

Astrophysics with the IceCube Observatory ...

... and life snapshots from the South Pole

Paolo Desiati

Wisconsin IceCube Particle Astrophysics Center & Department of Astronomy

desiati@wipac.wisc.edu

University of Wisconsin - Madison

lectures outline

neutrino telescopes & the IceCube Observatory

observing the Universe

neutrino observations

cosmic ray observations

astrophysics & life at South Pole

outline astrophysics and interdisciplinary sciences

qualitative notion of propagation

cosmic ray astrophysics

neutrino astrophysics

life at the South Pole

interdisciplinary science (time permitting)

cosmic rays a natural laboratory

cosmic ray acceleration in supernova remnants

- energy density of cosmic rays below the knee consistent with 10% of energy emitted by SNR every 30 years in the Galaxy
- composition of **low energy** cosmic rays consistent with **OB Associations**
- diffusive shock acceleration and E⁻²
- some particles interacts and some escape and propagate across the interstellar medium

astrophysical turbulence properties

diffusion coefficient $D(E) \approx D_0 \cdot E^{\delta}$

diffusion coefficient $D(E) \approx D_0 \cdot E^{\delta}$

Ε

E^{-2.7}

 $\delta = 0.7$ (?)

 $E^{-2.7}$

Ε

- a nearby "recent" source would have a "flatter" spectrum (no full diffusion?)
- diffusion coefficient can change as a function of the location in the Galaxy

cosmic rays spectrum direct observations

- anomaly cosmic ray spectra
- **anomaly** in anti-proton & positron fraction

- the knee of cosmic rays and spectral features from escape from the Galaxy
- determines the level of turbulence

 cosmic ray spectrum shaped by acceleration at the source

- cosmic ray spectrum shaped by acceleration at the source
- different populations of sources with different power (Peter's cycle)
- hard energy spectra cumulate to produce softer all-particle spectrum
- **knee** from transition of populations

 cosmic ray spectrum shaped by a single source producing the knee

astrophysical neutrinos 2 million years old nearby supernova

 2 million years old supernova as the origin of the observed anomalies: ANISOTROPY?

Erlykin, Wolfendale, 2006

- cosmic ray spectrum shaped by a single source producing the knee
- anisotropy from the contributing source
- evolution of anisotropy with energy from changing relative contribution from different sources...
- ... or from **B**_{ISM} at different distances ?
- energy dependence in disagreement with simple diffusion scenario

Erlykin, Wolfendale, 2006

- cosmic ray spectrum shaped by a single source producing the knee
- anisotropy from the contributing source
- evolution of anisotropy with energy from changing relative contribution from different sources...
- ... or from **B**_{ISM} at different distances ?
- energy dependence in disagreement with simple diffusion scenario

TeV sidereal anisotropy

20

astrophysics of cosmic ray anisotropy probing sources & propagation of cosmic rays ?

▶ stochastic effect of nearby & recent sources & temporal correlations Erlykin & Wolfendale, Astropart. 2006

local ISMF shaped by LOOP I expansion sub-shell (with center ~60 pc away in Scorpius-Centaurus OB Association)

local cloudlets fragments of the shell moving at similar velocities

14 pc - Frisch+, 2011, 14 100 pc - Wolleben, 2007 500 pc - (Priscilla Frisch) -10 to 10 pc Mic Hyades Oph Scorpius-Centaur Parsecs Y (pc) Agl Gem - 20 Blue -40-40 - 20 -2 0 X (pc) diffuse gas Parsecs molecular clouds

interstellar magnetic field affected by inhomogeneities

cosmic ray anisotropy

local interstellar medium

Redfield & Linsky, 2008

Frisch+, 2011

local ISMF relatively uniform over spacial scales of order 60-100 pc (inter-arm)

Frisch+, 2012

magnetic turbulence affects propagation and diffusion properties

Giacalone & Jokipii, 1994, 99 Yan, Lazarian, 2002,04,08

cosmic ray anisotropy heliosphere

heliosphere as O(100-1000) AU magnetic perturbation of local ISMF

PD & Lazarian, 2013

- influence on \leq 10 TeV protons (R_L \leq 600 AU)
- cosmic rays >100's TeV influenced by interstellar magnetic field (change of anisotropy)

anisotropy and local galactic environment low to high energy connection

- IBEX observations of keV Energetic Neutral Atoms
- determination of interstellar flow direction
- determination of interstellar magnetic field direction
- Iarge scale heliosphere to induce perturbations in arrival direction of TeV cosmic rays

Schwadron, Adams, Christian, PD, Frisch, Funsten, Jokipii, McComas, Möbius, Zank, Science, 1245026 (2014)

