

Cosmic Ray Atmospheric Showers and High Energy Hadronic Interaction Models

Paolo Desiati

WIPAC & Department of Astronomy University of Wisconsin - Madison

<<u>desiati@wipac.wisc.edu</u>>

Anatoli Fedynitch Julia Becker Tjus Thomas Gaisser

XLIII International Symposium on Multiparticle Dynamics - ISMD 2013 September 16-20, 2013

Paolo Desiati

cosmic rays bombarding Earth from space

astrophysical object as accelerator Earth's atmosphere as particle detector

Development of cosmic-ray air showers

primary cosmic rays spectrum & composition

direct measurements

indirect measurements

hadronic interactions

- CR showers dominated by soft component with small pT (non-perturbative QCD)
- hard component with high p_T with heavy quarks (pQCD)
- phenomenological descriptions of hadronic interactions with minijet production for hard component
- models to describe soft/hard interactions in forward region & extrapolated to high energy

• interaction models from accelerators, extrapolated to forward region at high energy

Paolo Desiati

hadronic interactions

- forward region the most relevant in cosmic rays
- models tuned to accelerator measurements and extrapolated
- LHC experiments (e.g. TOTEM, LHCf) starting to fill the relevant parameter space

> 100s TeV cosmic rays indirect observations

- e.m. & hadronic shower components observed at the Earth's surface
- measure energy deposited, temporal, longitudinal & lateral distributions, and unfold the primary energy & mass

- KASCADE @ sea level
- ▶ IceTop @ 2800 m asl

- **neutrino telescopes** searching for high energy astrophysical neutrinos (*point to origin of CR*)
- atmospheric neutrinos a significant irreducible background at high energy where heavy quark processes are involved
- production of hyperons and particles with charm affected by increasing uncertainties

$$\begin{aligned} \phi_{\nu}(E_{\nu}) &= \phi_{N}(E_{\nu}) \times \\ & \left\{ \frac{A_{\pi\nu}}{1 + B_{\pi\nu} \cos\theta E_{\nu}/\epsilon_{\pi}} + \frac{A_{K\nu}}{1 + B_{K\nu} \cos\theta E_{\nu}/\epsilon_{K}} \right. \\ & \left. + \frac{A_{\text{charm }\nu}}{1 + B_{\text{charm }\nu} \cos\theta E_{\nu}/\epsilon_{\text{charm}}} \right\} \end{aligned}$$

$$\begin{aligned} A_{i\nu} &= \frac{Z_{Ni} \times BR_{i\nu} \times Z_{i\nu}}{1 - Z_{NN}} \\ Z_{N\pi^{\pm}}(E) &= \int_{E}^{\infty} dE' \frac{\phi_{N}(E')}{\phi_{N}(E)} \frac{\lambda_{N}(E)}{\lambda_{N}(E')} \frac{dn_{\pi^{\pm}}(E', E)}{dE} \end{aligned}$$

meson's characteristic energy
Particle (
$$\alpha$$
): $\pi^{\pm} K^{\pm} K_L^0$ Charm
 ϵ_{α} (GeV): 115 850 205 ~ 3 × 10⁷

Paolo Desiati

10

GST 3-gen

atmospheric neutrinos experimental observations

atmospheric neutrinos charm production

- due to large quark mass, **perturbative QCD** can be used (hard component). However
 - significant charm production observed at $\sqrt{s} = 20 \text{ GeV}$
 - ▶ asymmetry in charm / anti-charm baryons (Selex Coll. 2002) → intrinsic production
- $|p\rangle = \alpha |uud\rangle + \beta |uudc\bar{c}\rangle + ...$: the **c-pair** produced in projectile fragmentation can recombine with valence quarks and with sea-quarks to **produce charmed hadrons**.

$$p ~
ightarrow~ \Lambda_c^+ + ar{D}^0$$
 ~ order $(m_s/m_c)^2$ (~1%) compared to $p
ightarrow \Lambda K^+$

- inclusive D-meson spectrum dominated by intrinsic charm at high pseudo-rapidity & pT Lykasov+ 2012
- steep cosmic ray spectrum might enhance the effect of intrinsic production of charm

12

Paolo Desiati

atmospheric neutrinos charm production

- differences in production models
- effect of primary cosmic ray spectrum

atmospheric neutrinos charm production

- differences in production models
- effect of primary cosmic ray spectrum

atmospheric neutrinos charm and astrophysical neutrinos

 search for high-energy all-flavor neutrinos interacting inside (contained) the IceCube km3 instrumented volume from all directions

atmospheric neutrinos charm and astrophysical neutrinos

- search for high-energy all-flavor neutrinos interacting inside (contained) the IceCube km3 instrumented volume from all directions
- new population of HE neutrinos ?
- where is the transition energy from charm to new population ?

