particle acceleration in reconnection regions and cosmic ray excess from the heliotail

Paolo Desiati ${ }^{1,2}$ \& Alexander Lazarian ${ }^{2}$
${ }^{1}$ IceCube Research Center
${ }^{2}$ Department of Astronomy
University of Wisconsin - Madison

Midwest Magnetic Fields Workshop, Madison, WI May $6^{\text {th }}, 2011$

cosmic rays

- CR below the knee $\left(\sim 3 \times 10^{15} \mathrm{eV}\right)$ believed to be galactic
- CR above $\sim 10^{18}-10^{19} \mathrm{eV}$ believed to be extra-galactic
- galactic CR believed to be accelerated in expanding shock waves initiated by supernova explosions
- anisotropy in arrival direction expected from discrete sources distribution \& propagation in heterogenous IM and turbulent LIMF

low energy cosmic ray anisotropy in arrival direction

medium / small scale anisotropy

- global amplitude of large scale anisotropy increases with energy up to $\sim 1-10 \mathrm{TeV}$ and decreases above it $\boldsymbol{~}$
- origin of anisotropy is unknown
- large scale anisotropy shows smaller angular features, some of which highly significant
- small angular features might reveal properties of the boundary region between solar wind and interstellar wind
- isolate small scale features

angular scale in cosmic ray arrival direction

loss-cone region
tail-in excess region

angular scale in cosmic ray arrival direction

loss-cone region
tail-in excess region

angular scale in cosmic ray arrival direction

loss-cone region
tail-in excess region

medium / small scale anisotropy

Abdo A.A. et al., 2008, Phys. Rev. Lett., 101, 221101

$2.2 \cdot 10^{11}$ events median CR energy ~ $1 \mathrm{TeV}=10^{12} \mathrm{eV}$ average angular resolution $<1^{\circ}$

2hr time window
10° smoothing

- filter all angular features $>30^{\circ}$
- technique used in gamma ray searches

medium / small scale anisotropy

Abdo A.A. et al., 2008, Phys. Rev. Lett., 101, 221101

origin of small scale anisotropy : astrophysics ?

- localized excess of cosmic rays from nearby ($\sim 150 \mathrm{pc} \sim 3 \times 10^{7} \mathrm{AU}$) recent (~ 350 kyr) supernova that gave birth to Geminga Pulsar
- fine tuning of propagation through interstellar medium
- incidentally requires magnetic connection to the faraway source
- small scale features likely from local processes

Abdo et al., Phys. Rev. Lett., 101, 221101, 2008

origin of "tail-in anisotropy"

- broad tail-in excess of sub-TeV cosmic rays attributed to heliotail
- localized excess of multi-TeV cosmic rays from the direction of the heliotail
- medium/small scale modulation to be connected to nearby perturbations

Nagashima et al., J. Geophys. Res., Vol 103, No. A8,17429, 1998
loss-cone region
tail-in excess region

- first-order Fermi acceleration in magnetic reconnection regions in the heliotail

Abdo et al., Phys. Rev. Lett., 101, 221101, 2008

magnetic reconnection @ heliotail

Lazarian \& Desiati, ApJ, 722, 188, 2010

- magnetic polarity reversals due to the 11year solar cycles compressed by the solar wind in the magneto-tail

3D simulation of heliosphere/heliotail
Pogorelov et al., ApJ, 696, 1478, 2009

magnetic reconnection @ heliotail

Lazarian \& Desiati, ApJ, 722, 188, 2010

- magnetic polarity reversals due to the 11year solar cycles compressed by the solar wind in the magneto-tail
- ubiquitous turbulence makes reconnection fast and not affected by ohmic dissipation

stochastic magnetic reconnection

- verification of Lazarian \& Vishniac 1999 with numerical calculations
- reconnection speed does not depend on resistivity
$B_{2}=0.1 P_{\text {inj }}=1.0 \mathrm{~K}_{\mathrm{inj}}=8$

