

Galactic Cosmic Ray Anisotropy in IceCube ra projection in sidereal time. The line fit

line fit is the first harmol

at to -27 degree

1.001

Paolo Desiati

Sidereal Time

and second harmonic fit for the projection from -24 IceCube Research Center & Department of Astronomy University of Wisconsin - Madison

<desiati@icecube.wisc.edu>

NuSky 2011, ICTP - Trieste June 20th, 2011

cosmic rays spectrum

- spectral structure & mass composition hold information on
 - origin of cosmic rays and
 - propagation from sources to Earth

- anisotropy in arrival distribution
 - spectral structure
 - origin & propagation

cosmic ray anisotropy vs energy

J.L. Zhang et al., 31st ICRC Łódź - Poland, 2009

ARGO-YBJ

- data from 2008
- ► 365 days livetime
- ▶ 6.5 · 10¹⁰ events
- median CR energy ~ 1.1 TeV

Amenomori et al., Science Vol. 314, pp. 439, 2006

Tibet-III

- data from 1997 to 2005
- 1874 days livetime
- ▶ 3.7 · 10¹⁰ events
- ► angular resolution ~ 0.9°
- modal CR energy ~ 3 TeV

Super-Kamiokande

Guillian et al., Phys Rev D, Vol 75, 063002 (2007)

- data from 1996 to 2001
- ▶ 1662 days livetime
- $2.1 \cdot 10^8$ events
- angular resolution $< 2^{\circ}$
- median CR energy ~ 10 TeV

Milagro

Abdo et al., ApJ, Vol 698-2, pag 2121 (2009)

- data from 2000 to 2007
- ▶ 9.5 · 10¹⁰ events
- ▶ angular resolution < 1°</p>
- median CR energy ~ 6 TeV

University of Alberta, Canada

Utrecht University, Netherlands

Université Libre de Bruxelles, Belgium Vrije Universiteit Brussel, Belgium Université de Mons-Hainaut, Belgium Universiteit Gent, Belgium

Bartol Inst, Univ of Delaware Penn State **UW-Madison UW-River Falls** LBNL, Berkeley UC Berkeley **UC** Irvine Univ. of Alabama Clark-Atlanta University Univ. of Maryland University of Kansas Southern Univ. and A&M College University of Alaska, Anchorage Georgia Tech Ohio State

EPFL, Lausanne, Switzerland

Universität Mainz, Germany DESY Zeuthen, Germany Universität Wuppertal, Germany Universität Dortmund, Germany Humboldt Universität, Germany MPI, Heidelberg Ruhr-Universität, Bochum

Uppsala Universitet, Sweden Stockholm Universitet, Sweden Kalmar Universitet, Sweden University of Canterbury, Christchurch, New Zealand

Collaboration

10 countries

36 institutions

~260 collaborators

Chiba University, Japan

Madison, WI - May 2011

Galactic Cosmic Ray Anisotropy in IceCube - Trieste - Paolo Desiati

6

IceCube

IceCube configurations

Galactic Cosmic Ray Anisotropy in IceCube - Trieste - Paolo Desiati

growing IceCube & temperature correlations

2400 IniceSMT Rate Glitch (> ~1% deviation) 2200 2000 1800 1600 Rate [Hz] 1400 IC22 IC79 IC40 IC59. 1200 1000 800 600 400 04/01 07/01 10/01 01/01 04/01 07/01 10/01 01/01 04/01 07/01 10/01 01/01 04/01 07/01 10/01 01/01 04/01 2007 2007 2007 2008 2008 2008 2008 2009 2009 2010 2010 2010 2010 2011 2011 2009 2009

Observed InIceSMT Rate (Run Duration > 1 hour)

Galactic Cosmic Ray Anisotropy in IceCube - Trieste - Paolo Desiati

detection technique

Galactic Cosmic Ray Anisotropy in IceCube - Trieste - Paolo Desiati

muon event in IceCube

Run 110261 Event 350001 Tue Jan 29 09:44:39 2008

IceCube muon (bundles) data

Rate of Events (Hz)

detector	trigger rate (Hz)	actual time (d)	livetime (d)	number of events ^(*)
IceCube-22	500	300	226	5.4×10 ⁹
IceCube-40	1,100	358	324	19×10 ⁹
IceCube-59	1,700	367	334.5	34×10 ⁹
IceCube-79	2,000	365	337	40×10 ⁹
IceCube-86	2,500	365	365	50×10 ⁹

