

# Recent Observations of Atmospheric Neutrinos with the IceCube Observatory

#### Paolo Desiati WIPAC - UW-Madison for the IceCube Collaboration





i 1 7

ICRC The Astroparticle Physics Conference 34th International Cosmic Ray Conference



1



 $\sin^2(2\theta_{24})$ 

# outline



# The IceCube-PINGU Collaboration

#### 48 institutions 300+ members

University of Alberta-Edmonton (Canada) University of Toronto (Canada)

**Niels Bohr Institutet** (Denmark)

Queen Mary University of London (UK) -University of Oxford (UK) University of Manchester (UK)

> Université de Genève (Switzerland)

Clark Atlanta University (USA) **Drexel University (USA)** Georgia Institute of Technology (USA) Lawrence Berkeley National Laboratory (USA) Massachusetts Institute of Technology (USA) Michigan State University (USA) **Ohio State University (USA)** Pennsylvania State University (USA) South Dakota School of Mines & Technology (USA) Southern University and A&M College (USA) Stony Brook University (USA) University of Alabama (USA) University of Alaska Anchorage (USA) University of California, Berkeley (USA) University of California, Irvine (USA) University of Delaware (USA) University of Kansas (USA) University of Maryland (USA) University of Wisconsin-Madison (USA) University of Wisconsin-River Falls (USA) Yale University (USA)

#### **International Funding Agencies**

Fonds de la Recherche Scientifique (FRS-FNRS) Fonds Wetenschappelijk Onderzoek-Vlaanderen (FWO-Vlaanderen) Federal Ministry of Education & Research (BMBF) German Research Foundation (DFG)

**Deutsches Elektronen–Synchrotron (DESY)** Inoue Foundation for Science, Japan **Knut and Alice Wallenberg Foundation NSF-Office of Polar Programs NSF–Physics Division** 



Deutsches Elektronen–Synchrotron (Germany) Friedrich-Alexander-Universität Erlangen-Nürnberg (Germany) Humboldt-Universität zu Berlin (Germany) Max–Planck–Institut für Physik (Germany) Ruhr-Universität Bochum (Germany) **RWTH Aachen (Germany)** Technische Universität München (Germany) **Technische Universität Dortmund (Germany)** Universität Mainz (Germany) **Universität Wuppertal (Germany)** 

Université libre de Bruxelles (Belgium) Université de Mons (Belgium) Universiteit Gent (Belgium) Vrije Universiteit Brussel (Belgium)

Sungkyunkwan University (South Korea)

> Chiba University (Japan) University of Tokyo (Japan)

University of Adelaide (Australia)

University of Canterbury (New Zealand)

Swedish Polar Research Secretariat The Swedish Research Council (VR) University of Wisconsin Alumni Research Foundation (WARF) **US National Science Foundation (NSF)** 



#### **ICRC 2015** T. Karg

#### cosmic ray surface detector



#### **ICRC 2015**

V astrophysics C. Kopper

#### in-ice neutrino telescope



### IceCube Observatory



track (data)

factor of  $\approx 2$  energy resolution  $< 1^{\circ}$  angular resolution

 $\approx \pm 15\%$  deposited energy resolution  $\approx 10^{\circ}$  angular resolution (at energies  $\geq 100 \,\mathrm{TeV}$ )

### detection technique

cascade (data)

# **CC Tau Neutrino**

hybrid



#### "double-bang" and other signatures (simulation)

(not observed yet)







# identifying neutrinos



# background rejection





# neutrino telescopes in Antarctica AMANDA $\rightarrow$ IceCube





1999

10 strings  $1.5 \times 10^{-2} \text{ km}^3$ 206 optical modules **17** up-ward  $v_{\mu}$ 's resolution ~ 4°  $E_v \sim 1 \text{ TeV}$ 











1999

0 h

10 strings  $1.5 \times 10^{-2} \text{ km}^3$ 206 optical modules **263** up-ward v<sub>µ</sub>'s resolution ~ **4**°  $E_v \sim 1 \text{ TeV}$ 











1999

2001

2000-2006

19 strings  $7 \times 10^{-2} \text{ km}^3$ 677 optical modules **6595** up-ward v<sub>µ</sub>'s resolution ~ 2°  $\langle E_v \rangle \sim 1-5 \text{ TeV}$ 







