

May 1, 2013 Midwest Magnetic Fields Workshop University of Wisconsin, Madison, Wisconsin

1

& propagation through the heliospheric boundary

Paolo Desiati^{1,2} <<u>desiati@wipac.wisc.edu</u>>

Alexander Lazarian²

¹ WIPAC - Wisconsin IceCube Particle Astrophysics Center
² Department of Astronomy

University of Wisconsin - Madison

cosmic rays spectrum

- cosmic rays produced in supernova remnants below 10⁸-10⁹ GeV
- spectral features from acceleration mechanisms or propagation effects
- source distribution in Galaxy and our neighborhood
- magnetic field configurations in local interstellar medium
- cosmic ray anisotropy

cosmic ray arrival direction

Abbasi et al., ApJ, **718**, L194, 2010 Abbasi et al., ApJ, **746**, 33, 2012 Aartsen et al., ApJ, **765**, 55, 2013

cosmic ray anisotropy large scale \rightarrow small scale

Wednesday, May 1, 2013

cosmic ray propagation interstellar medium

gyro-radius

$$R_L \approx \frac{200}{Z} \frac{E_{TeV}}{B_{\mu G}} \left[AU \right]$$

mean free path in ISM

- 1-100 TeV cosmic ray protons have $R_L \approx 70$ 7000 AU in $B_{\text{ISM}} \sim 3 \ \mu G$
- heliosphere expected to influence cosmic rays below O(100) TeV
- cosmic ray streaming along local IS magnetic field
- non-diffusive effects < mean free path</p>

E/Z = 10 PeV

cosmic ray anisotropy heliospheric influence

- MHD simulations of heliosphere & heliotail
- magnetic perturbations on the flanks with significant B amplification

cosmic ray anisotropy heliospheric influence

 Iocal IS magnetic field draping the heliosphere

cosmic ray anisotropy & scattering heliospheric influence

heliospheric perturbations instabilities at the heliopause

• Rayleigh-Taylor instabilities driven and mediated by interstellar neutral atoms

perturbation scale O(10-100) AU

Liewer+ 1996 Zank+ 1996

• plasma-fluid instabilities at the flank of HP by charge exchange processes

heliospheric perturbations instabilities

- resonant scattering of protons on magnetic perturbations δB ~ B₀ at scales of ≈ 300 AU occurs at ≈ 10 TeV
- perturbations on the flanks of the heliosphere re-distribute 10 TeV cosmic rays

- local IS magnetic field and magnetic perturbations along the heliotail responsible for TeV anisotropy
- some small scale features from gradients generated by scattering

cosmic ray anisotropy probing heliospheric influence

anisotropy re-directed due to *pitch angle scattering* on magnetic perturbations on the heliospheric boundary

Paolo Desiati

11

 @ energy scale of 10 TeV - proton resonant scattering with perturbations at largest scale - scrambling of cosmic ray arrival directions

- @ energy scale of 10 TeV proton resonant scattering with perturbations at largest scale - scrambling of cosmic ray arrival directions
- < 10 TeV resonant scattering with smaller scale perturbations and adiabatic pitch angle variations from p^2_{\perp}/B
- > 10 TeV non-resonant scattering with smaller scales amplitude decreases, intensity gradient become smoother

Tibet ASy Amenomori et al., ApJ. 626, L29,

10⁴

Primary energy[GeV]

10⁵

10⁶

14

10⁻² ∟ 10²

 10^{3}

> 100 TeV - r_L > heliosphere - heliospheric influence dissipates
CR mass composition - smearing of transition scale
Interference of transition scale

re-directed anisotropy not a dipole

Wednesday, May 1, 2013

conclusions

- high energy cosmic ray anisotropy to probe into their origin and propagation
- astrophysical scenarios need understanding of local phenomena
- <100 TeV cosmic rays to be **affected by heliosphere**
- **scattering** with perturbation on heliopause

PD & Lazarian 2013

Lazarian & PD 2010 - PD & Lazarian 2012

• re-acceleration mechanism in the heliotail

 heliospheric modeling to be extended along heliotail with fine resolution: instabilities, turbulence & global structure. Particle trajectory integration studies will follow → predictive model

