 9, 2009

IceCube

high energy neutrino astronomy

atmospheric neutrinos

energy estimation resolution

point sources

IceCube 40 strings (6 months of 2008) search for points of HE neutrinos

low energy neutrino astrophysics

Deep Core

- 6 dedicated + 7 IceCube strings
 - 72m inter-string spacing (125m)
 - 7m DOM spacing (17m)
 - high QE PMT (38% higher)
 - ► ≥ 5x effective photocathode density
- IceCube as veto + veto cap
- in the clearest ice
 - $\lambda_{atten} \sim 40-45m$ (cf. 20-25m in shallower ice)

11

Deep Core

- augment IceCube response to LE
 - + significant improvements for $E_{\nu_{\mu}} \sim 10$ 300 GeV
 - extend to full sky searches
- funding: EU hardware, US logistics
- primary science goal is indirect search of dark matter
- capable of studying fundamental neutrino properties and searching for neutrino sources

Deep Core atmospheric muon veto

- capability to detect *low energy* down-going neutrinos
 - visibility of southern hemisphere
- top/outer IceCube DOMs used to veto atmospheric muons
- identify atmospheric µ↓ entering
 Deep Core
- enhance v₁ detection efficiency in Deep Core volume
- veto rejection $\leq 10^5 10^6$

Deep Core effective area & volume

- \bullet effective area for up-going ν_{μ}
- reconstruction efficiency not yet included
- relative improvement likely to increase

- \bullet effective volume for down-going ν_{μ} interacting in Deep Core
- reconstruction efficiency not yet included

indirect dark matter search : WIMP from Sun

- IceCube + Deep Core will extend sensitivity to lower energy and will probe large region of allowed phase space in the σ_{SD}
- σ_{SI} well constraint by direct detection experiments
- require models of solar DM distribution & annihilation modes : W⁺W⁻ (hard), bb (soft)

Deep Core : fundamental physics

- muon neutrino disappearance : feasable
- tau neutrino appearance : reasonable
- neutrino mass hierarchy : difficult

IceCube as supernova detector

- \bullet low energy ν_e illuminate the ice
 - 500,000+ hits/15sec for SN1987A-like event at 10 kpc
 - main detection : $\overline{\nu}_e p \rightarrow ne^+$
 - high statistics (0.25%)
 - Iow noise rate (280 Hz)
 - no pointing
 - no event-by-event detection

effective volume/DOM depends on ice properties

...first proposed by Halzen, Jacobsen & Zas, astro-ph/9512080

IceCube as supernova detector

- construction of IceCube proceeds : 59 (2009), 77 (2010), 80 (2011) strings
 - collect & analyze data during construction : reliable and stable
- low energy extension Deep Core : 1 (2009), 6 (2010) strings
 - ▶ ~10 300 GeV
- IceCube to detect MeV neutrinos from stellar collapse : 2.5 Mton detector + significant incease from Deep Core high sensitivity PMTs
 - 5σ sens. @50 kPc
- IceCube to address topics of v astrophysics and connection to the origin of cosmic rays, large scale anisotropy of GCR

spare slides

growing IceCube

Strings	Year	Livetime	µ rate	V rate
IC9	2006	137 days	80 Hz	I.7 / day
IC22	2007	275 days	550 Hz	28 / day
IC40	2008	~365 days	1000 Hz	110 / day
IC59	2009	~365 days	1500 Hz	160 / day
IC86*	2011	~365 days	1650 Hz	220 / day

Moon shadow

- 5 months of IC40
- Moon max, altitude at the South Pole (2008): 28°
- Median primary cosmic ray energy: 30TeV

-($\delta_{\mathsf{event}} - \delta_{\mathsf{moon}}) [^o$

- Deficit: 5 σ (~900 events of ~28000) -consistent with expectation.
- Verification of angular resolution and absolute pointing.
- More statistics will allow study of angular response function

Deep Core from above

- 6 strings with hi QE PMT
 - ▶ 60 DOMs/string
- 7 surrounding IceCube strings
 - ► 22 DOMs in DC range

Deep Core PMT's

- quantum efficiency ~38% higher (405 nm, -40C), ~ 30% higher noise rate in ice.

- low temperature (-40°C) noise behavior scales with quantum efficiency as expected.

Deep Core (animation)

drill (animation)

Friday, October 9, 2009

M. Amenomori et. al Science, vol. 314, pp. 439–443, Oct. 2006

A. Abdoet. al. ArXiv:astro-ph/0806.2293, 2008.

first high statistics measurement @ southern hemisphere