

Neutrino Astronomy with the IceCube Observatory

Implications for Astroparticle Physics

Paolo Desiati on behalf of the IceCube Collaboration desiati@icecube.wisc.edu

University of Wisconsin - Madison

THE UNIVERSITY WISCONSIN

Vulcano Workshop May 30, 2008

shock acceleration

Y ray observations

Aharonian et al., Nature 439 (2006), 695

Y ray observations

Aharonian et al., Nature 439 (2006), 695

cosmic ray astronomy?

protons with $E > 10^{19}$ eV almost undeflected

cosmic rays above 6×10¹⁹ eV

consistent with GZK cutoff

protons from nearby AGN sources with p-value = 1.7×10^{-3}

to be confirmed with more experimental data

neutrinos and cosmic rays

nearby AGN (as Cen A) possible hadronic acceleration sites and sources of TeV γ rays

if γ rays flux from Cen A is from π and normalizing to Auger observation

$$\frac{dN_{\nu}}{dE} \le 5 \times 10^{-13} \left(\frac{E}{\text{TeV}}\right)^{-2} \text{TeV}^{-1} \text{ cm}^{-2} \text{ s}^{-1}$$

$$\oint \frac{dN_{\nu}}{dE_{\text{diff}}} = 2 \times 10^{-9} \left(\frac{E}{\text{GeV}}\right)^{-2} \text{GeV}^{-1} \text{ cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$$

Halzen, O'Murchadha arXiv:0802.0887v2

cosmic messengers

detecting neutrinos

understanding the background

understanding the background

understanding the background

AMANDA-II 2000-2006

Maximum significance = 3.38 onear (11.4h, +54°)

95% chance to obtain maximum significance ≥ 3.38σ in random skymaps

AMANDA-II 2000-2006

Galactic Latitude (deg)

Object	Deco	RAº	μ_{90}	P-value	
MGRO J2019+37	36.83	304.83	4.75	0.077	
Cyg OB2	41.32	308.29	3.16	0.30	
Mrk 421	38.21	166.11	1.26	0.82	
Mrk 501	39.76	253.47	3.56	0.22	
1ES 1959+650	65.15	300	3.38	0.44	
1ES 2344+514	51.71	356.77	2.84	0.44	246
H 1426+428	42.68	217.14	2.82	0.36	240
BL Lac (QSO B2200+420)	42.28	330.68	2.54	0.38	
3C66A	43.04	35.67	3.93	0.18	0 0.5
3C 454.3	16.15	343.49	1.27	0.73	
4C 38.41	38.14	248.82	1.10	0.85	the probability of or
PKS 0528+134	13.53	82.74	1.60	0.64	value = 0.0086 for a
3C 273	2.05	187.28	4.17	0.086	of the 26 sources is
M87	12.39	187.71	2.18	0.43	the second s
NGC 1275 (Perseus A)	41.51	49.95	2.24	0.47	In contract of the
Cyg A	40.73	299.87	4.50	0.095	A PARTY PARTY
SS 433	4.98	287.96	1.57	0.64	
Cyg X-3	40.96	308.11	3.28	0.29	Constant Provide 197
Cyg X-1	35.2	299.59	2.00	0.57	
LS I +61 303	61.23	40.13	7.21	0.033	~
GRS 1915+105	10.95	288.8	3.73	0.11	stack Milagro sour
XTE J1118+480	48.04	169.55	2.61	0.50	otaok milagio ooar
GRO J0422+32	32.91	65.43	1.40	0.76	
Geminga	17.77	98.48	6.07	0.0086	the 90% cor
Crab Nebula	22.01	83.63	4.47	0.10	sources, exclu
Cas A	58.82	350.85	1.93	0.67	9

preliminary		δ=90°		medi	an ar	ngular re 1.5º ↓	esolution - 2.5° →
4h							0h
0 0.5 1 1.5	2	2.5	3	3.5	4	4.5	5
ability of obtaining a p- 0.0086 for at least one	Source			1	b	δ	α
6 sources is 20%.		MGRO J2019+37			0.2	36.72°	305.03°
and the first and the		MGRO J1908+06			-1.0	6.18º	287.18°
	M	MGRO J2034+41			1.1	41.57°	308.04°
	C1 (MGRO J2043+36)			77.5	-3.9	36.3°	310.98°
	C2 (MGRO J	2032+37)	76.1	-1.9	36.52°	307.75°
	M	IGRO J18	352+01	33.5	0.0	0.51°	283.12º

