

Cosmic Ray observations with the IceCube Observatory

Paolo Desiati

Wisconsin IceCube Particle Astrophysics Center & Department of Astronomy

desiati@wipac.wisc.edu

University of Wisconsin - Madison

lectures outline

neutrino telescopes & the IceCube Observatory

observing the Universe

neutrino observations

cosmic ray observations

astrophysics & interdisciplinary sciences

outline cosmic ray observations with IceCube

cosmic rays at Earth

atmospheric muons and neutrinos

mass composition and energy of cosmic rays

the anisotropy of cosmic rays

cosmic ray muons

cosmic rays the long journey

extensive air showers penetrating cosmic radiation

atmospheric air showers of particles are extended

LOW ENERGY NUCLEONIC (DISINTEGRATION PRODUCT NEUTRONS DEGENERATE TO "SLOW" NEUTRONS)

> N,P+HIGH ENERGY NUCLEONS

n.p = DISINTEGRATION PRODUCT NUCLEONS

NUCLEAR DISINTEGRATION

proton-induced shower of 10¹⁹ eV

extensive air showers

primary cosmic rays spectrum and composition

disentangle astrophysics and particle physics

primary cosmic rays spectrum and composition

disentangle astrophysics and particle physics

extensive air showers a natural laboratory

cosmic rays spectrum direct observations

(from PDG)

cosmic rays spectrum direct observations

E_k^{2.7}J(E_k) (GeV^{1.7}/(m² s sr)) → 01 proton Aloisio, Blasi, Serpico, A&A 2015 10³ Pamela CREAN Voyage AMS-0 unmod mod. 10² 10⁻¹ 10⁰ 10¹ 10² 10³ 10⁴ helium E_k^{2.7}J(E_k) (GeV^{1.7}/(m² s sr)) 0 0 solar influence slope change H=4.0 Kpc, h_q =0.15 kpc, μ =2.4 mg/cm² rigidity dependent (\propto Z) $B_0=1 \mu G$, $I_c=50 pc$, $\eta_B=0.075$, $\xi_{CR}=0.045$ $n_i=0.02 \text{ cm}^{-3}, \phi_{sol}=500 \text{ MV}$ γ_{prot.}=4.20, γ_{nucl.}=4.15 10¹ 10³ 10⁰ 10² 10¹ 10⁴ 10 10 E_k (GeV/n)

- energy spectrum has fine structures
- broken power law or spectral concavity

10⁵

10⁵

cosmic rays spectrum direct observations

ISS-CREAM, ...

slope change

rigidity dependent (\propto Z)

- energy spectrum has fine structures
- broken power law or spectral concavity

cosmic rays mass direct observations

- cosmic rays mass composition not very different from our solar neighborhood
- differences from nuclear
 fragmentation in collisions with interstellar medium

 isotopic composition provides hints on origin and propagation of cosmic rays (OB associations)

- information on age of cosmic rays & on diffusion properties at low energy (~GeV)
- at high energy changes in mass composition from rigidity-escape
 escape from the Galaxy

cosmic rays spectrum indirect observations

- at high energy flux too small for direct observations
- ground-based, under-ground / water / ice detection

- atmosphere & interaction properties
- energy & mass observations tangled
- Iower energy & mass resolution

cosmic rays spectrum all-particle energy spectrum

cosmic rays spectrum all-particle energy spectrum

cosmic rays spectrum all-particle energy spectrum

cosmic rays spectrum all-particle energy spectrum

cosmic rays spectrum all-particle energy spectrum

all-particle spectrum depends on the *assumed* mass composition of primary particles

cosmic rays spectrum all-particle energy spectrum

all-particle spectrum depends on the *assumed* mass composition of primary particles

cosmic rays spectrum all-particle energy spectrum

all-particle spectrum depends on the *assumed* mass composition of primary particles

cosmic rays composition coincident events

cosmic rays composition coincident events

cosmic rays composition other experiments

cosmic ray composition in

cosmic rays composition other experiments

• cosmic rays expected to be *almost* isotropic

• scrambled by galactic magnetic field

• what does *isotropy* look like in IceCube ?

raw map of events in equatorial coordinates $(\alpha, \delta)_i$

reference map from events scrambled over 24hr in α (or time)

subtract reference map from raw map to determine the residual relative intensity map

-1.5 -1.2 -0.9 -0.6 -0.3 0 0.3 0.6 0.9 1.2 1.5 Relative Intensity [x 10⁻³]

- 6 years of IceCube
- 300 billion events

- anisotropy on the level of 10⁻³
- median cosmic ray energy **20 TeV**
- trace sources ? Magnetic fields ?

13 TeV

24 TeV

38 TeV

71 TeV

130 TeV

240 TeV IceCube

580 TeV

IceCube

1.4 PeV

IceCube

1.6 PeV IceTop

5.4 PeV

IceCube

a known anisotropy Earth's motion around the Sun

Compton & Getting, Phys. Rev. 47, 817 (1935) Gleeson, & Axford, Ap&SS, 2, 43 (1968)

-0.0010

350

300

250

200

Right Ascension [°]

150

100

cosmic rays anisotropy large and small angular scale

cosmic rays anisotropy large and small angular scale

cosmic ray muons bundle multiplicity

cosmic ray muons bundle multiplicity

cosmic ray muons multiple muon spectrum

$$\sum E_{\mu} \propto N_{\mu} \propto E_{\rm prim}^{\alpha} \cdot A^{1-\alpha}$$

$$E_{\text{mult}} \equiv E_{\text{prim}} \cdot (A/56)^{\frac{1-\alpha}{\alpha}}$$

Bundles

angular distribution not well described by models ~ statistical limitations

cosmic ray muons high energy muon spectrum

HE Muons

high energy excess of "single" muons - prompt component ?

cosmic ray muons low energy muons in CR showers

- LIFE AT THE SOUTH POLE
- INTERDISCIPLINARY SCIENCES
- ASTROPHYSICS

THANK YOU

NEXT:

