Cosmic ray sidereal time variation of galactic origin provides valuable information concerning the origin of cosmic rays and their propagation and modulation in space. K. NAGASHIMA

the astrophysics of cosmic ray anisotropy

Paolo Desiati

WIPAC & Department of Astronomy University of Wisconsin - Madison

<<u>desiati@wipac.wisc.edu</u>>

SuGAR 2015 Genève - Suisse - January 21, 2015

cosmic ray observations

- galactic cosmic rays produced below 10⁸-10⁹ GeV
- spectral features from acceleration mechanisms & propagation effects
- source distribution in Galaxy and our neighborhood
- magnetic field configurations in local interstellar medium
- anisotropy

THE PHYSICAL REVIEW A Journal of Experimental and Theoretical Physics VOL. 47, No. 11 JUNE 1, 1935 Second Series

An Apparent Effect of Galactic Rotation on the Intensity of Cosmic Rays

ARTHUR H. COMPTON, University of Chicago and Oxford University AND IVAN A. GETTING, Oxford University (Received April 12, 1935)

Its existence would imply that an important part of the cosmic rays originates outside of our galaxy. If its magnitude is found to be as great as we have predicted, it will imply that practically all the cosmic radiation has an extragalactic origin.

Compton-Getting Effect

 $\frac{\Delta I}{I} = (\gamma + 2) \frac{v}{c} \cos \theta$

convective effect to produce a **dipole** anisotropy (**sidereal diurnal** anisotropy)

Compton & Getting, Phys. Rev. 47, 817 (1935) Gleeson, & Axford, Ap&SS, 2, 43 (1968)

high energy cosmic rays sidereal anisotropy

~10-3

equatorial coordinates

Paolo Desiati

a known anisotropy Earth's motion around the Sun

Compton & Getting, Phys. Rev. 47, 817 (1935) Gleeson, & Axford, Ap&SS, 2, 43 (1968)

measuring cosmic ray anisotropy relative intensity

sky maps show ONLY modulations across right ascension and NOT declination

large scale anisotropy topology

ANISOTROPY IS COMPLEX

Local Interstellar Medium

uni-directional (**dipole**) & bi-directional (**quadrupole**) anisotropy from CR density and Local Magnetic Field **gradients**

ARGO-YBJ Zhang et al., ICRC 2009

anisotropy amplitude increases with energy up to 10 TeV scale

2

Aglietta et al., 2009

anisotropy *flips direction* between 100 TeV and 400 TeV

ANISOTROPY CHANGES

WITH ENERGY

Paolo Desiati

amplitude & phase of first harmonic component (dipole)

Di Sciascio & luppa, 2014

Relative Intensity [x 10^{-3}]

-1

Di Sciascio & luppa, 2014

-3

3

large scale anisotropy time dependence

- AMANDA and IceCube yearly data show long time-scale stability of global anisotropy within statistical uncertainties
- no apparent effect correlated to solar cycles

Abbasi et al., ApJ, 740, 16, 2011

TeV sidereal anisotropy angular power spectrum

Paolo Desiati

high energy cosmic rays small scale anisotropy

~10-4

1-5 TeV

cosmic ray anisotropy large scale \rightarrow small scale

Milagro + IceCube TeV Cosmic Ray Data (10° Smoothing)

1/

high energy cosmic rays anisotropy & energy spectrum

HAWC results by S. BenZvi

Paolo Desiati

astrophysics of cosmic ray anisotropy probing sources & propagation of cosmic rays ?

• stochastic effect of nearby & recent sources & temporal correlations Erlykin & Wolfendale, Astropart. 2006

astrophysics of cosmic ray anisotropy probing sources & propagation of cosmic rays ?

• stochastic effect of nearby & recent sources & temporal correlations Erlykin & Wolfendale, Astropart. 2006

cosmic ray anisotropy probing diffusion properties

• $D_{\perp}/D_{\parallel} \ll 1$ - parallel projection of anisotropy

 cosmic ray sources concealed by propagation effects diffusion coefficient hardly a single power law, homogeneous and isotropic

local ISMF shaped by LOOP I expansion sub-shell (with center ~60 pc away in Scorpius-Centaurus OB Association)

local cloudlets fragments of the shell moving at similar velocities

14 pc - Frisch+, 2011, 14 100 pc - Wolleben, 2007 500 pc - (Priscilla Frisch) -10 to 10 pc Mic Hyades Oph Scorpius-Centaur LIC Parsecs Y (pc) Agl Gem - 20 Blue -40-40 - 20 -2 0 X (pc) diffuse gas Parsecs molecular douds

interstellar magnetic field affected by inhomogeneities

cosmic ray anisotropy

local interstellar medium

Redfield & Linsky, 2008

Frisch+, 2011

Frisch+, 2012

local ISMF relatively uniform over spacial scales of order 60-100 pc (inter-arm)

magnetic turbulence affects propagation and diffusion properties

cosmic ray anisotropy heliosphere

heliosphere as O(100-1000) AU magnetic perturbation of local ISMF

PD & Lazarian, 2013

- influence on \leq 10 TeV protons (R_L \leq 600 AU)
- cosmic rays >100's TeV influenced by interstellar magnetic field (change of anisotropy)

heliopause instabilities

• Rayleigh-Taylor instabilities driven and mediated by interstellar neutral atoms