**64230** down-ward μ resolution ~ **0.7**°

**43339** up-ward v<sub>µ</sub>'s

 $\langle E_v \rangle \sim$  **1-5 TeV** 







# $\mathsf{AMANDA} \rightarrow \mathsf{IceCube}$



#### IceTop

#### all-particle energy spectrum



CR spectrum & composition determines shape of atmospheric v and µ spectrum

**ICRC 2015** K. Rawlins T. Feusels

























#### hadronic interactions determine **shape** of atmospheric v and µ spectrum









11

$$\begin{cases} \phi_{\nu}(E_{\nu}) = \phi_{N}(E_{\nu}) \times \\ \left\{ \frac{A_{\pi\nu}}{1 + B_{\pi\nu}\cos\theta E_{\nu}/\epsilon_{\pi}} + \frac{A_{K\nu}}{1 + B_{K\nu}\cos\theta E_{\nu}/\epsilon_{K}} + \frac{A_{charm\,\nu}}{1 + B_{charm\,\nu}\cos\theta E_{\nu}/\epsilon_{charm}} \right\} \\ \end{cases}$$
Gaisser 1990

$$\begin{aligned} A_{i\nu} &= \frac{Z_{Ni} \times BR_{i\nu} \times Z_{i\nu}}{1 - Z_{NN}} \\ Z_{N\pi^{\pm}}(E) &= \int_{E}^{\infty} dE' \frac{\phi_{N}(E')}{\phi_{N}(E)} \frac{\lambda_{N}(E)}{\lambda_{N}(E')} \frac{dn_{\pi^{\pm}}(E', E)}{dE} \\ \epsilon_{i} &= \frac{kT}{Mg} \frac{m_{i}c^{2}}{c\tau_{i}} \quad i = \pi, K, charm, \dots \end{aligned}$$

 $\frac{Particle\,(i)}{\epsilon_i\,(GeV)} \mid \frac{\pi^{\pm}}{115} \mid \frac{K^{\pm}}{850} \mid \frac{K_L^0}{205} \mid \frac{K_S^0}{1.2 \times 10^5} \mid \frac{charm}{\sim 3 \times 10^7}$ 









- $\cdot \mathbf{v}$ 's and  $\mathbf{\mu}$ 's from same hadronic processes in cosmic ray atmospheric showers
- high level cross-calibration sensitive to hadronic interaction models



Energies and rates of the cosmic-ray particles













# low energy neutrinos 10 GeV - 300 GeV





#### low energy neutrinos







#### 10 GeV - 300 GeV

Phys. Rev. Lett. 111, 081801 2013

best fit

 $\Delta m_{23}^2 = 2.3 \times 10^{-3} \, eV^2$ 

$$\sin^2(2\theta_{23}) = 1$$

$$\chi^2 = 15.7/18$$

non-oscillation hypothesis rejected at 5.6σ (p-value ~ 10<sup>-8</sup>)







#### low energy neutrinos

- energy resolution resolves the wide minimum @ 25 GeV
- competitive with low energy experiments





#### IceCube - 3 years





### low energy neutrinos

$$P(\nu_{\mu} \to \nu_{\mu}) = 1 - \sin^2(2\theta_{23}) \, \sin^2\left(1.27 \, \frac{\Delta m_{23}^2 \, L}{E_{\nu}}\right)$$



#### IceCube - 4 years









- increasing data volume
- refined shape of spectrum
- reach **PeV** energy range
- sensitivity to **heavy quark** production in the atmosphere (for  $E_v \ge 0.4-1$  PeV)

 where is transition to astrophysical contribution of neutrinos ?

ICRC 2015 review talk by C. Kopper



# hadronic interaction models heavy quarks in the atmosphere





**MCEq** cascade calculations (Fedynitch) - **Poster 2** 

Sibyll 2.3 - Fedynitch+ ISVHECRI 2014





# hadronic interaction models heavy quarks in the atmosphere

#### Sybill 2.3 RC - Fedynitch+ IPA 2015



BERSS: A. Bhattacharya, R. Enberg, M.H. Reno, I. Sarcevic and A. Stasto, arXiv:1502.01076 ERS: R. Enberg, M. H. Reno, and I. Sarcevic, Phys. Rev. D 78, 43005 (2008). MRS: A. D. Martin, M. G. Ryskin, and A. M. Stasto, Acta Physica Polonica B 34, 3273 (2003). SIBYLL: arXiv:1503.00544 and arXiv:1502.06353 TIG: M. Thunman, G. Ingelman, and P. Gondolo, Astroparticle Physics 5, 309 (1996).

- non-perturbative effects
- intrinsic charm
- inclusive charm cross-section
- partonic saturation

#### hadronic models

Bhattacharya+ 2015

Garzelli, Moch & Sigl 2015









### hadronic interaction models heavy quarks in the atmosphere

Sybill 2.3 RC - Fedynitch+ IPA 2015





TIG - M. Thunman, G. Ingelman, and P. Gondolo, Astroparticle Physics 5, 309 (1996).

19, 2 (2003)

H3a - T. K. Gaisser, Astroparticle Physics 35, 801 (2012).

poly-gonato - [1] J. R. Hörandel, Astroparticle Physics

#### cosmic rays



21

- using IceCube as muon VETO
- lower energy with DeepCore
- events **starting** inside DeepCore
- particle ID: cascade-like events vs. track-like / hybrid events

• higher sensitivity to heavy quark production in the atmosphere (for  $E_v \gtrsim 10$  TeV)

#### contained $V_e + \overline{V}_e$









#### **IceCube-86 Phys. Rev. D91 12, 122004** 2015

$$\langle E_{\nu} \rangle \sim 1.7 \, TeV$$

$$R\left(\frac{\nu_{\mu} + \bar{\nu}_{\mu}}{\nu_{e} + \bar{\nu}_{e}}\right) = 16.9^{+6.4}_{-4.0}$$

- flavor ratio depends on uncertain  $K/\pi$
- $p + N \to \Lambda + K^+$ associated production
- $\mu^+/\mu^-$ • that affects  $\bar{\nu}/\nu$  and
- and affects spectral shape > 1 TeV





- determination of conventional flux independent of high energy contribution
- determination of charm flux influenced on astrophysical hypothesis (review talk by C. Kopper)

#### charm and astrophysics

#### **IceCube-86** Phys. Rev. D91 12, 122004 2015 Best fit prompt flux(x modified ERS) Best fit prompt flux for a given astrophysical y 8 [Error band is 68% C.L.] 5 3 **2**⊨ 0 1.9 2 2.3 2.4 2.5 2.0 Astrophysical Spectral Index (γ) 2.1 2.2 2 $\Delta$ LLH 90% CL 3 2 Ņ 68% CL 1.9 2.1 2 2.2 2.3 2.4 2.5 Astrophysical spectral index ( $\gamma$ )

charm from ERS 2008 CR spectrum from Gaisser 2012





- <100 TeV CR directly measured</p>
- <100 GeV v's from pions</p>
- <10 GeV v's geomagnetic effects</p>
- v oscillations constrained

- low energy v's with SuperK
- mid-high energy v's with IC / DC
- 6 orders of magnitude in energy







### high energy muons pointing resolution and interplanetary magnetic fields









# high energy leptons correlation with stratospheric temperatures



- long & short term correlations with high statistical precision: dynamical effects on air density
- temperature correlation coefficient indirect probe into  $K/\pi$
- no temperature correlation if prompt (charm) contribution dominates (PD & Gaisser, 2010)







# high energy leptons correlation with stratospheric temperatures







μ multiplicity - **ICRC 2013** 

2e8 events / day

**ICRC 2009 ICRC 2011** 







# high energy muons

#### Low-Energy



#### Bundles



#### minimum ionizing

2400 2600 2800 3000 3200 3400 3600 Slant Depth [m]

2200

minimum ionizing

2000 2200 2400 2600 2800 3000 3200 3400 Slant Depth [m]

#### **ICRC 2015** T. Karg Tue 4/8





#### stochastic energy losses





# high energy muons



- high energy inclusive muon spectrum compatible with additional contribution at HE
- prompt component from charm production and unflavored n mesons •

**ICRC 2015** T. Karg Tue 4/8










### particle physics ( $v + \mu$ )

- v oscillations
- high energy hadronic models
- forward physics
- heavy quarks
- v mass hierarchy

### geo-sciences

- stratospheric temperatures
- upper atmosphere winds
- short & long time temp. variations
- Earth science



### cosmic ray astrophysics ( $\mu$ )

- fields

### Pingu - K. Clark Gen2 - E. Blaufuss Fri 31/7 Fri 31/7

## atmospheric v and $\mu$

cosmic ray anisotropy probe of local interstellar

probe of local sources of CR

### detector calibration

angular pointing/resolution energy calibration

# test of Standard Model

- non standard oscillations
- sterile v's
- Lorentz invariance
- quantum gravity

### v astronomy

- transition to astrophysics of energy spectrum & flavor composition
- point and diffuse sources of cosmic rays







