

Results from the IceCube Observatory neutrinos and the origin of the cosmic rays

Paolo Desiati

Paolo Desiati, for the IceCube Collaboration

Wisconsin IceCube Particle Astrophysics Center & Department of Astronomy University of Wisconsin - Madison

<desiati@icecube.wisc.edu>

Vulcano Workshop 2012 May 28th - June 2nd, 2012

cosmic rays

 cosmic ray spectrum, composition and anisotropy, hold information on their origin and propagation

• transition between galactic and extragalactic origin of cosmic rays is debated

• are the sources of cosmic rays also the site of their acceleration ?

2

shock acceleration

- acceleration processes may occur within their sources or on a larger scale
- properties of cosmic ray sources from high energy gamma rays and neutrinos generated at the source
- if hadronic acceleration occurs in galactic and extra-galactic shocks or jets, gamma rays and neutrinos are produced

$$\begin{array}{l} p + (p \ or \ \gamma) \rightarrow \pi^{\pm} + X \rightarrow \nu_{e} , \nu_{\mu} + X \quad neutrinos \ ... \\ \rightarrow \pi^{o} + X \rightarrow \gamma, \gamma \quad + X \quad gamma \ rays \ ... \end{array}$$

$$Flux \ \sim E_{p}^{-2} \quad (Fermi \ acceleration)$$

protons @ knee produce ~ $300 \text{ TeV } \gamma$ rays

3

The IceCube Collaboration

University of Alberta

Clark Atlanta University Georgia Institute of Technology Lawrence Berkeley National Laboratory **Ohio State University** Pennsylvania State University Southern University and A&M College Stony Brook University University of Alabama University of Alaska Anchorage University of California-Berkeley University of California-Irvine University of Delaware University of Kansas University of Maryland University of Wisconsin-Madison University of Wisconsin-River Falls

Stockholm University Uppsala Universitet

University of Oxford

Ecole Polytechnique Fédérale de Lausanne University of Geneva

> Université Libre de Bruxelles Université de Mons University of Gent Vrije Universiteit Brussel

University of the West Indies

Deutsches Elektronen-Synchrotron Humboldt Universität Ruhr-Universität Bochum RWTH Aachen University Technische Universität München Universität Bonn Universität Dortmund Universität Mainz Universität Wuppertal

Chiba University

University of Adelaide

University of Canterbury

International Funding Agencies

Fonds de la Recherche Scientifique (FRS-FNRS) Fonds Wetenschappelijk Onderzoek-Vlaanderen (FWO-Vlaanderen) Federal Ministry of Education & Research (BMBF)

German Research Foundation (DFG) Deutsches Elektronen-Synchrotron (DESY) Knut and Alice Wallenberg Foundation Swedish Polar Research Secretariat The Swedish Research Council (VR) University of Wisconsin Alumni Research Foundation (WARF) US National Science Foundation (NSF)⁴

IceCube Observatory

growing IceCube & event collection

Strings	Year	µ rate
IC22	2007	500 Hz
IC40	2008	1100 Hz
IC59	2009	1700 Hz
IC79	2010	2000 Hz
IC86	2011	2100 Hz

Observed InIceSMT Rate (Run Duration > 1 hour)

detection principle

cascade Cherenkov light

event identification

event identification

identification of cascade atmospheric events

- IC79 experimental data with dense infill DeepCore
- CR- and ν_µ-induced muons rejected via veto with surrounding IceCube strings
- low energy events selection
- ~60% selected events from cascades

10

high energy neutrino astronomy

- galactic/extragalactic sources
- point (<1°) steady/transient/periodic sources
- extended (>1°) sources
- diffuse sources of HE/EHE neutrinos
 - origin of galactic and extra-galactic cosmic rays

Paolo Desiati

all-sky steady point sources

Friday, June 1, 2012

Paolo Desiati

all-sky steady point sources

43,339 up-ward + 64,230 downward

in 375 days (IC40) + 348 days (IC59)

ApJ 732, 18 (2011) - arXiv:1012.2137

13-

+45°

all-sky steady point sources

43,339 up-ward + 64,230 downward

in 375 days (IC40) + 348 days (IC59)

Paolo Desiati

Friday, June 1, 2012

14

all-sky steady point sources

43,339 up-ward + 64,230 downward

ApJ 732, 18 (2011) - arXiv:1012.2137

15-

90% CL sensitivity for E⁻² steady point sources

discovery potential (5 σ , 50% of trials) is about ×3

other point source searches

number of events needed for 5σ (50%) all-sky discovery potential at different flare scales

- time varying sources
 - untriggered all-sky time scan
 - time scan for candidate variable sources from Fermi-LAT Bright Source List
 - triggered search based on flaring sources observed by Fermi (alerts from Public Release), H.E.S.S., MAGIC and VERITAS

ApJ 744, 1, 2012 - arXiv:1104.0075

 periodic sources from catalogue of GeV-TeV binary systems

ApJ 748, 118, 2012 arXiv:1108.3023

 17^{-}

Friday, June 1, 2012

e.g. Ahlers et al., Astrop. Phys. 35-2, 87 (2011)

