Observation of Anisotropy in the Galactic Cosmic Rays at TeV Energies with the IceCube Detector

Segev BenZvi University of Wisconsin – Madison

IceCube Detector

Neutrinos and cosmic rays are detected using Cherenkov emission in ice sheet

ICRC 2011 - Beijing - HE 1.2

Staged Deployment

Staged Deployment

Staged Deployment

Observing Cosmic Rays with IceCube

- IceCube has proven to be an excellent cosmic ray detector
- Muons from cosmic ray air showers trigger the in-ice detector at >1 kHz
- Sensitivity to cosmic rays from southern hemisphere between 1 TeV – 1 PeV (median = 20 TeV)
- We can build a cosmic ray skymap with high statistics
 - 3.2×10¹⁰ events in IC59
 - 3.7×10¹⁰ events in IC79

Map Building

• **Time scrambling algorithm** to estimate expected counts:

 $dN(\Omega,t) = A(\Omega) \cdot R(t) \ d\Omega \ dt$

- 1. Bin the arrival directions in equal-area sky map: HEALPix library N_{side} =64 (0.9°/pixel). Note: 3° resolution for cosmic ray tracks
- 2. Resample local coordinates of events recorded during a fixed time period Δt (2h to 24h). Randomly reassign event times to local coordinates to get new, randomized celestial coordinates
- 3. Sum over all time periods Δt to get a "reference" or "expected count" map <N> for the full data set
- 4. Subtract expected counts from data:
 - 1. Relative intensity map: $\delta I = (N \langle N \rangle) / \langle N \rangle$
 - 2. Significance map: Li & Ma (ApJ 1983) with $\alpha = 1/(N_{resample})$

IceCube-59 Relative Intensity Map

• Relative intensity: $\frac{\Delta N_i}{\langle N \rangle_i} = \frac{N_i(\alpha, \delta) - \langle N_i(\alpha, \delta) \rangle}{\langle N_i(\alpha, \delta) \rangle}$.

• See also: Abbasi et al., ApJ 718 (2010) L194

ICRC 2011 - Beijing - HE 1.2

IceCube-59 Significance

• Do correlations exist on small angular scales as well?

IceCube-59 Power Spectrum

- Sky map contains correlations at several angular scales
- Gray bands: 68% and 95% bands of simulated isotropic maps

Remove Dipole + Quadrupole

IC59 Residual Map

• Subtract D+Q fit from relative intensity map, and you get this:

• To see more structure, we have to rebin (or "smooth") the map

ICRC 2011 - Beijing - HE 1.2

IC59 Smoothed Residual Map

• Example: structures visible after 20° smoothing:

IC59 Residual Significance

• Li and Ma significance: several "hot" spots (>5σ before trials)

Identification of Significant Hot Spots

region	right ascension	declination	optimal scale	peak significance	post-trials
1	$(122.4^{+4.1}_{-4.7})^{\circ}$	$(-47.4^{+7.5}_{-3.2})^{\circ}$	22°	7.0σ	5.3σ
2	$(263.0^{+3.7}_{-3.8})^{\circ}$	$(-44.1^{+5.3}_{-5.1})^{\circ}$	13°	6.7σ	4.9σ
3	$(201.6^{+6.0}_{-1.1})^{\circ}$	$(-37.0^{+2.2}_{-1.9})^{\circ}$	11°	6.3σ	4.4σ
4	$(332.4^{+9.5}_{-7.1})^{\circ}$	$(-70.0^{+4.2}_{-7.6})^{\circ}$	12°	6.2σ	4.2σ
5	$(217.7^{+10.2}_{-7.8})^{\circ}$	$(-70.0^{+3.6}_{-2.3})^{\circ}$	12°	-6.4σ	-4.5σ
6	$(77.6^{+3.9}_{-8.4})^{\circ}$	$(-31.9^{+3.2}_{-8.6})^{\circ}$	13°	-6.1σ	-4.1σ
7	$(308.2^{+4.8}_{-7.7})^{\circ}$	$(-34.5^{+9.6}_{-6.9})^{\circ}$	20°	-6.1σ	-4.1σ
8	$(166.5^{+4.5}_{-5.7})^{\circ}$	$(-37.2^{+5.0}_{-5.7})^{\circ}$	12°	-6.0σ	-4.0σ

IC59 data: R. Abbasi et al., ApJ (in press), arXiv:1105.2326

ICRC 2011 - Beijing - HE 1.2

Update: IC79 Residual Significance

• Li and Ma significance after 20° smoothing:

Identification of Significant Hot Spots

IC59 data: R. Abbasi et al., ApJ (in press), arXiv:1105.2326

PRELIMINARY

region	right ascension	declination	optimal scale	peak significance	post-trials	IC79 (post-trials)
1	$(122.4^{+4.1}_{-4.7})^{\circ}$	$(-47.4^{+7.5}_{-3.2})^{\circ}$	22°	7.0σ	5.3σ	6.8σ
2	$(263.0^{+3.7}_{-3.8})^{\circ}$	$(-44.1^{+5.3}_{-5.1})^{\circ}$	13°	6.7σ	4.9σ	5.4σ
3	$(201.6^{+6.0}_{-1.1})^{\circ}$	$(-37.0^{+2.2}_{-1.9})^{\circ}$	11°	6.3σ	4.4σ	6.4σ
4	$(332.4^{+9.5}_{-7.1})^{\circ}$	$(-70.0^{+4.2}_{-7.6})^{\circ}$	12°	6.2σ	4.2σ	6.1σ
5	$(217.7^{+10.2}_{-7.8})^{\circ}$	$(-70.0^{+3.6}_{-2.3})^{\circ}$	12°	-6.4σ	-4.5σ	-6.1σ
6	$(77.6^{+3.9}_{-8.4})^{\circ}$	$(-31.9^{+3.2}_{-8.6})^{\circ}$	13°	-6.1σ	-4.1σ	-4.3σ
7	$(308.2^{+4.8}_{-7.7})^{\circ}$	$(-34.5^{+9.6}_{-6.9})^{\circ}$	20°	-6.1σ	-4.1σ	-4.4σ
8	$(166.5^{+4.5}_{-5.7})^{\circ}$	$(-37.2^{+5.0}_{-5.7})^{\circ}$	12°	-6.0σ	-4.0σ	-6.4σ

ICRC 2011 - Beijing - HE 1.2

Comparison to Northern Hemisphere

Milagro + IceCube Combined (IC22, IC40, IC59, IC79) – 10° Smoothing

Summary

- IceCube data indicate the presence of a significant and persistent anisotropy at large and small angular scales
 - Features are similar to observations in northern sky
 - Signal is present in all data sets and grows with statistics
 - IC59 results are in press (ApJ): see also arXiv:1105.2326
- Origin: galactic or heliospheric?
 - IceCube will operate for most of the next solar cycle and is well-positioned to search for heliospheric effects
- The energy-dependence of the anisotropy has also been investigated. See talk by R. Abbasi (HE 1.1, Aug. 13)

The Cosmic Ray Data Set

- Data Summary and Transfer (DST) filter: fast online reconstruction of events passing simple majority trigger (mostly muons)
- Trade-off: quality of reconstruction for large statistics

IceCube-59	L1 Muon Filter	DST	
Live Time	96%	96%	
Trigger rate	35 Hz	1.4 kHz	
N _{events}	8.0×10 ⁸	3.2×10 ¹⁰	
Angular resolution	<1°	3°	
Energy resolution	$\Delta \log_{10}(E_{\mu}) = 0.2 - 0.3$	$\Delta \log_{10}(E_{\rm CR}) = 0.5$	

ICRC 2011 - Beijing - HE 1.2