stack Milagro sources : upward fluctuation with p-value = 0.19

the 90% confidence level limit on the per-source flux for the six sources, excluding systematics, is 9.6*10⁻¹² TeV cm⁻² s⁻¹ over the 19 energy region 1.8 TeV - 2.1 PeV

astrophysical neutrinos: point sources IceCube-22 2007 80 3.5 70 3 60 declination 2.5 simulated 50 2 40 skymap 1.5 20 0.5 10 180 right ascension 300 240 120 60 360 C. Finley, J. Dumm ĩ Fraction 0.9 10 0.8 preliminary 0.7 285 days livetime on going analysis 0.6 10 20-30 events / day 0.5 $1C80 \quad 10^6 < E/GeV < 10^6$ 10 IC80 0.4 IC80 10⁴ < E/GeV < 10⁵ 10 median angular resolution ~ 1.5° 0.3 ··· IC22 IC22 10⁶ < E/GeV < 10⁸ 10 0.2 IC9 IC22 10⁴ < E/GeV < 10⁵ 10 0.1 10 3 5 6 7 0.5 0 2 2.5 3.5 1.5 log __ Energy/GeV Ψ[°] IC-22 expected to be x5 more efficient & x7 more sensitive than IC-9

preliminary s⁻¹ cm⁻²] -3 $(\Phi E_v^2)_{FC}$, 00-03 AMANDA-II, unfolded Φ E_v² [GeV sr⁻¹ s 0 $(\Phi E_v^2)_{extra}$, 00-03 atm v_{μ} + \overline{v}_{μ} - data of the years: O 2000-2003 -5 10 -7 10 -8 10 10 5 5.5 3.5 4.5 4 log(E, /GeV) K. Münich

$$E^2 \Phi < 7.4 \times 10^{-8} \text{ GeV cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$$

$$\frac{dN_{\nu}}{dE}_{\text{diff}} = 2 \times 10^{-9} \left(\frac{E}{\text{GeV}}\right)^{-2} \frac{\text{GeV}^{-1} \text{ cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}}{\rightarrow \text{Auger - diffuse as reference}}$$

Phys.Rev.D76:042008,2007, Erratum-ibid.D77:089904,2008

AMANDA -II 2003-2004 ⇒ IceCube

analyzing IceCube data to detect diffuse HE/UHE/EHE neutrinos

IceCube-80 predicted to improve sensitivity by at least x10

Astrophysical Journal 675 (2008) 1014-1024

conclusions

- AMANDA has had an excellent role in developing neutrino telescopes
- a km³ neutrino observatory is under construction at the South Pole
- will collect unprecedented statistics of neutrinos
- sensitivities closer to neutrino predictions
 - origin of cosmic ray and gamma ray connection
 - smoking gun for hadronic processes in CR sources
 - probe GZK neutrinos
- planning multi-messenger campaigns
- IceCube data filtered online and processed North for short-term analysis
- will be complete in 2011: 4,800 DOMs InIce and 320 DOMs @ IceTop

spare slides

neutrino statistics

geometry	year	livetime	up muons	efficiency	purity	status
IC-9	2006	137.4 d	233 (1.7/d)	3%	~90%	final
IC-22	2007	285 d	~7,980 (~28/d)	25%	95%	preliminary
IC-40	2008	~365 d	~40,000 (110/d)			predicted
IC-80	2011	~365 d	~80,000 (220/d)			predicted

alternative oscillations

Violation of Lorentz Invariance

Violation of Lorentz Invariance

$$\begin{aligned} P_{\nu_{\mu} \to \nu_{\mu}} &= 1 - \sin^2 2\Theta \, \sin^2 \left(\frac{\Delta m^2 L}{4E} \, \mathcal{R}\right) \\ \sin^2 2\Theta &= \frac{1}{\mathcal{R}^2} (\sin^2 2\theta_{23} + R^2 \sin^2 2\xi + 2R \sin 2\theta_{23} \sin 2\xi \cos \eta) , \\ \mathcal{R} &= \sqrt{1 + R^2} + 2R (\cos 2\theta_{23} \cos 2\xi + \sin 2\theta_{23} \sin 2\xi \cos \eta) , \\ R &= \frac{\delta c}{c} \frac{E}{2} \frac{4E}{\Delta m_{23}^2} \end{aligned}$$

