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outline 
observing the Universe with IceCube
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IceCube Observatory 

event detection in Antarctica 

cosmic ray acceleration mechanisms 

neutrinos as probe into remote sources 

effective area 



IceCube Observatory 
the instrumentation
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Digital Optical Module 
(DOM) 

with 10” PMT 
& 

local DAQ electronics



IceCube Observatory 
the instrumentation
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two tanks of one IceTop station



IceCube Observatory 
the instrumentation

5

two tanks of one IceTop station

km3

observatory



Digital Optical Module 
the signal digitization
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×16

×2

×0.25

single 
photon-electron

multiple 
photon-electrons

different gains 

for wide dynamic range 
in amplitude

different time range 

for long waveforms



Digital Optical Module 
the photon sensitivity

γ
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glass/gel transmittance 
low wavelength cut-off

wavelength (nm)

Cherenkov photon 
wavelength spectrum

PMT Quantum Efficiency 
× Collection  Efficiency



antarctic ice 
ice optical properties
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effect of light absorption as a function of distance

distance



antarctic ice 
ice optical properties
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distance

effect of light scattering as a function of distance



antarctic ice 
ice optical properties
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distance

combined effect of light absorption and scattering as a 
function of distance

optical properties of antarctic ice important for estimating the 
particle energy (# Cherenkov photons) & the             

particle direction (photon arrival time)



antarctic ice 
ice optical properties
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• depth dependency from glaciological 
history of Antarctica 

• absorption & scattering about the 
same order of magnitude 

• use on-site flasher LED to measure 
photon absorption and arrival times as 
a function of distance 

• implement scattering models and 
account for wavelength dependence

m

m
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‣ ice optical properties essential for physics 

‣ absorption affects charge ~   energy estimation 

‣ scattering affects time ~             event direction

antarctic ice 
ice optical properties
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PMT PMT

ice ice

delay from scattering

decrease from 
absorption
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time delay 
vs. direct light

“on time” delayed

Claudio Kopper - WIPAC

Cherenkov light from 
a cascade

detection principle - cascade         νe ντ CC-int  &  νi NC-int

≈ ±15% deposited energy resolution 
≈ 10° angular resolution 
(at energies ⪆ 100 TeV)
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detection principle - track                      νμ CC-int
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time delay 
vs. direct light

“on time” delayed

Cherenkov light from 
a muon track

Claudio Kopper - WIPACfactor of ≈ 2 energy resolution 
< 1° angular resolution
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detection principle - track                      νμ CC-int
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time delay 
vs. direct light

“on time” delayed

Cherenkov light from 
a muon track

Claudio Kopper - WIPACfactor of ≈ 2 energy resolution 
< 1° angular resolution



neutrino detection 
event topologies

C. Kopper≳

track cascade hybrid
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event rate in IceCube 
growing experiment

2007-08 2008-09 2009-10 2010-11 2011-12 2012-13 >>

IC22
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cosmic ray muons and neutrinos 

IC22

17

Fedynitch, Becker Tjus, PD, PRD 86, 114024

• Rµ ~ 2200 Hz 

• µ and ν produced in the 
atmosphere by cosmic rays 

• atmospheric temperature 
seasonal variations

• ~ equal amount of µ 
and ν

neutrinos muons



cosmic ray muons and neutrinos 
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• Revent ~ 2200 Hz 

• µ and ν produced in the 
atmosphere by cosmic rays 

• atmospheric temperature 
seasonal variations 

• ~1/106 TeV neutrinos interact in 
the ice and is detected and 
reconstructed in IceCube

up-going 
neutrinos

down-going 
muons

IC22

down-going 
neutrinos
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µ
ν

νµ

µ
ν

µ ν

cosmic ray muons and neutrinos 
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where do cosmic ray 
come from ?

cosmic ray muons and neutrinos 
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cosmic ray acceleration mechanisms 
where do cosmic ray come from ?

Baade & Zwicky 1934

Fermi 1949
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cosmic ray acceleration mechanisms 
diffusive shock acceleration

coronal mass 
ejection 
(Mar 9, 2000)

• particles accelerated in our solar 
system 

• coronal mass ejections 

• solar wind termination shock 

• planetary bow shock 

‣ non thermal particle distributions 

‣ @ magnetized collisionless shocks
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cosmic ray acceleration mechanisms 
diffusive shock acceleration

• supernova explosion eject material into 
interstellar medium at supersonic speed  

• shocks are produced with strong 
magnetic fields swiping across the 
interstellar medium 

• magnetic turbulence & supersonic 
magnetic clouds accelerate thermal 
particles