atmospheric neutrinos charm and high pT muons

- search for $\mu + \mu$ bundle
- measure separation
- CR composition & interaction models

 $\left[d_T \approx \frac{p_T H c}{E_\mu \cos(\theta)} \right]$

- increased K and charm contribution
 - improve forward region
- lighter cosmic ray composition

- accelerator data used to interpret cosmic ray interaction processes in the atmosphere
- interaction models to cope with non pQCD of soft processes (phenomenological) in forward region and with extrapolation to high energy
- heavy quark production uncertain (both pQCD and intrinsic charm)
- important in cosmic ray and neutrino astrophysics
- large volume neutrino telescope to measure muons @ high energy and multi-flavor neutrinos to constrain heavy quark production in the atmosphere

backup slides

primary cosmic rays spectrum & composition

direct measurements

ALL STATE

indirect measurements

Gaisser, Astropart. Phys. 35 (2012) 801

primary cosmic rays spectrum & composition

direct measurements

indirect measurements

hadronic interactions reduction of systematic uncertainties

Sunday, September 22, 2013

23

hadronic interactions reduction of systematic uncertainties

Sunday, September 22, 2013

24

> 100 PeV cosmic rays

- inclined showers develop earlier and exhaust higher in the atmosphere
- only penetrating muons reach the ground
- ▶ higher µ flux observed above 10¹⁸ eV
 - ► N₁₉/QGSJet-II(10¹⁹ eV) = **2.13**±0.04±0.11 (sys.)

 mass composition affected by the large systematic uncertainties of interaction models (+ experimental techniques)

26

Paolo Desiati

QGSJET01-c

28

Paolo Desiati

atmospheric neutrinos current status

observed cascading $\nu_e + \bar{\nu}_e$

Paolo Desiati

29

atmospheric neutrinos charm and high pT muons

- search for $\mu + \mu$ bundle
- measure separation
- CR composition & interaction models

 $\left(d_T \approx \frac{p_T H c}{E_\mu \cos(\theta)}\right)$

atmospheric neutrinos charm and high pt muons

FIG. 14. (Color online). The minimum muon transverse momentum of DPMJET simulated shower events that pass all selection criteria for different energy parameterizations as a function of zenith angle. The interaction height comes from Fig. 1.

atmospheric neutrinos π/K & ν seasonal variations

$E_{\mu,\min}$	no charm		RQPM charm		ERS charm		int. charm	
	α	Rate	α	Rate	α	Rate	α	Rate
0.5	0.83	2050	0.82	2070	0.82	2050	0.82	2060
10	0.98	1.26	0.89	1.40	0.97	1.26	0.94	1.34
100	1.0	0.0025	0.53	0.0049	0.91	0.0028	0.71	0.0036

TABLE I: Correlation coefficients for muons with ($\theta \leq 30^{\circ}$) for three levels of charm (energy in TeV; rate in Hz/km²).

$E_{\nu,\min}(\text{TeV})$	n	o charm	RQPM charm							
Zone 1	α	Events/yr	α	Events/yr						
all	0.54	16000	0.52	17000						
3	0.70	5900	0.62	6300						
30	0.94	350	0.72	450						
$E_{\nu,\min}(\text{TeV})$	no charm		RQPM charm							
Zone 2	α	Events/yr	α	Events/yr						
all	0.66	6000	0.62	6400						
3	0.88	1230	0.75	1450						
30	0.98	37	0.46	80						
$E_{\nu,\min}(\text{TeV})$	no charm		RQPM charm							
Zone 3	α	Events/yr	α	Events/yr						
all	0.68	1650	0.64	1750						
3	0.91	260	0.75	320						
30	0.99	5.2	0.41	13						

TABLE II: Correlation coefficients with and without charm for neutrinos in three zones of the atmosphere (see text).

PD et al., ICRC 2013

configuration	α_T^{exp}	χ^2/ndf	α_T^{th}
IC40	0.27±0.21	22.85/12	$0.557^{+0.008}_{-0.007}$
IC59	0.50 ± 0.15	12.30/11	$0.518^{+0.008}_{-0.007}$
IC79	0.45±0.11	4.48/10	$0.489^{+0.007}_{-0.005}$

Paolo Desiati

PD & Gaisser, 2010

atmospheric neutrinos π/K & μ seasonal variations

PD et al., ICRC 2011

33

Paolo Desiati