31

### supporting material



### cosmic rays & atmospheric leptons

- are accelerated in unidentified sources
- are composed of atomic nuclei
- propagate across magnetized plasmas
- hit Earth's atmosphere
- generate hadronic & e.m. showers





### cosmic rays & atmospheric leptons

### Calculation of atmospheric muons from cosmic gamma rays

### J. Poirier<sup>1</sup>, S. Roesler<sup>2</sup>, and A. Fassò<sup>3</sup>

<sup>1</sup>Center for Astrophysics at Notre Dame, Physics Dept., University of Notre Dame, Notre Dame, Indiana 46556 USA <sup>2</sup>Stanford Linear Accelerator Center, Stanford, California 94309 USA <sup>3</sup>CERN-EP/AIP, CH-1211 Geneva 23, Switzerland

# **Table 2.** Fractional contributions to the parents of the muons which reach sea level.

| $E_{\gamma}$ (GeV) | $\pi^+$ | $\pi^-$ | K <sup>+</sup> | <b>K</b> <sup>-</sup> | neutral kaons        |
|--------------------|---------|---------|----------------|-----------------------|----------------------|
| 1                  | 0.106   | 0.894   | 0.0            | 0.0                   | 0.0                  |
| 3                  | 0.495   | 0.485   | 0.020          | 0.0                   | $1.7 	imes 10^{-4}$  |
| 10                 | 0.492   | 0.489   | 0.011          | 0.007                 | $9.8 	imes 10^{-4}$  |
| 30                 | 0.482   | 0.482   | 0.019          | 0.014                 | $3.1 \times 10^{-3}$ |
| 100                | 0.478   | 0.477   | 0.022          | 0.018                 | $4.4 \times 10^{-3}$ |
| 300                | 0.477   | 0.476   | 0.023          | 0.019                 | $4.7 \times 10^{-3}$ |
| 1000               | 0.475   | 0.476   | 0.024          | 0.019                 | $5.2 \times 10^{-3}$ |
| 3000               | 0.476   | 0.475   | 0.025          | 0.020                 | $5.1 \times 10^{-3}$ |
| 10000              | 0.474   | 0.477   | 0.024          | 0.020                 | $5.2 \times 10^{-3}$ |

### SLAC-PUB-11092



## searching for neutrinos background rejection

• all-flavor searches:  $v_{\mu}$ ,  $v_e \& v_{\tau}$ 

through-going up-ward µ's &
 HE down-ward µ's





# searching for neutrinos background rejection

• all-flavor searches:  $v_{\mu}$ ,  $v_e \& v_{\tau}$ 

- through-going up-ward µ's & HE down-ward µ's
- contained cascades





# searching for neutrinos background rejection

• all-flavor searches:  $v_{\mu}$ ,  $v_e \& v_{\tau}$ 

- through-going up-ward µ's & HE down-ward µ's
- contained cascades
- HE starting events + self-veto
   & outer-veto







### Super-Kamiokande





### IceCube79 - DeepCore







### Super-Kamiokande







$$P(\nu_{\mu} \to \nu_{\mu}) = 1 - \sin^2(2\theta_{23}) \, \sin^2\left(1.27 \, \frac{\Delta m_{23}^2 \, L}{E_{\nu}}\right)$$

### IceCube79 - DeepCore







**5174** observed events 6830 expected events

in 953 days



# low energy neutrinos

### IceCube - 3 years







### IceCube - 3 years







### pointing calibration and ...

2014

### IceCube-40+59

### **Phys. Rev. D 89, 102004**





# high energy muons pointing resolution and angular resolution



### 2014



# high energy muons DOM calibration with muons



**IceCube calibrations** 

2014 **JINST 9, P03009** 

• minimum ionizing quasi-horizontal muons

- energy-independent losses in the ice
- single p.e. detected by DOM optical sensors

### absolute charge measurement

DOM sensitivity measurement



# high energy muons DOM calibration with muons

- charge distribution of PMTs
- **single p.e. peak** from minimum ionizing muons
- 0.2 p.e. trigger threshold
- HLC less likely to be from noise

### **IceCube calibrations**

### **JINST 9, P03009** 2014





# high energy neutrinos

- high quality through-going muons
- energy spectrum smoothly merge with *"low energy"* determinations (Super-Kamiokande, Fréjus)
- first time high energy atmospheric neutrinos