^{*)} number of events with _LH reconstruction from online-filter collected by DST

cosmic ray anisotropy in IceCube

cosmic ray anisotropy in arrival direction

cosmic ray anisotropy in arrival direction

cosmic ray anisotropy vs energy in IceCube-59

α[°]

cosmic ray anisotropy vs energy in IceCube-59

- reference map derived from data with time scrambling
- smoothing radius optimized on highest significance in excess/deficit region

$$s = \sqrt{2} \left\{ N_{\text{on}} \ln \left[\frac{1+\alpha}{\alpha} \left(\frac{N_{\text{on}}}{N_{\text{on}} + N_{\text{off}}} \right) \right] + N_{\text{off}} \ln \left[(1+\alpha) \left(\frac{N_{\text{off}}}{N_{\text{on}} + N_{\text{off}}} \right) \right] \right\}^{1/2} \alpha = 1/20$$

Li, T. & Ma, Y. 1983, ApJ, 272, 317

statistical significance equatorial coordinates of $\frac{6}{30}$
smoothing = 30

 $\frac{90^{\circ}}{90^{\circ}}$

 $\frac{90^{\circ}}{90$

cosmic ray anisotropy vs energy in IceCube-59

Compton & Getting, Phys. Rev. 47, 817 (1935) Gleeson, & Axford, Ap&SS, 2, 43 (1968)

Earth's motion around the Sun

Galactic Cosmic Ray Anisotropy in IceCube - Trieste - Paolo Desiati

solar dipole anisotropy vs energy in IceCube-59

The observation of the solar dipole supports the observation of the sidereal anisotropy in cosmic ray arrival direction

Galactic Cosmic Ray Anisotropy in IceCube - Trieste - Paolo Desiati

anti-/extended-sidereal distributions vs energy in IceCube-59

cosmic ray anisotropy vs angular scale

Abdo A.A. et al., Phys. Rev. Lett., 101, 221101 (2008)

2.2 \cdot 10¹¹ events median CR energy ~ 1 TeV = 10¹² eV average angular resolution < 1°

2hr time window 10° smoothing

- filter all angular features > 30°
- technique used in gamma ray searches

cosmic ray anisotropy vs angular scale

medium / small scale anisotropy for different experiments

Milagro (direct integration)

ARGO-YBJ

(time scrambling)

Galactic Cosmic Ray Anisotropy in IceCube - Trieste - Paolo Desiati

medium scale anisotropy

dipole & quadrupole fit

 $\begin{cases} \delta I(\alpha, \delta) = m_0 & \text{monopole} \\ + p_x \cos \delta \cos \alpha + p_y \cos \delta \sin \alpha + p_z \sin \delta & \text{dipole} \\ + \frac{1}{2}Q_1(3\cos^2 \delta - 1) + Q_2 \sin 2\delta \cos \alpha + Q_3 \sin 2\delta \sin \alpha + Q_4 \cos^2 \delta \cos 2\alpha + Q_5 \cos^2 \delta \sin 2\alpha & \text{quadrupole} \end{cases}$

Coefficient	Fit Value
m_0	0.320 ± 2.264
p_{x}	2.435 ± 0.707
p_y	-3.856 ± 0.707
p_{z}	0.548 ± 3.872
Q_1	0.233 ± 1.702
Q_2	-2.949 ± 0.494
Q_3	-8.797 ± 0.494
Q_4	-2.148 ± 0.200
Q_5	-5.268 ± 0.200

$$\chi^2/\text{ndf} = 14743.4/14187$$

 $\Pr(\chi^2|\text{ndf}) = 5.5 \times 10^{-4}$

dipole & quadrupole fit

 $\begin{cases} \delta I(\alpha, \delta) = m_0 & \text{monopole} \\ + p_x \cos \delta \cos \alpha + p_y \cos \delta \sin \alpha + p_z \sin \delta & \text{dipole} \\ + \frac{1}{2}Q_1(3\cos^2 \delta - 1) + Q_2 \sin 2\delta \cos \alpha + Q_3 \sin 2\delta \sin \alpha + Q_4 \cos^2 \delta \cos 2\alpha + Q_5 \cos^2 \delta \sin 2\alpha & \text{quadrupole} \end{cases}$