• 2000-03 analysis (Ahrens): $\delta c/c < 5.3 \times 10^{-27}$ (90%CL) • Median sensitivity (χ^2 approx.): $\delta c/c < 4.3 \times 10^{-27}$ (90%CL) • Sample sensitivity (1 MC experiment, full construction): $\delta c/c < 4.5 \times 10^{-27}$ (90%CL) (maximal mixing, cos $\eta = 0$)

Violation of Lorentz Invariance

Gonzalez-Garcia, astro-ph/0701333

Quantum Decoherence

AMANDA -II 2000-2006

Quantum Decoherence

interaction with *foamy* space-tim structure may modify neutrino flavor

$$P[\nu_{\mu} \rightarrow \nu_{\mu}] = \left(\frac{1}{3}\right) + \frac{1}{2} \left(e^{-\gamma_{3}L} \cos^{4}\theta_{23} + \frac{1}{12}e^{-\gamma_{8}L}(1 - 3\cos 2\theta_{23})^{2} + 4e^{-\frac{\gamma_{6}+\gamma_{7}}{2}L} \cos^{2}\theta_{23} \sin^{2}\theta_{23} \left(\cos \left[\frac{L}{2}\sqrt{\left|(\gamma_{6} - \gamma_{7})^{2} - \left(\frac{\Delta m_{23}^{2}}{E}\right)^{2}\right|}\right] + \sin \left[\frac{L}{2}\sqrt{\left|(\gamma_{6} - \gamma_{7})^{2} - \left(\frac{\Delta m_{23}^{2}}{E}\right)^{2}\right|}\right] \frac{(\gamma_{6} - \gamma_{7})}{\sqrt{\left|(\gamma_{6} - \gamma_{7})^{2} - \left(\frac{\Delta m_{23}^{2}}{E}\right)^{2}\right|}}\right)\right)$$

derived from Barenboim, Mavromatos et al. (hep-ph/0603028)

n = 3 Planck-suppressed operators[‡]

Energy dependence depends on phenomenology: $\gamma_i = \gamma_i^* E^n$, $n \in \{-1, 0, 2, 3\}$

n = -1	n = 0	n = 2
preserves	simplest	recoiling
Lorentz invariance		D-branes*

*Ellis et al., hep-th/9704169 [‡] Anchordoqui et al., hep-ph/0506168

Quantum Decoherence

AMANDA -II 2000-2006 : sensitivity

atmospheric neutrino deconvolution

Muon neutrino spectrum with AMANDA-II data and some extraterrestrial models

benchmark DPMJET-II with recent accelerator data

use charm production in CORSIKA

propagate charmed particles in CORSIKA

LEBC-EHS (all D)

- 11 -

P.Berghaus, T.Montaruli, J.Ranft arXiv:0712.3089v2

P.Berghaus, T.Montaruli, J.Ranft arXiv:0712.3089v2

34

- 14 -

P.Berghaus, T.Montaruli, J.Ranft arXiv:0712.3089v2

indirect WIMP searches

APOD

hardware

DOM Requirements

- Fast timing: resolution < 5 ns DOM-to-DOM on LE time.
- Pulse resolution < 10 ns
- Optical sens. 330 nm to 500 nm
- Dynamic range
 1000 pe / 10 ns
 10,000 pe / 1 us.
- Low noise: < 500 Hz background
- High gain: O(107) PMT
- Charge resolution: P/V > 2
- Low power: 3.75 W
- Ability to self-calibrate
- Field-programmable HV generated internal to unit.
- Flasher board capable of emitting optical pulses O(20) ns wide > 10⁹ γ/pulse
- 10000 psi external

Glass Pressure Housing

DOM Requirements

- Fast timing: resolution < 5 ns DOM-to-DOM on LE time.
- Pulse resolution < 10 ns
- Optical sens. 330 nm to 500 nm
- Dynamic range
 1000 pe / 10 ns
 10,000 pe / 1 us.
 - Low noise: < 500 Hz background
 - High gain: O(107) PMT
 - Charge resolution: P/V > 2
 - Low power: 3.75 W
 - Ability to self-calibrate
 - Field-programmable HV generated internal to unit.
 - Flasher board capable of emitting optical pulses O(20) ns wide > 10⁹ γ/pulse
 - 10000 psi external

DOM Mainboard

This is the core of the DAQ. It contains an Altera Excalibur ARM CPU / 400 k-gate FPGA which controls most aspects of the acquisition and communications with the surface. All aspects except bootloader program remotely reloadable.

