

Neutrino Telescopes & the IceCube Observatory

Paolo Desiati

Wisconsin IceCube Particle Astrophysics Center & Department of Astronomy

desiati@wipac.wisc.edu

University of Wisconsin - Madison

lectures outline

neutrino telescopes & the IceCube Observatory

observing the Universe

neutrino observations

cosmic ray observations

astrophysics & interdisciplinary sciences

outline an introduction to the physics of IceCube

observational astronomy

cosmic rays and neutrinos

detecting neutrinos

detection techniques

current experiments

observational astronomy the observation of the Universe

optical astronomy started in 1610 when a spyglass was pointed to the sky

Jupiter's moons

observational astronomy optical astronomy

Sunspots

Anter Scalard

Telescope

Saturn

These are sketches of three drawings Galileo made of Saturn through his primitive telescope. ("New Worlds," Couper & Henbest, p.86.)

05	revating Jenier
2. S. Tric	(610
marl H. 12	0 * *
30. mone	**0 *
2. 760:	Q** *
3. more	0 * *
3. Ho. s.	*0 *
q. mond.	*0 **
6. mand	**0 *
8. mane H.	3. * * * ()
Lo. mape.	* * * 0 *
и.	* * 0 *
12. H. q neg	: + 0 *
13. mare'	* *•0 *
14 dane.	* * * 0 *

• observational window at the Earth's surface of the electromagnetic radiation

• visible light is only one **small portion** of the vast electromagnetic spectrum

Crab Nebula

• accelerated electrons swirling in magnetic fields

• visible light is only one **small portion** of the vast electromagnetic spectrum

Crab Nebula

• accelerated electrons swirling in magnetic fields

Vela Supernova Remnant

leptonic processes

electrons interacting with magnetic fields

⁹ electrons interacting with photon fields

electrons interacting with matter

multi-wavelength spectrum of young SNR Vela Jr.

observational astronomy gamma rays & depth of observable Universe

- neutral particles
- point back to sources
- limited observable distance
- gamma rays absorbed in space

- protons and atomic nuclei interacting with matter: cosmic rays
- photon multi-wavelength approach to pin-point sources of cosmic rays
- gamma rays & neutrino as cosmic messengers to probe into the origin of CRs

cosmic rays more than 100 years from their discovery

Theodor Wulf (1868-1946)

1910: radiation at the bottom and the top of Eiffel Tower. Lower decrease than expected

Domenico Pacini (1878-1934)

1910-11: radiation over and below sea surface. Decrease underwater. Seasonal variations.

Victor Francis Hess (1883-1964)

1911-12: balloon measurements up to 5,300 meters. Radiation increased 4 times.

cosmic rays bombarding Earth from space

history of cosmic ray physics penetrating cosmic radiation

- the term cosmic ray was introduced by Millikan (1920s)
 who did an extensive measurement campaign
- Millikan proposed energetic photons (gamma rays) produced in interstellar space by hydrogen fusion into heavier nuclei
- gamma rays in the atmosphere *produce* electrons via Compton scattering
- latitude variation of cosmic ray flux by Clay (1927): charged particles
- Bothe & Kolhöster (1929) discovered penetrating charged particles: not only electrons
- Rossi (1930) predicted east-west effect from geomagnetic deflection: positive charge

14

charge of cosmic rays east-west effect

geomagnetic field effect

Primary Cosmic http://hep.bu.edu/~superk/ew-effect.html Ray $\vec{F} = Ze \, \vec{v} \times \vec{B}$ higher cosmic ray flux from west Geomagnetic Field \odot $B_{\bigoplus} = 25 - 65\,\mu T$ ⊙. indicate particles are predominantly ⊙. • positive -West Forbidden Allowed $r_L = \frac{p_\perp}{ZeB}$ Trajectory Trajectory Super-K Ineutrinos • Earth shadow atmosphere

 $r_L \sim \frac{3.3 \times 10^4}{Z} \; \frac{E(GeV)}{B(G)} \; m$

extensive air showers penetrating cosmic radiation

atmospheric air showers of particles are extended

- while measuring "east-west" effect Rossi noticed coincident far apart signals
- Independently Auger (1937) concluded that primary CR interact in upper atmosphere initiating cascade of secondary interactions that reaches ground

- Bhabha & Heitler (1937) explained development of soft
 CR showers as sequence of γ rays and e⁻e⁺ pairs
- evidence of hard penetrating component of hadronic CR showers that can be detected underground

observational astronomy the origin of the cosmic rays

- cosmic rays on Earth are *shaped* by propagation in magnetic fields
- photons & neutrinos can tell us about the **sources** of the cosmic rays
- neutrinos look deeper into the Universe because they are harder to see

cosmic rays a natural laboratory

muons deep underground

rock/water/ice properties

detecting neutrinos neutrinos in particle physics

- in standard model they are neutral leptons with no electric charge
- they exist in three *flavors*, one for each generation of particles
- in **radioactivity** processes
- in **weak** (short range) interactions
- unknown mass but ...
- oscillating flavors ...

detecting neutrinos neutrinos in particle physics

- in **standard model** they are neutral leptons with no electric charge
- they exist in three *flavors*, one for each generation of particles
- in **radioactivity** processes
- in **weak** (short range) interactions
- unknown mass but ...
- oscillating flavors ...