Total Individual Spectra

 $F_{
u}$ (GeV cm $^{-2}$)

Waxman & Bahcall

10

10

10

10

10

10

10

10

 10^{-1}

10⁻¹

 10^{-1}

 $\Phi_{\nu}(E) [GeV cm^{-2}]$

neutrinos from Gamma Ray Bursts

- search for stacked neutrinos in coincidence with observed γ ray from GRB in the northern hemisphere
- per-burst neutrino spectra calculated from γ ray spectra based on prescription by Guetta et al. Astrop. Phys. 20, 429 (2004)

Friday, June 1, 2012

neutrinos from diffuse sources

PRELIMINARY

IC40

search for neutrinos from unresolved sources in the Universe (e.g. AGN)

IC40 v 90%CL limit

19

E² dΦ/dE [GeV cm⁻² s⁻¹ sr⁻¹]

10⁻⁵

10⁻⁶

10-7

10-8

10⁻⁹

Paolo Desiati

8

log10(E [GeV])

6

cosmogenic neutrinos

- cosmogenic neutrinos from photo-hadronic interactions of UHECR protons with the CMB
- constrain through the e⁻, e⁺ and γ-rays cascading on the CMB and intergalactic magnetic fields to lower energies and generating a γ-ray background in the GeV-TeV region

IC40 PRD 83, 092003 (2011) PRD 84, 079902 (2011)

Friday, June 1, 2012

cosmic ray anisotropy

origin of large scale anisotropy ?

stochastic effect from <0.1-1kpc young SNR & propagation

Erlykin & Wolfendale, Astropart. Phys., 25, 183 (2006) Blasi & Amato, arXiv:1105.4529

- TeV anisotropy as a possible probe into outer heliospheric properties
- >100 TeV anisotropy might uncover non-diffusive propagation effects or SNR connection

conclusions

- IceCube is a fully functional km³ neutrino observatory: neutrino astronomy
- observed the highest energy (atmospheric) neutrinos
- providing very strong constrains related to the origin of cosmic rays
- low energy frontier (DeepCore, PINGU): particle physics, oscillations, mass hierarchy,...
- high energy frontier (ARA Radio Detection): cosmogenic neutrinos
- multi-messenger campaigns undergoing
- cosmic ray anisotropy measured at 100's TeV and 1's PeV
- IceTop to measure cosmic ray spectrum & composition

backup slides

	40 strings	59 strings
orbital periods	15	14
expected deficit	5734 ± 76	8192 ± 91
observed deficit	$5326\pm544\pm498$	$8660 \pm 565 \pm 681$
significance	$10-11\sigma$	$13-15\sigma$
θ offset	0.0°	0.0°
ϕ offset	0.0°	0.0°

shadow of the moon

Boersma, Gladstone, Blumenthal, Stiebel, et al. ICRC 2011

neutrinos from GRB

Baerwald et al., Phys. Rev. D83 (2011) 067303

31

- different spectral shape
- normalization corrections
 - f_{Cγ} photon energy approximated by break energy
 - f_S spectral shape of neutrinos directly related to that of photons (not protons)
 - f_σ, f_≈, f_{shift} corrections from approximation of mean free path of protons and some factors approximated in the original calculations

neutrinos from GRB revised Fireball calculation

Hümmer et al. arXiv:1112.1076

cosmic ray anisotropy in IceCube

cosmic ray anisotropy in arrival direction

34-

cosmic ray anisotropy in arrival direction

cosmic ray anisotropy vs energy in IceCube-59

cosmic ray anisotropy vs energy in IceCube-59

- reference map derived from data with time scrambling
- smoothing radius optimized on highest significance in excess/deficit region

cosmic ray anisotropy vs energy in IceCube-59

Compton & Getting, Phys. Rev. 47, 817 (1935) Gleeson, & Axford, Ap&SS, 2, 43 (1968)

Earth's motion around the Sun

origin of large scale anisotropy : Compton-Getting Effect ?

A appare

Compton & Getting, Phys. Rev. 47, 817 (1935) Gleeson, & Axford, Ap&SS, 2, 43 (1968)

- apparent energy-independent ~10⁻³ dipole anisotropy due to relative motion of solar system through ISM
- motion of solar system around galactic center ~ 220 km/s
- reference system of cosmic rays is unknown

 $\frac{\Delta I}{I} = (\gamma + 2)\frac{v}{c}\cos\theta$

solar dipole anisotropy vs energy in IceCube-59

The observation of the solar dipole supports the observation of the sidereal anisotropy in cosmic ray arrival direction

anti-/extended-sidereal distributions vs energy in IceCube-59

Friday, June 1, 2012

anisotropy vs. angular scale

 0
 80
 100
 120
 140
 160
 180
 200
 220
 240
 260
 280
 300
 320
 340
 360

 $4 hr = 60^{\circ}$

-2

x 10

0.1

0.08

0.06

0.04

0.02

-0.02

-0.04

-0.06

-0.08

-0.1

-0.12

-0.14

-0.16

-0.18

-0.2

0

Paolo Desiati

20

60

high angular gradient

0