SN1006X-ray (Chandra)

optical

radio
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cosmic ray acceleration mechanisms 
diffusive shock acceleration
magnetized turbulence 
in astrophysical plasmas 

particle scattering 
in magnetic cloud

• in astrophysical plasmas particle collisions 
are very rare 

• magnetic field interactions are collisionless 

• particles with                          effectively 
scatter conserving energy 

• particle direction is randomized by the 
scattering process

courtesy: M. Ahlers

r
Larmor

⇠ L
cloud

�
collision

� L
cloud
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cosmic ray acceleration mechanisms 
diffusive shock acceleration
magnetized turbulence 
in astrophysical plasmas 

particle scattering 
in magnetic cloud

• in the cloud’s reference frame 

• emitted in the observer’s reference frame 

• energy gain per scattering process

E0
1 = �E1 (1� � cos ✓1)

E2 = �E0
2 (1 + � cos ✓0

2)

(E0
1 = E0

2)

courtesy: M. Ahlers

random θ'2

�E

E1
= �2(1 + �µ0

2)(1� �µ1)� 1

can be positive or negative
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cosmic ray acceleration mechanisms 
diffusive shock acceleration
magnetized turbulence 
in astrophysical plasmas 

particle scattering 
in magnetic cloud

• averaging over θ'2 (flat in cosθ'2) 

• averaging over θ1

courtesy: M. Ahlers

random θ'2

⌧
�E

E1

�

2

=

R 1
�1 dµ02

dn
dµ0

2

�E
E1R 1

�1 dµ02
dn
dµ0

2

= �2(1� �µ1)� 1

⌧
�E

E1

�

1,2

=

R 1
�1 dµ1

dn
dµ1

D
�E
E1

E

2R 1
�1 dµ1

dn
dµ1

=
4
3
�2

second order 

Fermi acceleration

dn

dµ1
/ (v

part

� v
cloud

) ⇠ (1� �µ1)
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cosmic ray acceleration mechanisms 
diffusive shock acceleration

• effects of magnetic turbulence from 
the shock dynamics 

• astrophysical plasmas are turbulent 

• cumulative effects of magnetic 
mirroring across magnetized shocks 

• balancing acceleration and 
escape probabilities

courtesy: Jun et al, ApJ 1996 cosmic rays

upstream
downstream

β
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cosmic ray acceleration mechanisms 
diffusive shock acceleration

• when crossing the shock from either side, 
the particle sees plasma moving toward it 
at a velocity of  

(non-relativistic shock)

upstr
ea

m

downstr
ea

m

observer’s frame shock’s frame

upstream frame downstream frame

βsh

p1

p2

β1 = |βsh| β2 = 1/4 βsh

3/4 βsh3/4 βsh

upstr
ea

m

downstr
ea

m

conservation of mass, energy & momentum 

effect of plasma decompression at the two 
sides of the shocks on the particle momenta

� = �1 � �2 =
3
4
�sh
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cosmic ray acceleration mechanisms 
diffusive shock acceleration

courtesy: M. Ahlers

• in the cosmic ray reference frame 

• emitted in the observer’s reference frame 

• energy gain per scattering process

E0
1 = �E1 (1� � cos ✓1)

E2 = �E0
2 (1 + � cos ✓0

2)

(E0
1 = E0

2)

�E

E1
= �2(1 + �µ0

2)(1� �µ1)� 1

always positive µ1 < 1 & µ0
2 > 0

magnetized shock 
in astrophysical plasmas 
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cosmic ray acceleration mechanisms 
diffusive shock acceleration

courtesy: M. Ahlers

• averaging over θ'2 

• averaging over θ1

first order 

Fermi acceleration
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cosmic ray acceleration mechanisms 
diffusive shock acceleration

Energy Spectrum 

• incoming flux: rate of encounters for a 
plane shock is the projection of an isotropic 
flux onto the plane shock 

• outgoing flux: in the shock rest frame, 
there is an outflow of cosmic-rays upstream 
(removed from downstream region)          

in shock’s reference frame 

• escape probability

escape
returned

�in =
Z 1

0
dµ

Z 2⇡

0
d�

cn

4⇡
µ =

cn

4

�
out

= n�2c
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m

shock’s frame
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cosmic ray acceleration mechanisms 
diffusive shock acceleration

courtesy: M. Ahlers

Energy Spectrum 

• energy gain / collision 

• escape probability 

• in a collision cycle (τcycle) 

• energy spectrum

Pesc = 4�2 = �sh

�E

E
⌘ ⇠ =

4
3
� = �sh

�N

�E
= �Pesc

⇠

N

E

N(E)dE = N0

✓
E

E0

◆�1�ln Pesc/ ln ⇠

dE

N(E)dE = N0

✓
E

E0

◆�2

dE

for non-relativistic shocks

escape
returned



cosmic ray acceleration 
in supernova remnants
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• efficient acceleration: dynamical 
reaction of CR particle on magnetized 
plasmas 

‣ streaming instability induced by 
acce lerated par t ic les leads to 
magnet ic field ampl ificat ion 
upstream 

‣ i n add i t i on t o magne t i c fie l d 
amp l i fi ca t i on by compress i on 
downstream