# high energy neutrinos











# high energy neutrinos up-ward through-going v\_+ $\overline{v}_{\mu}$



**ICRC 2015** 

M. Börner

Poster 3

**IceCube-59 Eur. Phys. J. C75, 116 2015** 







# high energy neutrinos and muons



### contained $V_e + \overline{V}_e$

IceCube-86

### arXiv:1504.03753 (PRD)

2015





### high energy neutrinos



### **Phys. Rev. D91 12, 122004**



### flavor composition

### 2015

Fedynitch et al. arXiv:1503.00544 - Sibyll 2.3RC1 - H3a CR composition





# high energy leptons correlation with stratospheric temperatures

# $T_{eff}(E_i,\theta) = \frac{\int dE_i \int dX \,\epsilon(E_i,\theta) \,\mathcal{P}_{\mu}(E_i,\theta,X) \,T(\theta,X)}{\int dE_i \int dX \,\epsilon(E_i,\theta) \,\mathcal{P}_{\mu}(E_i,\theta,X)}$

$$\alpha_T^{th}(\theta) = \frac{T \cdot \frac{\partial}{\partial T} \int dE_i \,\phi_i(E_i, \theta) \,\epsilon(E_i, \theta)}{\int dE_i \,\phi_i(E_i, \theta) \,\epsilon(E_i, \theta)}$$

$$\frac{\Delta I_i}{\langle I_i \rangle} = \alpha_T^{th} \frac{\Delta T_{eff}}{\langle T_{eff} \rangle}$$

temperature data from NASA AIRS instrument on board the Aqua satellite



PD et al., **ICRC 2011** 



# high energy leptons correlation with stratospheric temperatures







$$\phi_{\mu}(E_{\mu},\theta) = \phi_{N}(E_{\mu}) \times \left(\frac{1}{1+B_{\pi\mu}\cos\theta^{\star} H}\right)$$

$$A_{K\mu}/A_{\pi\mu} = \left(\frac{BR_{K\mu}}{BR_{\pi\mu}}\right) \left(\frac{Z_{K\mu}}{Z_{\pi,\mu}}\right) \left(\frac{Z_{NK}}{Z_{N\pi}}\right)$$

$$\underbrace{\text{kaon/pion ratio}}_{0.99} \left(\frac{R(K/\pi)}{R}\right) = \frac{Z_{NK}}{Z_{N\pi}}$$

$$\int_{0.99} \frac{1}{0.99} \left(\frac{1}{0.99}\right) \left(\frac{R(K/\pi)}{R}\right) = \frac{Z_{NK}}{Z_{N\pi}}$$

K/π ratio

 $\frac{A_{K\mu}/A_{\pi\mu}}{E_{\mu}/\epsilon_{\pi}} + \frac{A_{K\mu}/A_{\pi\mu}}{1 + B_{K\mu}\cos\theta^{\star}E_{\mu}/\epsilon_{K}} \right) \quad \gamma \approx 1.7$ K/p ratio V.b ratio 0.2 ICRC, Beijing 2011 0.15 0.1 NA49 (Pb+Pb) E735 (<del>p</del>+p) STAR (Au+Au, K<sup>+</sup>/p<sup>+</sup>) 0.05 STAR (Au+Au, K<sup>-</sup>/p<sup>-</sup>) MINOS (p+A<sub>atm</sub>) IceCube Preliminary (p+A 1.5 2.5 3.5 2 3  $\sqrt{s}$  (GeV)

experimental systematics under strict control



# high energy leptons correlation with stratospheric temperatures

indirect probe into **K/π ratio** •

- prompt particles (**charm**) decay fast ٠
- do not correlate with temperature

$$\alpha_T^{th}(\theta) = \frac{T \cdot \frac{\partial}{\partial T} \int dE_i \,\phi_i(E_i, \theta) \,\epsilon(E_i)}{\int dE_i \,\phi_i(E_i, \theta) \,\epsilon(E_i, \theta)}$$



, heta)





PD, Gaisser 2010

high energy  $\mu$ 's and  $\nu$ 's from charm decay not sensitive to temperature variations

astrophysical neutrinos as well

complications from muon multiplicity

### charm production

charm contribution from RQPM model (Bugaev et al. 1998)



$$\alpha_T^{th}(\theta) = \frac{T \cdot \frac{\partial}{\partial T} \int dE_i \,\phi_i(E_i, \theta) \,\epsilon(E_i, \theta)}{\int dE_i \,\phi_i(E_i, \theta) \,\epsilon(E_i, \theta)}$$





