

particle acceleration in reconnection regions and cosmic ray excess from the heliotail

Paolo Desiati^{1,2} & Alexander Lazarian²

¹ IceCube Research Center

² Department of Astronomy

University of Wisconsin - Madison

Midwest Magnetic Fields Workshop, Madison, WI May 6th, 2011

cosmic rays

- CR below the knee (~3×10¹⁵ eV) believed to be galactic
- CR above ~10¹⁸-10¹⁹ eV believed to be extra-galactic
- galactic CR believed to be accelerated in expanding shock waves initiated by supernova explosions
- anisotropy in arrival direction expected from discrete sources distribution & propagation in heterogenous IM and turbulent LIMF

low energy cosmic ray anisotropy in arrival direction

Nagashima et al., J. Geophys. Res., Vol 103, No. A8, Pag. 17,429 (1998)

medium / small scale anisotropy

- ▶ global amplitude of large scale anisotropy increases with energy up to
 ~ 1-10 TeV and decreases above it
- origin of anisotropy is unknown
- large scale anisotropy shows smaller angular features, some of which highly significant
- reveal angular features might reveal properties of the boundary region between solar wind and interstellar wind
- isolate small scale features
 - 4 Particle acceleration in reconnection regions Paolo Desiati

angular scale in cosmic ray arrival direction

angular scale in cosmic ray arrival direction

angular scale in cosmic ray arrival direction

loss-cone region

tail-in excess region

medium / small scale anisotropy

2.2 · 10¹¹ events median CR energy ~ 1 TeV = 10¹² eV average angular resolution < 1°

2hr time window 10° smoothing

- ▶ filter all angular features > 30°
- technique used in gamma ray searches

medium / small scale anisotropy

Abdo A.A. et al., 2008, Phys. Rev. Lett., 101, 221101

Milagro

2.2 · 10¹¹ events median CR energy $\sim 1 \text{ TeV} = 10^{12} \text{ eV}$ average angular resolution < 1°

2hr time window 10° smoothing

- filter all angular features > 30°
- technique used in gamma ray searches

origin of small scale anisotropy: astrophysics?

- ▶ localized excess of cosmic rays from nearby (~150 pc ~ 3×10⁷ AU) recent (~ 350 kyr) supernova that gave birth to Geminga Pulsar
- ▶ fine tuning of propagation through interstellar medium
- Incidentally requires magnetic connection to the faraway source
- small scale features likely from local processes

Abdo et al., Phys. Rev. Lett., 101, 221101, 2008

origin of "tail-in anisotropy"

- broad tail-in excess of sub-TeV cosmic rays attributed to heliotail
- ▶ localized excess of multi-TeV cosmic rays from the direction of the heliotail
- medium/small scale modulation to be connected to **nearby** perturbations
- first-order Fermi acceleration in magnetic reconnection regions in the heliotail

Nagashima et al., J. Geophys. Res., Vol 103, No. A8,17429, 1998

Abdo et al., Phys. Rev. Lett., 101, 221101, 2008

magnetic reconnection @ heliotail

Lazarian & Desiati, ApJ, 722, 188, 2010

magnetic polarity reversals due to the 11year solar cycles compressed by the solar wind in the magneto-tail

3D simulation of heliosphere/heliotail Pogorelov et al., ApJ, 696, 1478, 2009

magnetic reconnection @ heliotail

Lazarian & Desiati, ApJ, 722, 188, 2010

- magnetic polarity reversals due to the 11year solar cycles compressed by the solar wind in the magneto-tail
- ubiquitous turbulence makes reconnection fast and not affected by ohmic dissipation

3D simulation of heliosphere/heliotail Pogorelov et al., ApJ, 696, 1478, 2009

Sweet, IAU Symposium 6, Electromagnetic Phenomena in Cosmical Physics, 123, 1959. Parker, J. Geophys. Rev., 62, 509, 1957

Lazarian & Vishniac, ApJ, 517, 700, 1999

Particle acceleration in reconnection regions - Paolo Desiati

stochastic magnetic reconnection

- verification of Lazarian & Vishniac 1999 with numerical calculations
- reconnection speed does not depend on resistivity
- reconnection speed increases with turbulence injection power
- reconnection speed local turbulent velocity

acceleration in weakly stochastic reconnection regions

- first order Fermi acceleration from volumefilling magnetic reconnection
- magnetic mirror @ reconnection as site of acceleration

$$N(E)dE \sim E^{-\frac{5}{2}}dE$$

magnetic tubes contraction leads to increase of particle energy as long as they are within the contracting magnetic loop

$$E_{max} \approx 10^{13} \ eV \cdot \left(\frac{B}{1 \ \mu G}\right) \cdot \left(\frac{L_{zone}}{134 \ AU}\right)$$

de Gouveia Dal Pino & Lazarian, 2005

application to pulsars, microquasars, solar flares acceleration

de Gouveia Dal Pino & Lazarian, 2000, 2003, 2005 Lazarian, 2005

acceleration in weakly stochastic reconnection regions

- test particle verification of Lazarian & Vishniac 1999 with numerical calculations
- magnetic energy transferred into energy of contracting loops
- fast reconnection induces efficient acceleration of cosmic rays
- complexity of acceleration: contracting loops & current sheets; 1st order Fermi & drift acceleration

more studies: Kowal et al., arXiv:1103.2984

acceleration in reconnection regions

$$N(E)dE \sim E^{-\frac{5}{2}}dE$$

first-order Fermi acceleration of test particle in magnetic mirrors

$$N(E)dE \sim E^{-\frac{3}{2}}dE$$

particle back-reaction Drake et al., Nature, 443, 553, 2006

$$E_{max} \approx 10^{13} \ eV \cdot \left(\frac{B}{1\mu B}\right) \cdot \left(\frac{L_{zone}}{134 \ AU}\right)$$

▶ solar wind down-stream TS ≈ 100 km/sec

$$E_{max} \approx 20 \ TeV \cdot \left(\frac{B}{1\mu B}\right)$$

unlikely to expect energies > 10 TeV

application on anomalous cosmic rays

- magnetic field reversals from Sun's rotation compress heliospheric current sheets regions at heliopause
- reconnection and acceleration induced in the heliosheath closer to the heliopause
- Voyager 1/2 did not observe ACR peak @ termination shock, but still increasing
- other models available as well

also Drake et al., ApJ, 709, 963, 2010

Lazarian & Opher, ApJ 703, 8, 2009

magnetic reconnection in the heliosphere

conclusions

- broad tail-in excess of sub-TeV cosmic rays and localized excess of multi-TeV cosmic rays from the direction of the heliotail could have a common origin
- 1st order Fermi acceleration in magnetic reconnection regions in the heliotail
- on-going numerical calculations to verify whether magnetic reconnection regions in the heliotail may be site of efficient acceleration
- acceleration mechanisms in stochastic reconnection regions might explain the puzzling excess region of cosmic rays
- potential testbed of large-scale acceleration mechanism in stochastic reconnection regions (ACR, heliotail, ...)
- multi-TeV cosmic rays to probe outer heliospheric boundary

back up slides

origin of small scale anisotropy: heliospheric tail

- sub-TeV cosmic ray tail-in excess by some unknown asymmetry caused by the heliotail
- solar magnetic field reversal should affect galactic anisotropy
- origin of excess is "heliospheric"

anisotropy vs energy