➡ non-linear diffusive shock acceleration 

➡ predicts ∝ E-2 (or concave spectra)

SN1006

SN1006

Chandra



cosmic ray acceleration sites 
Hillas plot
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courtesy: M. Ahlers

×

Large Hadron Collider - CERN

8.6 km

B = 8.33 Tesla

• acceleration possible if particle 
confined in acceleration site 

Emax ~ size × field strength

rg =
p?

|q|B

E
max

⇠ 1018 Z �
sh

✓
R

size

kpc

◆ ✓
B

µG

◆
eV



Larmor radius 
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• magnetic (Lorentz) force                                        (perpendicular to velocity and B-field) 

• Lorentz Force = centripetal force 

• orbit radius (Larmor radius or gyro-radius)

~F = q
⇣
~v ⇥ ~B

⌘

|q|v?B =
mv2

?
rg

rg =
mv?
|q|B �! rg =

p?
|q|B

rg ⇠
10�3

Z

✓
E

TeV

◆ ✓
µG

B

◆
pc rg ⇠

200
Z

✓
E

TeV

◆ ✓
µG

B

◆
AU



cosmic rays 
reconstruct their history
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HESS: RX J1713 

� + �
µ+ + �µ

e± + B ! e± + �
synchrotron

e± + �
soft

! e± + �
Inverse Compton

hadronic emission

electromagnetic emission

e+ + �e + �̄µ

p + N ! p(n) + �+ + �� + �0



• inelasticity 

• relative multiplicity 

• pion fraction

cosmic rays 
at the sources
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HESS: RX J1713 

� + �
µ+ + �µ

hadronic emission

e+ + �e + �̄µ

p + N ! p(n) + �+ + �� + �0

E⌫ ⇠ E�/2 ⇠ Ep/4

K = N⇡±/N⇡0

f⇡ ⇠ 1� e� ⌧
optical depth

courtesy: M. Ahlers



cosmic rays 
near the sources
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HESS: RX J1713 

courtesy: M. Ahlers

1 PeV neutrino

20 PeV protons 2 PeV gamma rays

• pN (matter) or pγ (radiation) ? 

• galactic or extra-galactic sources ? 

• point sources or diffuse ? 

• what mixture of hadronic/leptonic proc.’s ? 

‣ find ν associated to γ rays 

‣ find ν associated to UHE cosmic rays



cosmic rays 

remotely 

at th
e source

cosmic rays locally on Earth

cosmic rays 
γ & ν carry the past history of cosmic rays
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-2

~ECR
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~Eν
-2
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µ
ν

νµ

µ
ν

µ ν

cosmic rays 
at Earth



cosmic rays 
reconstruct their history
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µ ννµ

µ
ν

µ ν

ν and γ from 
freshly accelerated 

cosmic rays 

astrophysical neutrinos 
probing sources

ν and µ from 
old cosmic rays 

interacting in Earth’s atmosphere 

atmospheric neutrinos

ν and γ from 
propagating 

cosmic ray interactions 

astrophysical neutrinos 
probing propagation
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neutrino telescopes 
effective area

μ

νµ

• neutrino telescopes have a well defined light 
sensitive instrumented volume … 

• … however, they do NOT have a well defined 
detection volume 

• neutrinos can interact outside the instrumented 
volumes and be indirectly detected

the neutrino effective area is the equivalent area 
for which all neutrinos of a given flux impinging on 
the Earth would be observed. Absorption effects of 
the Earth are considered as part of the detector 
and folded in the effected area



• empirical definition 

• number of events

A⌫
e↵(E⌫ , ✓) = AIN(E⌫ , ✓) · NA

A
·
Z

Eµ

✏DET
µ (Eµ, ✓) · �⌫µ(E⌫ , Eµ) · Rµ(Eµ) · dEµ
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neutrino telescopes 
effective area

μ

νµ

AIN

NIN

NDET

Ae↵(E⌫ , ✓) =
NDET(E⌫ , ✓)
NIN(E⌫ , ✓)

· AIN(E⌫ , ✓)

instrumental 
detection 
efficiency

neutrino 
interaction 

cross 
section

muon 
range

nDET
⌫ = T ·

Z

⌦

Z

E⌫

A⌫
e↵(E⌫ , ✓) · d�⌫

th(E⌫ ,⌦)
d⌦dE⌫

· d⌦ dE⌫

the neutrino effective area is the equivalent area 
for which all neutrinos of a given flux impinging on 
the Earth would be observed. Absorption effects of 
the Earth are considered as part of the detector 
and folded in the effected area
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neutrino telescopes 
effective area

Aartsen et al. Phys. Rev. D 89 (2014), 062007

IceCube-59

Galileo’s 
telescope

Fermi-LAT

AMS-02

neutrino 
absorption 
in the Earth

μ

νµ

AIN

NIN

NDET



Thank You 
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next: 

- background rejection 

- atmospheric neutrinos 

- neutrino astrophysics