Liewer+ 1996 Zank+ 1996

 plasma-fluid instabilities at the flank of HP by charge exchange processes

Zank 1999 Florinski++ 2005 **Borovikov+ 2008** Zank 2009 Shaikh & Zank 2010

cosmic ray anisotropy probing heliospheric magnetic structure

anisotropy and local galactic environment low to high energy connection

- IBEX observations of keV Energetic Neutral Atoms
- determination of interstellar flow direction
- determination of interstellar magnetic field direction
- Iarge scale heliosphere to induce perturbations in arrival direction of TeV cosmic rays

Schwadron, Adams, Christian, PD, Frisch, Funsten, Jokipii, McComas, Möbius, Zank, Science, 1245026 (2014)

Zhang, Zuo & Pogorelov ApJ 790, 5 (2014)

 propagation effect from turbulent realization of interstellar magnetic field within scattering mean free path

Paolo Desiati

 angular structure of anisotropy spontaneously generated from a global dipole anisotropy as a consequence of Liouville Theorem in the presence of a local turbulent magnetic field (sum of multipoles is conserved)

Liouville Theorem - time inversion

dipole distribution >> mean free path

 \blacktriangleright effect of MHD turbulence with $\langle B \rangle = 3 \ \mu G$ and $M_A \sim 0.7$

(López-Barquero, Xu, Farber, PD, Lazarian)

 \blacktriangleright effect of MHD turbulence with $\langle B \rangle = 3 \ \mu G$ and $M_A \sim 0.7$

(López-Barquero, Xu, Farber, PD, Lazarian)

ultra-high energy cosmic rays sidereal anisotropy

Mollerach & Roulet, JCAP 0508 (2005) 004

R. Bonino et al., ApJ 738 (2011) 67

Pierre Auger Observatory Abreu et al. (2011)

Prescription set:

data set from 1/1/2004 to 31/12/2010

Prescription status:

data set from 25/6/2011 to 31/12/2012

sidereal anisotropy energy dependency of *dipole* phase

ultra-high energy cosmic rays transition to extra-galactic

Giacinti, Kachelriesß & Semikoz (2014) Abreu et al. (2011,2012, 2013)

- assuming frequent galactic sources, the dipole amplitude for light CR exceeds Auger limit @ EeV
- anisotropy transition requires heavy galactic or light extra-galactic composition

ultra-high energy cosmic rays sidereal anisotropy

Abbasi, ApJL, 79, 21 (2014)

events with E > 57 EeV (small galactic influence)

 10° wide clustering in northern hemisphere (5.1 σ)

Particle Detector O Tower

Telescope Array

- propagation effects are relevant to describe spectrum and anisotropy of CR
- anisotropy resulting from **different origins** (drift, diffusion, turbulence)
- each mechanism has its own temporal & rigidity dependence
- complexity in topology and consistency with propagation effects on CR spectrum
- **spectral structures** in correlation with anisotropy
- cosmic ray anisotropy as a **probe** into global properties of magnetic fields

backup slides

low energy cosmic rays and heliospheric physics

low energy cosmic rays and heliospheric physics

ICRC 2013

cosmic ray anisotropy lceCube 2007-2012

relative intensity

equatorial coordinates

- ▶ 1.4 × 10¹¹ events from 2007 to 2012
 - sensitivity to 5° structures with relative intensity of O(10⁻⁴)

cosmic ray anisotropy analysis technique

raw map of events in equatorial coordinates $(\alpha, \delta)_i$

$\begin{array}{c} \mbox{reference map} \mbox{ from events scrambled over 24hr in} \\ \alpha \mbox{ (or time)} \end{array}$

rebin raw and reference maps to enhance inter-bin correlations

subtract reference map from raw map to determine the residual relative intensity map

cosmic ray anisotropy energy selection IceCube

Paolo Desiati

NOTE: anisotropy is not a dipole topology changes at high energy IC59 Abbasi et al., ApJ, 746, 33, 2012 IC22 Abbasi et al., ApJ, 718, L194, 2010

20 TeV 400 TeV

43

cosmic ray anisotropy large scale IceCube

NOTE: anisotropy is not a dipole topology changes at high energy

IC59 Abbasi et al., ApJ, **746**, 33, 2012 IC22 Abbasi et al., ApJ, **718**, L194, 2010