Zhang, Zuo & Pogorelov ApJ 790, 5 (2014)

cosmic ray anisotropy probing heliospheric magnetic structure

Borovikov, Heerikhuisen, Pogorelov

strong scattering

effect from downstream instabilities on the flanks of heliotail

PD & Lazarian 2013 López-Barquero, Farber, Xu, PD,

Lazarian, Pogorelov (in preparation)

small angular features from particle gradient distributions correlated with large scale heliospheric geometry

cosmic ray anisotropy small scale anisotropy

effects of magnetic polarity reversals from solar cycles

magnetic reconnection

Lazarian & PD 2010 PD & Lazarian 2012 spectral features in some localized excess regions

anisotropy features from dark matter clumpsHarding, 2013

effects of magnetic turbulence on

small angular scale distribution of cosmic ray arrival directions

Paolo Desiati

Giacinti & Sigl, 2012

López-Barquero, Farber, Xu, PD, Lazarian (arXiv:1509.00892)

Ahlers, 2014

Ahlers & Mertsch, 2015

cosmic ray anisotropy small scale anisotropy

750 TeV

MHD compressible turbulence snapshot with dB/B ~ 0.7

effects of **magnetic turbulence** on

small angular scale distribution of cosmic ray arrival directions

Paolo Desiati

Deposited EM-Equivalent Energy in Detector (TeV)

astrophysical neutrinos extra-galactic origin

- γ-rays & v's from pp interactions
- extra-galactic emission (cascaded in EBL): E^{-2.1} - E^{-2.2}
- these cosmic ray sources contribute to 30%-40% of diffuse γ-ray background @100 GeV
- low energy tail of GeV-TeV neutrino/γ-ray spectra

- sources can be opaque in γ-ray
- v to probe dense environments

astrophysical neutrinos starburst galaxies ?

M. Ahlers

Messier 82

NGC 253

$$E^2 \phi_{\gamma}(E) \simeq 9.6 \times 10^{-13} \left(\frac{E}{\text{TeV}}\right)^{-0.14} \frac{\text{TeV}}{\text{cm}^2 \text{s}}$$

no neutrino limit

$$E^2 \phi_{\gamma}(E) \simeq 3.3 \times 10^{-13} \left(rac{E}{ ext{TeV}}
ight)^{-0.5} rac{ ext{TeV}}{ ext{cm}^2 ext{s}}$$

 $E^2 \phi_{
u}(E) \lesssim 3 \times 10^{-12} rac{ ext{TeV}}{ ext{cm}^2 ext{s}}$
[lceCube 4yr]

expected from *pp* interactions: $E_{\nu}^2 \phi_{\nu_{\mu}}(E_{\nu}) \simeq \frac{1}{2} E_{\gamma}^2 \phi_{\gamma}(E_{\gamma})$

astrophysical neutrinos other sources ? NOT GRB and blazars!

GRB Stacking

M. Ahlers

- model
- 492 GRBs (2008–2012) in IceCube's FoV reported with GCN and Fermi GBM

[Th.Gluesenkamp RICAP'14; arXiv:1502.03104]

- Fermi blazar stacking
- plot shows limit on 310 FSRQ
- all 2LAC blazar limits of similar strength

astrophysical neutrinos correlations with UHECR from Auger ?

IceCube Auger TA

ICRC 2015

x: IceCube tracks, +: IceCube cascades, o: Auger, Δ : TA

"life at the South Pole"

science at the bottom of the World

... and relaxing

arriving in McMurdo ...

McMurdo Station, Antarctica

Data LDEO-Columbia, NSF, NOAA Image U.S. Geological Survey Image © 2013 DigitalGlobe Data SIO, NOAA, U.S. Navy, NGA, GEBCO

1402 m

Googleearth

arriving to the South Pole

arriving to the South Pole

arriving to the South Pole

living at the South Pole

how do we investigate the origin of cosmic rays ?

IceCube collecting events

drilling holes at the South Pole

drilling holes at the South Pole

drill camp

IceCube - 2011

AMANDA - 1996

deployment

IceCube - 2011

AMANDA - 1996

MUCHAS GRACIAS A TODOS USTEDES

MUCHAS GRACIAS A TODOS USTEDES

other sciences with IceCube particle physics (atmospheric v & μ)

other sciences with IceCube antarctic glaciology

other sciences with IceCube antarctic glaciology

other sciences with IceCube Earth sciences

- inner structure of Earth studies with seismic wave analysis
- dependence on geophysical models: density, chemical composition
- neutrino radiography absorption at high energy depends on atomic density

• neutrino tomography - oscillations at low energy depends on chemical composition

other sciences with IceCube Earth sciences

other sciences with IceCube atmospheric sciences (stratospheric temperature)

ICRC 2009 ICRC 2011

- long (year) & short term (days) variations of stratospheric temperature
- temperature resolution ~1 K (statistics ~0.2 K)
 - 60

other sciences with IceCube atmospheric sciences (stratospheric temperature)

- long (year) & short term (days) variations of stratospheric temperature
- temperature resolution ~1 K (statistics ~0.2 K)

other sciences with IceCube heliospheric science

coronal mass ejection

other sciences with IceCube heliospheric science

coronal mass ejection

other sciences with IceCube heliospheric science

coronal mass ejection