

Neutrino observations with the IceCube Observatory

Paolo Desiati

Wisconsin IceCube Particle Astrophysics Center & Department of Astronomy

desiati@wipac.wisc.edu

University of Wisconsin - Madison

lectures outline

neutrino telescopes & the IceCube Observatory

observing the Universe

neutrino observations

cosmic ray observations

astrophysics & interdisciplinary sciences

outline neutrino observations with IceCube

the origin of cosmic rays

neutrinos as probe into cosmic ray sources

neutrino identification

diffuse fluxes of neutrinos

a window to astrophysical neutrinos

primary cosmic rays spectrum

~E⁻² cosmic ray spectrum at the sources

- cosmic ray spectrum at Earth
 steeper
- knee traces the end of galactic contribution ?
- ankle traces cross-over with extragalactic contribution ?

primary cosmic rays spectrum

~E⁻² cosmic ray spectrum at the sources

- cosmic ray spectrum at Earth
 steeper
- knee traces the end of galactic contribution ?
- ankle traces cross-over with extragalactic contribution ?

primary cosmic rays spectrum and composition

what do we learn about their sources ?

16 J ~ kinetic energy of tennis ball @ 50 mph ~ kinetic energy of baseball @ 25 mph

primary cosmic rays spectrum and composition

what do we learn about their sources ?

16 J ~ kinetic energy of tennis ball @ 50 mph ~ kinetic energy of baseball @ 25 mph

searching for neutrinos identify background: muon events

single CR shower event ~2200 Hz double CR shower event quasi-synchronous ~40 Hz double CR shower event asynchronous ~40 Hz

time

track-like events directional reconstruction

leading edge pulse time

pulse charge

pulse shape (number of photons)

plane wave hypothesis

minimize line fit

$$\min_{t_0, \vec{r}_0, \vec{v}} \sum_{i=0}^{N_{hits}} |\vec{v}(t_i - t_0) + \vec{r}_0 - \vec{r}_i|^2$$

account for Cherenkov cone

least square methods

likelihood function for SPE, MPE

include actual ice properties

track-like events directional reconstruction

Ahrens et al. NIM A 524 (2004) 169

time residual distributions measured in-situ - account for **absorption** and **scattering**

$$\begin{split} p(t_{\rm res}) \ &\equiv \ \frac{1}{N(d)} \frac{\tau^{-(d/\lambda)} \cdot t_{\rm res}^{(d/\lambda-1)}}{\Gamma(d/\lambda)} \cdot e^{-\left(t_{\rm res} \cdot \left(\frac{1}{\tau} + \frac{c_{\rm medium}}{\lambda_a}\right) + \frac{d}{\lambda_a}\right)}{\lambda_a}\right),\\ N(d) \ &= \ e^{-d/\lambda_a} \cdot \left(1 + \frac{\tau \cdot c_{\rm medium}}{\lambda_a}\right)^{-d/\lambda}, \end{split}$$

account for $\ensuremath{\textbf{Cherenkov cone}}$

least square methods

likelihood function for SPE, MPE

include actual ice properties

cascade-like events directional reconstruction

waveform used to reconstruct direction of cascade-like events

time delay vs. direct light

Cherenkov *light* from

→ delayed

"on time" -

 $\approx \pm 15\%$ deposited energy resolution / $\approx 10^{\circ}$ angular resolution (at energies ≥ 100 TeV)

> accounting for ice optical properties

less precise than track-like events

searching for neutrinos identify background: coincident muon events

Aartsen et al. NIM A736 (2014) 143

mis-reconstruction of a double coincident muon event as single track event

searching for neutrinos reject background: coincident muon events

Aartsen et al. NIM A736 (2014) 143

split of a double coincident muon event into two single track events

atmospheric neutrinos energy spectrum

• neutrinos and muons produced by **cosmic rays** in the **atmosphere** from **meson decay**

atmospheric neutrinos energy window to astrophysical neutrinos

ICRC 2015 - Den Haag, NL

atmospheric neutrinos energy window to astrophysical neutrinos

cosmic ray

¥θ

10⁶ x larger Bg looking "up" into muons than "down" into neutrinos

LET'S EXPLORE RIGHT AWAY THE ASTROPHYSICAL SEARCH WINDOW

atmospheric neutrinos energy window to astrophysical neutrinos

searching for neutrinos background rejection

Sigma-Level	Confidence Level	Alpha-Level
1	68.3%	0.3174
2	95.45%	0.0455
3	99.73%	0.0027
4	99.9937%	0.0000633
5	99.999943%	0.00000057

- conventional v_µ: Honda et al. 2004 extended to high energy
- prompt v_{μ} : Enberg et al. 2008
- new calculations available with updated cosmic ray spectrum & composition

- the harder astrophysical spectrum the higher prompt neutrino needed to fit data
- low statistics: results consistent

20

Aartsen et al. Phys.Rev.Lett. 115 (2015) 8, 081102

Experimental data Sum of predictions

Prompt atmospheric

Astrophysical

10⁴

10³

10²

10¹

10⁰

10⁻¹

10⁻²

E²

 10^{3}

Events

- conventional v_µ: Honda et al. 2004 extended to high energy
- prompt v_μ: Enberg et al. 2008
- cosmic ray spectrum & composition with knee included after original calculations
- new calculations available with updated cosmic ray spectrum & composition
- the harder astrophysical spectrum the higher prompt neutrino needed to fit data
- Iow statistics: results consistent