Coefficient	Fit Value
m_0	0.320 ± 2.264
p_{x}	2.435 ± 0.707
$p_{oldsymbol{y}}$	-3.856 ± 0.707
$p_{m{z}}$	0.548 ± 3.872
Q_1	0.233 ± 1.702
Q_2	-2.949 ± 0.494
Q_3	-8.797 ± 0.494
Q_4	-2.148 ± 0.200
Q_5	-5.268 ± 0.200

 $\chi^2/\text{ndf} = 14743.4/14187$ $\Pr(\chi^2|\text{ndf}) = 5.5 \times 10^{-4}$

smoothing scan

region	right ascension	declination	optimal scale	peak significance	post-trials
1	$(122.4^{+4.1}_{-4.7})^{\circ}$	$(-47.4^{+7.5}_{-3.2})^{\circ}$	22°	7.0σ	5.3σ
2	$(263.0^{+3.7}_{-3.8})^{\circ}$	$(-44.1^{+5.3}_{-5.1})^{\circ}$	13°	6.7σ	4.9σ
3	$(201.6^{+6.0}_{-1.1})^{\circ}$	$(-37.0^{+2.2}_{-1.9})^{\circ}$	11°	6.3σ	4.4σ
4	$(332.4^{+9.5}_{-7.1})^{\circ}$	$(-70.0^{+4.2}_{-7.6})^{\circ}$	12°	6.2σ	4.2σ
5	$(217.7^{+10.2}_{-7.8})^{\circ}$	$(-70.0^{+3.6}_{-2.3})^{\circ}$	12°	-6.4σ	-4.5σ
6	$(77.6^{+3.9}_{-8.4})^{\circ}$	$(-31.9^{+3.2}_{-8.6})^{\circ}$	13°	-6.1σ	-4.1σ
7	$(308.2^{+4.8}_{-7.7})^{\circ}$	$(-34.5^{+9.6}_{-6.9})^{\circ}$	20°	-6.1σ	-4.1σ
8	$(166.5^{+4.5}_{-5.7})^{\circ}$	$(-37.2^{+5.0}_{-5.7})^{\circ}$	12°	-6.0σ	-4.0σ

IC59 Dipole + Quadrupole Fit Residuals (20° Smoothing)

Galactic Cosmic Ray Anisotropy in IceCube - Trieste - Paolo Desiati

cosmic ray anisotropy

anisotropy and local interstellar medium

our galactic neighborhood

molecular clouds

Priscilla Frisch - University of Chicago

Galactic Cosmic Ray Anisotropy in IceCube - Trieste - Paolo Desiati

origin of *large* scale anisotropy

Stochastic effect from <0.1-1kpc young SNR & propagation Erlykin & Wolfendale, Astropart. Phys., 25, 183 (2006) Blasi & Amato, arXiv:1105.4529

escape from galaxy

the arms

galactic magnetic field induced by cosmic ray flow along X.B.Qu et al., arX

X.B.Qu et al., arXiv:1101.5273

Butt, Nature, 460, 701 (2009)

- combined effect of regular galactic and turbulent IS magnetic field < 10 pc: isotropy broken in our vicinity due to propagation in turbulent magnetic field
- effect from Local Interstellar Cloud (LIC) and local IS magnetic field < 1 pc
- Heliosphere and the sub-GeV cosmic rays

Amenomori et al., ICRC 2007, Mérida, México (2007)

Nagashima et al., J. Geophys. Res., Vol 103, No. A8, Pag. 17,429 (1998)

origin of small scale anisotropy : CR source

- CR from Geminga: ~90-200 pc, 340,000 yr ago
 - energy passband (cutoff HE, delays LE) ~ hard spectrum
- magnetic connection & propagation in turbulent LIMF