Fast waveform capture via 1 of 2 ATWD ASICs which capture 4 ch at 200 MSPS – 800 MSPS, 128 samples deep and 10-bits wide. ATWDs operate in "ping-pong" mode – true deadtimeless operation possible. 3 ch are high, medium, low gain (14-bit effective dynamic range).

Slow waveform capture from 40 MHz 10-bit FADC which captures long slow pulses for 6.4 usec.

Digital communication to surface using electrical pairs – two DOMs per pair. Electrical penetrators more robust. Communication bandwidth 1 Mbit.

39

DOM Mainboard

This is the core of the DAQ. It contains an Altera Excalibur ARM CPU / 400 k-gate FPGA which controls most aspects of the acquisition and communications with the surface. All aspects except bootloader program remotely reloadable.

Fast waveform capture via 1 of 2 ATWD ASICs which capture 4 ch at 200 MSPS – 800 MSPS, 128 samples deep and 10-bits wide. ATWDs operate in "ping-pong" mode – true deadtimeless operation possible. 3 ch are high, medium, low gain (14-bit effective dynamic range).

Slow waveform capture from 40 MHz 10-bit FADC which captures long slow pulses for 6.4 usec.

Digital communication to surface using electrical pairs – two DOMs per pair. Electrical penetrators more robust. Communication bandwidth 1 Mbit.

surface DAQ

- DOMs independently collect and buffer up to 8k waveforms.
- DOM communication handled at surface by DOR card – hosted by standard industrial PCs called 'DOMHub.'
- Beyond Linux driver DAQ software is a distributed set of Java applications.
- Data is time coordinated and sorted by processing nodes which may in future perform data reduction.
- Triggers take sorted streams; request to event builder to grab data from string processors and IceTop data handlers to make events.
- Note: data from deep-ice and surface arrays participate in triggers and are bundled together at event level.
- Online filter at pole selects 'interesting' events for transmission north over satellite (limited bandwidth).
- All data taped raw data rate currently 70 GB / day.

APOD

local coincidence mode

DOMs contain 2 wire pair (UP, DN) for exchanging LC signals between adjacent DOMs on string[†]. DOM FPGA trigger logic can abort waveform capture on absence of one or both signals. LC signals are binary-coded digital – DOMs can "relay" LC info thru; in this manner LC can span up to 4 DOMs distant in either direction.

IceCube currently running in NN mode – that is DOM trigger requires adjacent hit (red circles) – as shown in case A to right. In this mode B and D would not trigger, C would trigger only 1 and 2 and reject 4.

This has advantage of (a) *dramatically* reducing amount of data sent over 1 Mbit link to surface (see figure) and (b) makes array virtually "noiseless." Disadvantage is that real photon hits are lost in ice.

IceCube baseline – operate in "soft" LC mode: waveforms suppressed /wo/ LC requirement, all hit timestamps (12 bytes) sent to surface.

waveform digitization

42

ATWD digitization

- 300 MHz sampling + 128 bins = 425 ns
- 3 different amplitude gains : x1, x8, x64

• 40 MHz + 255 bins = 6.4 µs

calibration in short

 time calibrations sync DOM (20 MHz) oscillator to surface clock (every 3 sec) - RAPCal : σ ~ 2 ns PMT transit time correction (with flashers) : σ ~ 2 ns waveform sampling time calibration (every month) - DOMCal

 amplitude calibrations waveform and amplitude (every month) - DOMCal : detected p.e. with ≤ 10%

geometry calibrations
 laser ranger : DOM-to-DOM on the string 17 ± 0.04 m
 relative DOM depth precision ~ 1 m (wrt to surface coordinates and cable length)

 pointing calibration AMANDA-II / SPASE : < 0.5° shadow of the moon : 3σ in 1 yr in AMANDA (on-going), in 1 month in IceCube

IceTop calibrations (VEM – Vertical Muon Equivalent)

APOD

Polar ice optical properties

Ice Properties

- Analyses are sensitive to the optical properties of the ice. Below 1400 m, dominated by impurities in the ice Measure with 'dust logger'
 - Ice layers are not completely planar
 Up to 70 m/km tilt