- conventional v_µ: Honda et al. 2004 extended to high energy
- prompt v_μ: Enberg et al. 2008
- cosmic ray spectrum & composition with knee included after original calculations
- new calculations available with updated cosmic ray spectrum & composition
- the harder astrophysical spectrum the higher prompt neutrino needed to fit data
- Iow statistics: results consistent

- conventional v_µ: Honda et al. 2004 extended to high energy
- prompt v_μ: Enberg et al. 2008
- cosmic ray spectrum & composition with knee included after original calculations
- new calculations available with updated cosmic ray spectrum & composition
- the harder astrophysical spectrum the higher prompt neutrino needed to fit data
- Iow statistics: results consistent

Events

contained (cascades)

neutrino effective area

cascade-like events all neutrinos NC interactions & electron/tau neutrinos CC interactions track-like events muon neutrinos CC interactions

tau neutrino searches

contained

IceCube-86 x 3 (cascades) μ V_{e,T} Aartsen et al. arXiv:1509.06212 25 pulse from nearby DOMs 20 $u_{ au}$ Current [PE/ns] 10 2.4*0.75 ~1.8 Pe\ 2.4 PeV 40 m close double bang events 10200 10300 10400 10500 Time [ns] no contained Ve, t $\Phi_{90\% CL}^{\nu_{\tau}}(E) = 5.1 \times 10^{-8} \times E^{-2} \ GeV^{-1} cm^{-2} s^{-1} sr^{-1}$ events with double pulses found in 3 years of IceCube-86 data

214 TeV - 72 PeV

neutrino identification active veto

- outer detector veto to reject muon tracks passing the experiment boundary
- collect bright events with total charge > 6000 p.e.
- identify only events starting inside the instrumented volume
- active volume 420 Mton!
- sensitive to all flavors
- sensitive to whole sky

starting (veto)

- vetoeing muons reject atmospheric neutrinos
- as long as muons can be detected in IceCube
- and are accompanied by neutrinos
- high energy vertical events best vetoed
- correlated & uncorrelated muons

- vetoeing muons reject atmospheric neutrinos
- as long as muons can be detected in IceCube
- and are accompanied by neutrinos
- high energy vertical events best vetoed
- correlated & uncorrelated muons

- prompt atmospheric neutrinos are rejected too
- but with lower efficiency
- uncorrelated muons

- prompt atmospheric neutrinos are rejected too
- but with lower efficiency

 The zenith distributions of high-energy astrophysical and atmospheric neutrinos are fundamentally different.

veto efficiency increases with energy

a window to high energy astrophysical neutrino discovery

veto efficiency increases with energy

a window to high energy astrophysical neutrino discovery

4 years of HE starting events $E_v > 60 \text{ TeV}$

- 53(+1) events found
- estimated background

9.0+8.0-2.2 atm. neutrinos

<u>12.6±5.1 atm. muons</u>

1 atm. muon passing veto

coincident CR showers

6.7 σ significance

Aartsen et al. PRD 88 (2013) 112008 Aartsen et al. Science 342 (2013) 1242856 Aartsen et al. PRL 113 (2014) 101101

4 years of HE starting events $E_v > 60 \text{ TeV}$

4 years of HE starting events $E_v > 60 \text{ TeV}$

- 53(+1) events found
- estimated background

9.0+8.0-2.2 atm. neutrinos

<u>12.6±5.1 atm. muons</u>

1 atm. muon passing veto

coincident CR showers

6.7 σ significance

Aartsen et al. PRD 88 (2013) 112008 Aartsen et al. Science 342 (2013) 1242856 Aartsen et al. PRL 113 (2014) 101101

4 years of HE starting events $E_v > 60 \text{ TeV}$

4 years of HE starting events $E_v > 60 \text{ TeV}$

4 years of HE starting events $E_v > 60 \text{ TeV}$

3.5 • likelihood fit with priors for Φ_{astro} **IceCube Preliminary** HESE-4yr atmospheric conventional HESE-3vr and prompt v flux fit with priors on prompt) 3.0 • atmospheric flux assumed 000 to be determined in **shape** 2.5 • best fit **softer** than E⁻² 2.0 a problem ? 1.5 X • prompt atmospheric $1.0 \\ 1$ component fit = 02.0 2.2 2.4 2.6 2.8 3.2 .8 3.0

Yastro

- up-going v_{μ} events and HE starting events consistent within uncertainties
- role of prompt neutrinos ? Need more events

neutrino identification point sources ?

4 years of HE starting events $E_v > 60 \text{ TeV}$

58% (post-trial) for all event clustering **44%** (post-trial) for cascade-like event clustering

neutrino identification flavor sensitivity

TOO FEW TRACK-LIKE EVENTS ?

- track-like & cascade-like is an **experimental** definition
- in all-flavor searches track-like events are not common
- all flavors look alike in NC interactions
- µ in CC interactions may be concealed in showers
- τ have short tracks except above PeV energies

• flavor identification requires simulation data

- COSMIC RAY OBSERVATIONS
- SPECTRUM, COMPOSITION & ANISOTROPY
- ATMOSPHERIC MUONS

- COSMIC RAY OBSERVATIONS
- SPECTRUM, COMPOSITION & ANISOTROPY
- ATMOSPHERIC MUONS