Fraction of events 0.00 events 0.00

> 0.03 0.02 0.01

20 TeV 400 TeV

mixed

composition

cosmic ray anisotropy vs energy in IceCube-59

- reference map derived from data with time scrambling
- smoothing radius optimized on highest significance in excess/deficit region

cosmic ray anisotropy large scale IceTop

Aartsen et al., ApJ, **765**, 55, 2013

NOTE: global topology does not change

deficit amplitude increases with energy

NOTE: different energy response distribution

IceTop with sharper low energy threshold

might explain IC/IT amplitude differences

Paolo Desiati

cosmic ray anisotropy large scale energy dependency

cosmic ray anisotropy large scale energy dependency

a known anisotropy Earth's motion around the Sun

Compton & Getting, Phys. Rev. 47, 817 (1935) Gleeson, & Axford, Ap&SS, 2, 43 (1968)

a known anisotropy Earth's motion around the Sun

- the observation of the solar dipole supports the observation of the sidereal anisotropy in cosmic ray arrival direction
- NO Compton-Getting Effect signature from galactic rotation observed

origin of large scale anisotropy : Compton-Getting Effect ?

Compton & Getting, Phys. Rev. 47, 817 (1935) Gleeson, & Axford, Ap&SS, 2, 43 (1968)

θ

 $\frac{\Delta I}{I} = (\gamma + 2)\frac{v}{c}\cos\theta$

- motion of solar system around galactic center ~ 220 km/s
- ▶ reference system of cosmic rays is unknown
 - at most one dipole component of the observation

anti-/extended-sidereal distributions vs energy in IceCube-59

systematic uncertainties IceCube-59

cosmic ray anisotropy small scale IceCube

region	right ascension	declination	optimal scale	peak significance	post-trials	IC79 (post-trials)
1	$(122.4^{+4.1}_{-4.7})^{\circ}$	$(-47.4^{+7.5}_{-3.2})^{\circ}$	22°	7.0σ	5.3σ	6.8σ
2	$(263.0^{+3.7}_{-3.8})^{\circ}$	$(-44.1^{+5.3}_{-5.1})^{\circ}$	13°	6.7σ	4.9σ	5.4σ
3	$(201.6^{+6.0}_{-1.1})^{\circ}$	$(-37.0^{+2.2}_{-1.9})^{\circ}$	11°	6.3σ	4.4σ	6.4σ
4	$(332.4^{+9.5}_{-7.1})^{\circ}$	$(-70.0^{+4.2}_{-7.6})^{\circ}$	12°	6.2σ	4.2σ	6.1σ
5	$(217.7^{+10.2}_{-7.8})^{\circ}$	$(-70.0^{+3.6}_{-2.3})^{\circ}$	12°	-6.4σ	-4.5σ	-6.1σ
6	$(77.6^{+3.9}_{-8.4})^{\circ}$	$(-31.9^{+3.2}_{-8.6})^{\circ}$	13°	-6.1σ	-4.1σ	-4.3σ
7	$(308.2^{+4.8}_{-7.7})^{\circ}$	$(-34.5^{+9.6}_{-6.9})^{\circ}$	20°	-6.1σ	-4.1σ	-4.4σ
8	$(166.5^{+4.5}_{-5.7})^{\circ}$	$(-37.2^{+5.0}_{-5.7})^{\circ}$	12°	-6.0σ	-4.0σ	-6.4σ

IC59 Dipole + Quadrupole Fit Residuals (20° Smoothing)

anisotropy vs. angular scale

Paolo Desiati

- AMANDA and IceCube yearly data show long time-scale stability of global anisotropy within statistical uncertainties
 - no apparent effect correlated to solar cycles

Preliminary

Period	Detector	Start	End	Live-time (days)	No. of events ($\times 10^9$)	χ^2 /dof	p-value
1	AM-II	02/13/2000	11/02/2000	213.4	1.4	11.3/15	0.73
2	AM-II	02/11/2001	10/19/2001	235.3	2.3	16.6/15	0.34
3	AM-II	01/01/2002	08/02/2002	169.2	2.4	26.0/15	0.04
4	AM-II	02/09/2003	12/17/2003	236.0	2.2	19.3/15	0.20
5	AM-II	01/05/2004	11/02/2004	225.8	2.5	14.3/15	0.50
6	AM-II	12/30/2004	12/23/2005	242.9	2.6	21.0/15	0.14
7	AM-II	01/01/2006	09/13/2006	213.1	2.4	24.4/15	0.06
8	IC22	06/01/2007	03/30/2008	269.4	5.3	45.2/15	7×10^{-5}
9	IC40	04/18/2008	04/30/2009	335.6	18.9	12.8/15	0.62
10	IC59	05/20/2009	05/30/2010	335.0	33.8	11.1/15	0.75
11	IC79	05/31/2010	05/12/2011	299.7	39.1	6.5/15	0.97
12	IC86	05/13/2011	05/14/2012	332.9	52.9	8.9/15	0.88

statistical uncertainties only

cosmic ray anisotropy probing heliospheric magnetic structure

downstream instabilities on the flanks of heliotail

effects of magnetic polarity reversals from solar cycles