### charm production

| $E_{\mu,\min}$ | no charm RC |        | RQF      | M charm | ERS charm |        | int. charm |        |
|----------------|-------------|--------|----------|---------|-----------|--------|------------|--------|
|                | $\alpha$    | Rate   | $\alpha$ | Rate    | α         | Rate   | $\alpha$   | Rate   |
| 0.5            | 0.83        | 2050   | 0.82     | 2070    | 0.82      | 2050   | 0.82       | 2060   |
| 10             | 0.98        | 1.26   | 0.89     | 1.40    | 0.97      | 1.26   | 0.94       | 1.34   |
| 100            | 1.0         | 0.0025 | 0.53     | 0.0049  | 0.91      | 0.0028 | 0.71       | 0.0036 |

TABLE I: Correlation coefficients for muons with ( $\theta \leq 30^{\circ}$ ) for three levels of charm (energy in TeV; rate in Hz/km<sup>2</sup>).

 $IC40 \times 2$ 

| $E_{\nu,\min}(\text{TeV})$ | no       | o charm   | RQPM charm |           |  |
|----------------------------|----------|-----------|------------|-----------|--|
| Zone 1                     | $\alpha$ | Events/yr | α          | Events/yr |  |
| all                        | 0.54     | 16000     | 0.52       | 17000     |  |
| 3                          | 0.70     | 5900      | 0.62       | 6300      |  |
| 30                         | 0.94     | 350       | 0.72       | 450       |  |





muon multiplicity modifies temperature correlation (ICRC 2013)

need to evaluate the energy of individual muons in the bundle

→ single muons

### charm production

### PD, Gaisser 2010

| $E_{\mu,\min}$ | no charm |        | RQF      | RQPM charm |      | ERS charm |          | int. charm |  |
|----------------|----------|--------|----------|------------|------|-----------|----------|------------|--|
|                | α        | Rate   | $\alpha$ | Rate       | α    | Rate      | $\alpha$ | Rate       |  |
| 0.5            | 0.83     | 2050   | 0.82     | 2070       | 0.82 | 2050      | 0.82     | 2060       |  |
| 10             | 0.98     | 1.26   | 0.89     | 1.40       | 0.97 | 1.26      | 0.94     | 1.34       |  |
| 100            | 1.0      | 0.0025 | 0.53     | 0.0049     | 0.91 | 0.0028    | 0.71     | 0.0036     |  |

TABLE I: Correlation coefficients for muons with ( $\theta \leq 30^{\circ}$ ) for three levels of charm (energy in TeV; rate in Hz/km<sup>2</sup>).

- ►  $2 \times 10^8 \,\mu/day \rightarrow 220-430 \,\mu/day$
- $\alpha_T^{th}$  decreases 10-30% for E<sub>µ</sub> > 100 TeV
- 10 years of HE muon data





astrophysical neutrinos do not correlate with atmospheric temperature

### neutrinos produced in larger portion of Earth's atmosphere

small event statistics

### charm production

### PD, Gaisser 2010

- $100 v/day \rightarrow 2-3 v/day$
- $\alpha_T^{th}$  decreases 20% for E<sub>v</sub> > 30 TeV
- long time to accumulate enough statistics

### IC40×2 → **IC86** ~ 4.8×IC40

| $E_{\nu,\min}(\text{TeV})$ | no          | o charm | RQPM charm |           |  |
|----------------------------|-------------|---------|------------|-----------|--|
| Zone 1                     | α Events/yr |         | α          | Events/yr |  |
| all                        | 0.54        | 38400   | 0.52       | 40800     |  |
| 3                          | 0.70        | 14160   | 0.62       | 15120     |  |
| 30                         | 0.94        | 840     | 0.72       | 1080      |  |





**ICRC 2015** 

T. Karg





### minimum ionizing

### minimum ionizing

**ICRC 2015** 

### T. Karg

### HE Muons



**P. Berghaus** 

### stochastic energy losses



### multiple muons



**ICRC 2015** 

T. Karg





### hadronic interaction models



Fedynitch, Becker-Tjus, PD 2010




## non-standard physics $v_{\mu}$ disappearance to sterile neutrino



**ICRC 2015** 





## non-standard physics $v_{\mu}$ disappearance to sterile neutrino



**ICRC 2015** M. Wallraff Wed 5/8



## non-standard physics



## non-standard oscillations