- anisotropic MHD turbulence in the ISM
 - large scale anisotropy is "perturbed" by faint beam of collimated particles along the "magnetic" tube that connects to the source (~100 pc)
 - pitch angle scattering peaked near the direction of LIMF
 - outer scale of perturbation ~1 pc determines beam angular width and strength

Salvati & Sacco, arXiv:0802.2181 Drury & Aharonian, Astropart. Phys. 29, 420 (2008)

the heliosphere

Izmodenov et al., Astron. Lett., 29, 1, 58 (2003)

3D simulation of heliosphere/heliotail Pogorelov et al., ApJ, 696, 1478 (2009)

Galactic Cosmic Ray Anisotropy in IceCube - Trieste - Paolo Desiati

origin of "tail-in anisotropy"

- first-order Fermi acceleration in magnetic reconnection regions in the heliotail
- magnetic polarity reversals due to the 11-year solar cycles compressed by the solar wind in the magneto-tail
- tail-in excess region loss-cone region 60 15 Declination (deg) 50 10 Cygnus 40 Region Region B 350 300 250 200 150 100 50 Right Ascension (deg)

- Lazarian & Desiati, ApJ, 722, 188, 2010 Ω V_R↓ cermination Sho V_A (Strongly mixed polarity VR
- weakly stochastic magnetic reconnection
- harder spectrum up to ~10 TeV (Milagro, ARGO)

Abdo et al., Phys. Rev. Lett., 101, 221101, 2008

Galactic Cosmic Ray Anisotropy in IceCube - Trieste - Paolo Desiati

- cosmic ray anisotropy evolution observed from 20 TeV to 400 TeV with high significance in the southern hemisphere
- significant angular structure of anisotropy is observed
- time variabilities and/or periodicities to be studied

- complexity of cosmic ray propagation in ISM and heliospheric boundary effects
- TeV cosmic rays as a new probe for outer heliospheric boundary and ISM
- anisotropy vs energy (>100's TeV) might uncover connection to nearby SNR

backup slides

drilling in the ice

summary of measurement for IceCube-59

$$\sum_{j=1}^{n=2} A_j \cos[i(\alpha - \phi_j)] + B$$

	E _{primary} (TeV)	events (10 ⁹)	A ₁ (10 ⁻⁴)	φ ₁ (°)	A ₂ (10 ⁻⁴)	φ ₂ (°)	χ²/ndf
cidoroal	20	17.9	7.9 ± 0.1 ± 0.4	50°.5 ± 1°.0 ± 1°.1	2.9 ± 0.1 ± 0.4	299°.5 ± 1°.3 ± 1°.5	95/19
Sidereal	400	0.5	3.7 ± 0.7 ± 0.7	239°.2 ± 10°.6 ± 10°.8	2.7 ± 0.7 ± 0.6	152°.7 ± 7°.0 ± 4°.2	34.19
oolor	20		1.9 ± 0.1 ± 0.6	267°.1 ± 3°.8 ± 7°.5			23/21
solar –	400		2.9 ± 0.7 ± 1.0	272°.1 ± 13°.3 ± 5°.0			12/21
anti-	20		0.4 ± 0.1	1°.5 ± 18°.5			29/21
sidereal	400		0.5 ± 0.7	324°.6 ± 75°.4			17/21
extended-	20		0.7 ± 0.1	165°.7 ± 10°.3			29/21
sidereal	400		0.7 ± 0.7	212°.9 ± 54°.5			23/21

cosmic ray energy estimation with muons

counts number of photons

 \propto energy of secondaries $\propto E_{\mu}$

 $\propto E_{cosmic rays}$

energy [GeV]

Cherenkov photons from μ and secondaries

cosmic ray energy estimation with muons

Monte Carlo simulations

with IceCube

40

Log(E_{Primary} (GeV))

cosmic ray energy estimation with IceCube

How much of the anisotropy observed @ 400 TeV is influenced by that @ 20 TeV ?

Does the anisotropy observation @ 20 TeV contain features from 400 TeV scale ?