Photo © Takaaki Kajita Takaaki Kajita Prize share: 1/2

β decays

Photo: K. MacFarlane. Queen's University /SNOLAB

Arthur B. McDonald Prize share: 1/2

2015

The Nobel Prize in Physics 2015 was awarded jointly to Takaaki Kajita and Arthur B. McDonald *"for the discovery of neutrino oscillations, which shows that neutrinos have mass"*

detecting neutrinos it's not easy to see neutrinos

I have done a terrible thing, I have postulated a particle that cannot be detected.

— Wolfgang Pauli —

AZQUOTES

- our body contains 20 mg of ⁴⁰K, which is β-radioactive. Thus we emit about 340 million neutrinos each day without knowing
- wherever we are on Earth, even underground, neutrinos pass through our body

 ~50 billion neutrinos from Earth natural radioactivity 	(~ keV)

- 10-100 billion neutrinos from nuclear plants all over the world (~ MeV)
- 400,000 billion neutrinos/sec from the Sun

(up to 10 MeV)

• ... however, only one (or a few) neutrinos interact inside our body in a lifetime

detecting neutrinos neutrino interaction cross sections

• v-p interaction x-section << that of γ -p (@100 GeV)

 $(1 \text{ barn} = 10^{-24} \text{ cm}^2)$

 $1 \text{ nb} = 10^{-9} \text{ b}$

 $1 \text{ pb} = 10^{-12} \text{ b}$

10¹²

compare: γ +p x-section

detecting neutrinos neutrino interaction cross sections

It is an **effective area** that quantifies the intrinsic likelihood of a scattering event when an incident beam strikes a target object, made of discrete particles.

The cross section of a particle is the same as the cross section of a hard object, if the probabilities of hitting them with a ray are the same. [*Wikipedia*]

 $P_{int} = \sigma_{\nu N} N_A \rho L$

 $[cm^2 nucl^{-1}][nucl g^{-1}][g cm^{-3}][cm]$

 $L = \frac{P_{int}}{\sigma_{\nu N} N_A \rho} = \frac{1}{0.7 \times 10^{-38} \cdot E/GeV \cdot 6.022 \times 10^{23} \cdot 5}$

 $L = \frac{4.8 \times 10^8}{E/GeV} \,[km]$

• @40 TeV L ~ Earth's size

detecting neutrinos neutrino interactions with matter

- neutrino interacts with quark constituents of nucleons
- they exchange Z^0 (neutral) or W^{\pm} (charged) bosons
- charged current interaction
- neutral current interaction
 - indirect detection of neutrinos

Lorentz covariance and Mandelstam variables

Lorentz covariance is a property of spacetime following from special relativity.
 Physics quantities do not change with reference system

• a physical quantity is Lorentz covariant if it transforms under Lorentz transformations

• in spacetime displacement is represented by 4-vector $X^{\mu} = (ct, x, y, z)$

velocity by 4-vector

 $U^{\mu} = \frac{dX^{\mu}}{d\tau} = \gamma \left(c, \frac{dx}{dt}, \frac{dy}{dt}, \frac{dz}{dt} \right)$

momentum by 4-vector

 $P^{\mu} = m_0 U^{\mu} = \left(\frac{E}{c}, p_x, p_y, p_z\right)$

4-momentum is conserved

Lorentz covariance and Mandelstam variables

Lorentz transformation preserve space-time interval

$$ds^{2} = X^{\mu}X^{\nu}\eta_{\mu\nu} = c^{2}dt^{2} - dx^{2} - dy^{2} - dz^{2}$$

 $d\tau^2 = \left(\frac{dt}{\gamma}\right)^2 = \frac{ds^2}{c^2}$

• proper time

• rest mass (invariant mass) $m_0^2 c^2 = P^{\mu} P^{\nu} \eta_{\mu\nu} = \frac{E^2}{c^2} - p_x^2 - p_y^2 - p_z^2$

Mandelstam variables

 numerical quantities encoding particles energy, momentum and angles in scattering processes in a Lorentz invariant formalism

 $s = (P_1^{\mu} + P_2^{\mu})^2 = (P_3^{\mu} + P_4^{\mu})^2$

p

p

S

p-

t

B

p.