15

thank you

Cosmic Ray Anisotropy Workshop

September 26-28, 2013

Union South • 1308 W Dayton St • Madison, WI wipac.wisc.edu/CRA2013

Cosmic Ray Anisotropy

Cosmic Ray Spectrum and Composition

Cosmic Ray Origin, Acceleration and Propagation

> Interstellar Medium and Interstellar Magnetic Field

Heliosphere and its Boundary Region with the Interstellar Medium

Organizing Committee Scientific Cor

Eun-Suk Seo riscilla Frisch Gus Sinnis Nikolai Pogorelov

Albrecht Karle Kim Kreiger Paolo Desiati

Local Co

Marcos Sar Stefan Wes

backup

Paolo Desiati

 $N_d = n_{\rm CR} \, 4\pi \, R_E^2 \, c \, \tau.$

PD & Lazarian, ApJ, 762, 44, 2013

$$\delta = \frac{N_b - N_d}{N_b + N_d} = \frac{N_b/N_d - 1}{N_b/N_d + 1}, \qquad \qquad \frac{N_b}{N_d} = \frac{3\pi}{4} P_s \frac{dR_H}{c \tau}.$$

 $\delta \gtrsim 0$, $P_s \gtrsim 100/dR_H$

from the Galaxy to our local interstellar medium

low energy cosmic ray anisotropy in arrival direction

Nagashima et al., J. Geophys. Res., Vol 103, No. A8, Pag. 17,429 (1998)

20 Particle acceleration in reconnection regions - Paolo Desiati

cosmic ray anisotropy large scale energy dependency

cosmic ray anisotropy angular scale structure

cosmic ray anisotropy small scale IceCube

 χ^2 /ndf = 14743.4 / 14187 Pr(χ^2 Indf) = 0.05%

20

30

10

15

Multipole ℓ

large and small scales separated @ ~20 TeV ?

Paolo Desiati

 10^{-11}

3

24

spectral feature associated to anisotropy

Wednesday, May 1, 2013

cosmic rays observations all-particle spectrum

origin of spectral hardening?

Lazarian & PD, ApJ, 722, 188, 2010

magnetic polarity reversals due to the 22-year solar cycles produces large scale sectors converging of turbulent magnetic field lines can trigger reconnection and make it fast Lermination Sho (Strongly mixed polarity) magnetic mirror @ single reconnection as site of acceleration (test particle) L_x Sweet (1959) & Parker (1957) Sweet-Parker model Lazarian & Vishniac, ApJ, 517, 700 (1999) Turbulent model Paolo Desiati blow up

Lazarian & PD, ApJ, 722, 188, 2010

- magnetic polarity reversals due to the 22-year solar cycles produces large scale sectors
- converging of turbulent magnetic field lines can trigger reconnection and make it fast
- magnetic mirror @ single reconnection as site of acceleration (test particle)
- ▶ 1st order Fermi acceleration

$$N(E) dE \sim E^{-5/2} dE$$

Kowal et al., ApJ 735, 102 (2011)

29

Kowal et al., ApJ 735, 102 (2011)

- 2nd order Fermi acceleration is dominant in purely turbulent plasmas with no converging magnetic flow
- if converging flow occurs 1st order Fermi acceleration is the most important
- acceleration by reconnection is efficient if scattering does not isotropize particles. Scattering expected to be minimal along the tail line of sight

$$E_{max} \approx 0.5 \left(\frac{B}{1\,\mu G}\right) \left(\frac{L_{zone}}{100\,AU}\right) TeV \approx 0.5 - 6\,TeV$$

 cosmic rays re-accelerated as long as trapped in large scale reconnection regions Kowal et al., PRL 2012

31

spectral feature associated to anisotropy

cosmic ray anisotropy astrophysical origin ?

- stochastic effect of recent nearby CR sources
 - influences spectrum and global arrival direction
 - diffusive scenarios to explain observed features
- propagation effects in turbulent ISMF
- convection from persistent magnetized flow field from old SNRs Biermann+ 2012
- breakdown of diffusion regime via scattering with ISMF turbulence Giacinti & Sigl 2011

Dorman+ 1985 Ptuskin+ 2006 Erlykin & Wolfendale 1997, 2001, 2006 Sveshnikova+ 2013 Blasi & Amato 2011, 2012 Pohl & Eichler 2012

Salvati & Sacco 2008 Drury & Aharonian 2008 Salvati 2010

> Battaner+ 2009 Malkov+ 2010

- diffusion cannot explain the observed non-dipolar topology & small angular scales
- Imitations on single power-law assumption and spacial dependency of diffusion coeff.

Wednesday, May 1, 2013

Paolo Desiati

33

air shower detection @ 2835 m altitude (680 g/cm²)

IceCube Observatory

muon detection @ 1450-2450 m depth

detection principle