Kowal et al., ApJ, 700, 63, 2009

acceleration in weakly stochastic reconnection regions

de Gouveia Dal Pino \& Lazarian, 2005

- first order Fermi acceleration from volumefilling magnetic reconnection
- magnetic mirror @ reconnection as site of acceleration

$$
N(E) d E \sim E^{-\frac{5}{2}} d E
$$

- magnetic tubes contraction leads to increase of particle energy as long as they are within the contracting magnetic loop

```
application to pulsars, microquasars,
solar flares acceleration
```

de Gouveia Dal Pino \& Lazarian, 2000, 2003, 2005
Lazarian, 2005

acceleration in weakly stochastic reconnection regions

- test particle verification of Lazarian \& Vishniac 1999 with numerical calculations
- magnetic energy transferred into energy of contracting loops
- fast reconnection induces efficient acceleration of cosmic rays
- complexity of acceleration: contracting loops \& current sheets; $1^{\text {st }}$ order Fermi \& drift acceleration

\& Kowal et al., ApJ, 700, 63, 2009

more studies : Kowal et al., arXiv:1103.2984

acceleration in reconnection regions

$$
N(E) d E \sim E^{-\frac{5}{2}} d E
$$

first-order Fermi acceleration of test particle in magnetic mirrors
particle back-reaction Drake et al., Nature, 443, 553, 2006

$$
E_{\max } \approx 10^{13} e V \cdot\left(\frac{B}{1 \mu B}\right) \cdot\left(\frac{L_{z o n e}}{134 A U}\right)
$$

- solar wind down-stream TS $\approx 100 \mathrm{~km} / \mathrm{sec}$

$$
E_{\max } \approx 20 \mathrm{Te} V \cdot\left(\frac{B}{1 \mu B}\right)
$$

- unlikely to expect energies > 10 TeV

application on anomalous cosmic rays

Lazarian \& Opher, ApJ 703, 8, 2009

- magnetic field reversals from Sun's rotation compress heliospheric current sheets regions at heliopause
- reconnection and acceleration induced in the heliosheath closer to the heliopause
- Voyager 1/2 did not observe ACR peak @ termination shock, but still increasing
- other models available as well

magnetic reconnection in the heliosphere

3D simulations of heliosphere
Opher et al., arXiv:1103.2236

3D simulation of heliosphere/heliotail Pogorelov et al., ApJ, 696, 1478, 2009

16 Particle acceleration in reconnection regions - Paolo Desiati

conclusions

- broad tail-in excess of sub-TeV cosmic rays and localized excess of multi-TeV cosmic rays from the direction of the heliotail could have a common origin
- $1^{\text {st }}$ order Fermi acceleration in magnetic reconnection regions in the heliotail
- on-going numerical calculations to verify whether magnetic reconnection regions in the heliotail may be site of efficient acceleration
- acceleration mechanisms in stochastic reconnection regions might explain the puzzling excess region of cosmic rays
- potential testbed of large-scale acceleration mechanism in stochastic reconnection regions (ACR, heliotail, ...)
- multi-TeV cosmic rays to probe outer heliospheric boundary
back up slides

origin of small scale anisotropy : heliospheric tail

Nagashima et al., J. Geophys. Res., Vol 103, No. A8, Pag. 17,429 (1998)

- sub-TeV cosmic ray tail-in excess by some unknown asymmetry caused by the heliotail
- solar magnetic field reversal should affect galactic anisotropy
- origin of excess is "heliospheric"

anisotropy vs energy

($3 \mu \mathrm{G}$)

$3 \cdot 10^{-5}$	$3 \cdot 10^{-4}$	$3 \cdot 10^{-3}$	$3 \cdot 10^{-2}$	0.3	gyro-radius (pc)
7	70	700	7,000	70,000	gyro-radius (AU)

20 heliospheric influence galactic influence