U

B

scattering

P₄

p

p,

resonance

invariant mass

• t-process $t = (P_1^{\mu} - P_3^{\mu})^2 = (P_2^{\mu} - P_4^{\mu})^2$

transferred 4-momentum

• u-process

s-process

$$u = (P_1^{\mu} - P_4^{\mu})^2 = (P_2^{\mu} - P_3^{\mu})^2$$

transferred 4-momentum

Mandelstam variables

scattering angle @ center of mass

$$\cos\theta_{\nu\mu}^{cm} = 1 + \frac{t}{2|\vec{p}|}$$

• scattering angle @ lab frame ($E_v > TeV$)

$$\sqrt{\langle \theta_{\nu\mu}^2 \rangle} \propto \sqrt{\frac{m_p}{E_\nu}}$$

p

P,

p3

 p_4

indirect detection of v_µ neutrinos

$$-\frac{dE_{\mu}}{dX} = a(E_{\mu}) + b(E_{\mu}) E_{\mu}$$
$$a = a_{ionization}$$
$$b = b_{brems} + b_{pair} + b_{nucl}$$

Koehne et al. 2013

muon energy losses stochastic losses

muon range

 $a(E_{\mu}) \propto log(E_{\mu})$ $b(E_{\mu}) \sim const$

$a, \left[\frac{\text{GeV}}{\text{mwe}}\right]$	$b, \left[\frac{10^{-3}}{\text{mwe}}\right]$
0.281	0.358
0.259	0.364
0.231	0.436
0.223	0.464
	<i>a</i> , [GeV/mwe] 0.281 0.259 0.231 0.223

$$\overline{-\frac{dE_{\mu}}{dX}} = a(E_{\mu}) + b(E_{\mu}) E_{\mu}$$

meter per water equivalent (mwe) = depth × density of material

• $\rho_{water} = 1 \text{ g/cm}^3 \rightarrow 1 \text{ m of water} = 1 \text{ mwe} = 100 \text{ g/cm}^2$

• minimum muon energy @ given depth $E_{\mu} = \left(E_{\mu}^{i} + \frac{a}{b}\right)e^{-bX} - \frac{a}{b}$

$$E_{\mu}^{min} = \frac{a}{b} \left(e^{bX} - 1 \right)$$

muon range @ given energy

$$R_{\mu} = \frac{1}{b} \ln \left(1 + \frac{b}{a} E_{\mu}^{i} \right) \qquad \qquad L_{\mu} = \frac{B}{a}$$

water and ice published in Refs. [68-71].

indirect detection of v_e neutrinos

- electrons loose energy faster than muons
- track length ~ 10 meters

indirect detection of v_τ neutrinos

- electrons loose energy faster than muons
- track length ~10 m

- taus loose energy slower than muons
- BUT lifetime 10⁷ times shorter
- track length >100 m @ energy > 1 PeV

detecting neutrinos in transparent media Cherenkov Effect

- electromagnetic radiation emitted when a charged particle passes through a **dielectric** medium at a speed greater than the phase velocity of light in that medium ($v > c/n_{medium}$)
- atoms near the particle become polarized and emit coherent radiation when returning to equilibrium

 $\cos \theta = \frac{1}{\beta n}$

ct/n

$$\frac{dN^2}{dx\,d\lambda} = \frac{2\pi\alpha}{\lambda^2} \left(1 - \frac{1}{\beta^2 n^2}\right)$$

detecting neutrinos in transparent media Cherenkov Effect

$$\frac{dN^2}{dx\,d\lambda} = \frac{2\pi\alpha}{\lambda^2} \left(1 - \frac{1}{\beta^2 n^2}\right)$$

$$\frac{dN}{dx} = 2\pi\alpha\sin^2\theta\left(\frac{1}{\lambda_1} - \frac{1}{\lambda_2}\right)$$

detection technique Cherenkov radiation

photon scattering in the transparent medium

"on time" –

time delay vs. direct light

Cherenkov *light* from

time delay

vs. direct light

"on time"

a *muon* track

→ delayed

→ delayed

credit: C. Kopper

a **cascade**

Cherenkov *light* from

neutrino telescopes proposal

neutrino telescopes Earth as interaction target & ice as detection material

detection unit photomultiplier tube

single photo-electron pulse

detection technique photomultiplier tube

detection technique location, size and *photo-cathode area*

- **location** under overburden to reduce background of cosmic ray muons
- **size** increasing with neutrino energy. The largest experiments in transparent media.
- *photo-cathode area* dense optical sensors in small detectors or coarse optical sensors in very large detectors. Influences **event** *reconstruction* and *flavor separation*.

neutrino telescopes location, size and *photo-cathode area*

photo-cathode area - densely instrumented large volume experiments
 ~40³ m³ ~ 0.06 km³

neutrino telescopes large under-water/ice experiments

~ km³ ... and more

neutrino telescopes large under-water/ice experiments

~ km³ ... and more

THANK YOU

NEXT:

- ICECUBE NEUTRINO TELESCOPE
- ACCELERATION MECHANISMS
- THE NEUTRINO MESSENGER