MuE vs Nchannel

$$\mu E = \frac{\langle N_{\gamma} \rangle}{L_{track}} \cdot A_{eff}^{PMT}$$

Optimized Cut Values on Angular Resolution						
NString Opening Angle LDirC NChan RlogI Distance to the COC					Distance to the COG	
> 2	< 5 degrees	> 468	> 9	< 10	< 740	

MuE vs Nchannel

Optimized Cut Values on Angular Resolution						
NString Opening Angle LDirC NChan RlogI Distance to the COC						
> 2	< 5 degrees	> 468	> 9	< 10	< 740	

Craig Price

cut optimization

$$\epsilon = \frac{\Phi_{LLH,MC}}{\sqrt{\frac{N_{selected}}{N_{total}}}}$$

Optimized Cut Values on Angular Resolution					
NString	Opening Angle	LDirC	NChan	Rlogi	Distance to the COG
> 2	< 5 degrees	> 468	> 9	< 10	< 740

selection efficiency $\sim 30\%$

Craig Price

cut optimization

$$\epsilon = \frac{\Phi_{LLH,MC}}{\sqrt{\frac{N_{selected}}{N_{total}}}}$$

Optimized Cut Values on Angular Resolution					
NString	Opening Angle	LDirC	NChan	Rlogi	Distance to the COG
> 2	< 5 degrees	> 468	> 9	< 10	< 740

detector acceptance correction

local azimuth angle distribution stable over time ($<10^{-5}$)

acceptance correction better than 10⁻⁵

systematic uncertainties IceCube-59

statistical stability tests:

- summer/winter season datasets
- Image: The second s
 - even/odd sub-runs (2 mins data)
 - random sub-run selection
 - ▶ use ~24 hr full days (214/324 d)

growing IceCube & temperature correlation

Galactic Cosmic Ray Anisotropy in IceCube - Trieste - Paolo Desiati

Farley, & Storey, Proc. Phys. Soc., 67, 996, 1954 Nagashima, et al., Nuovo 907 Cimento C, 6, 550, 1983

anti- / extended-sidereal reference frames

A static distribution in **solar** (sidereal) reference frame averages to zero in **sidereal** (solar) frame after one year

An annual modulation of the **solar** (sidereal) distribution does not compensate and produces distortions on the **sidereal** (solar) anisotropies

Farley, & Storey, Proc. Phys. Soc., 67, 996, 1954 Nagashima, et al., Nuovo 907 Cimento C, 6, 550, 1983

anti- / extended-sidereal reference frames

A static distribution in solar (**sidereal**) reference frame averages to zero in sidereal (solar) frame after one year

An annual modulation of the solar (**sidereal**) distribution does not compensate and produces distortions on the sidereal (**solar**) anisotropies

anti- / extended-sidereal reference frames

The **anti**- / **extended**-sidereal reference frames are unphysical and no anisotropy is expected

An anisotropy in **anti**-sidereal (**extended**sidereal) frame is to be associated to the corresponding distortion of the sidereal (solar) arrival distributions

solar time

sidereal time

anti-sidereal time

extended-sidereal time

anisotropy vs energy

(3 µG)

(~0.01 µG)

Galactic Cosmic Ray Anisotropy in IceCube - Trieste - Paolo Desiati

cosmic ray anisotropy

Galactic Cosmic Ray Anisotropy in IceCube - Trieste - Paolo Desiati

LIC

26 km/s

our galactic neighborhood

Tibet-III @ 5 TeV

anisotropy almost consistent with

uni-directional flow (dipole) + bi-directional flow (quadrupole)

our galactic neighborhood relative intensity equatorial coordinates Tibet-III 360 270 900 IceCube-22 IceCube @ 20 TeV large scale features qualitatively well described by the global fit 270 180 **0**° 360 **90**° it is the smaller angular features that appear to be interesting

low energy cosmic ray anisotropy in arrival direction

Nagashima et al., J. Geophys. Res., Vol 103, No. A8, Pag. 17,429 (1998)

structures in cosmic ray spectrum

PAMELA - Adriani et al., Science, 332, 69, 2011

CREAM - Ahn et al., ApJ, 714, L89, 2010

- **spectral concavity** from non-linear acceleration or propagation processes
- **nearby source** of cosmic rays ?

spectral concavity / hardening

Galactic Cosmic Ray Anisotropy in IceCube - Trieste - Paolo Desiati