

High Energy Cosmic Ray Anisotropy with IceCube Observatory

Paolo Desiati, for the IceCube Collaboration

WIPAC & Department of Astronomy University of Wisconsin - Madison

<<u>desiati@wipac.wisc.edu</u>>

Vulcano Workshop 2014 - Frontier Objects in Astrophysics and Particle Physics Vulcano (ME) - Italy - May 23, 2014

cosmic ray observations

- galactic cosmic rays produced below 10⁸-10⁹ GeV
- spectral features from acceleration mechanisms & propagation effects
- source distribution in Galaxy and our neighborhood
- magnetic field configurations in local interstellar medium
- anisotropy

cosmic ray anisotropy observations the legacy

equatorial coordinates

Paolo Desiati

cosmic ray anisotropy observations the legacy

1-5 TeV

 \sim

spectral feature associated to anisotropy

The IceCube Collaboration

Collaborating Organizations

Chiba University Clark Atlanta University Deutsches Elektronen-Synchrotron Ecole Polytechnique Fédérale de Lausanne Georgia Institute of Technology Humboldt Universität Lawrence Berkeley National Laboratory Ohio State University Pennsylvania State University Ruhr-Universität Bochum RWTH Aachen University Southern University and A&M College Stockholm University Stony Brook University Sungkyunkwan University Technische Universität München Universität Bonn Universität Dortmund Universität Mainz Universität Wuppertal Université libre de Bruxelles Université de Mons University of Adelaide University of Alabama University of Alaberta University of Alaska Anchorage University of California-Berkeley University of California-Irvine University of Canterbury University of Delaware University of Geneva University of Gent University of Kansas University of Maryland University of Oxford University of Wisconsin-Madison University of Wisconsin-River Falls Uppsala Universitet Vrije Universiteit Brussel

growing lceCube & historical data

@ 2835 m altitude (680 g/cm²)

NOTE: anisotropy is **not a dipole** topology changes above ~ 100 TeV IC59 Abbasi et al., ApJ, 746, 33, 2012 IC22 Abbasi et al., ApJ, 718, L194, 2010

20 TeV 400 TeV

EAS-TOP Aglietta et al., ApJ 692, L130, 2009

8

a known anisotropy Earth's motion around the Sun

Compton & Getting, Phys. Rev. 47, 817 (1935) Gleeson, & Axford, Ap&SS, 2, 43 (1968)

a known anisotropy Earth's motion around the Sun

- the observation of the solar dipole supports the observation of the sidereal anisotropy in cosmic ray arrival direction
- NO Compton-Getting Effect signature from galactic rotation observed

cosmic ray anisotropy large scale IceTop

Aartsen et al., ApJ, 765, 55, 2013

NOTE: global topology does not change above ~400 TeV

deficit amplitude increases with energy

IceCube

IceTop

cosmic ray anisotropy large scale

cosmic ray anisotropy small scale IceCube

cosmic ray anisotropy

- full sky map at comparable energy (IceCube-ARGO/HAWC)
 - to better determine low e spherical harmonic components
 - to analyze fine angular structures across the sky

cosmic ray anisotropy observations

ICRC 2013

cosmic ray anisotropy lceCube 2007-2012

relative intensity

equatorial coordinates

- ▶ 1.4 × 10¹¹ events from 2007 to 2012
 - sensitivity to 5° structures with relative intensity of O(10⁻⁴)

cosmic ray anisotropy AMANDA-IceCube 2000-2011

- AMANDA and IceCube yearly data show long time-scale stability of global anisotropy within statistical uncertainties
 - no apparent effect correlated to solar cycles

cosmic ray anisotropy AMANDA-IceCube 2000-2011

cosmic ray anisotropy probing sources & propagation of cosmic rays ?

• stochastic effect of nearby & recent sources & temporal correlations Erlykin & Wolfendale, Astropart. 2006

cosmic ray anisotropy probing magnetic field turbulence ?

propagation effect from turbulent realization of interstellar magnetic field Giacinti & Sigl, 2012
within scattering mean free path Biermann+, 2012

FIG. 1. Renormalized CR flux predicted at Earth for a concrete realization of the turbulent magnetic field, after subtracting the dipole and smoothing on 20° radius circles. Primaries with rigidities $p/Z = 10^{16} \text{ eV}$ (left panel) and $5 \times 10^{16} \text{ eV}$ (right panel). See text for the field parameters and boundary conditions on the sphere of radius R = 250 pc.

cosmic ray anisotropy probing magnetic field turbulence ?

propagation effect from turbulent realization of interstellar magnetic field within scattering mean free path

Ahlers, 2014

anomalous anisotropy structure spontaneously generated from a global dipole anisotropy as a consequence of Liouville Theorem in the presence of a local turbulent magnetic field

cosmic ray anisotropy probing diffusion properties

local ISMF shaped by LOOP I expansion sub-shell (with center ~60 pc away in Scorpius-Centaurus OB Association)

local cloudlets fragments of the shell moving at similar velocities

cosmic ray anisotropy local interstellar medium

interstellar magnetic field affected by inhomogeneities

Redfield & Linsky, 2008

Frisch+, 2011

local ISMF relatively uniform over spacial scales of order 60-100 pc (inter-arm)

cosmic ray anisotropy heliosphere

heliosphere as O(100-1000) AU magnetic perturbation of local ISMF

PD & Lazarian, 2013

- influence on \leq 10 TeV protons (R_L \leq 600 AU)
- cosmic rays >100's TeV influenced by interstellar magnetic field (change of anisotropy)

scattering at heliospheric boundary heuristic model

- resonant scattering to re-direct CR distribution
- back-scattering @ flanks back from downstream

- global anisotropy with large edge gradients
- magnetic reconnection

Lazarian & PD 2010 PD & Lazarian 2012

Milagro + IceCube TeV Cosmic Ray Data (10° Smoothing)

anisotropy and local galactic environment low to high energy connection

- IBEX observations of keV Energetic Neutral Atoms
- determination of interstellar flow direction
- Interstellar magnetic field direction

Schwadron, et al., Science, 1245026 (2014)

conclusions

- cosmic ray anisotropy observed up to PeV scale & down to 5° with IceCube & IceTop
- anisotropy not a dipole, changes topology with energy and has complex structure
- AMANDA & IceCube global anisotropy stable over one solar cycle within statistics
- study correlation between anisotropy & spectral anomalies vs primary mass
 - high energy cosmic ray anisotropy to probe into their origin and propagation
 - understanding of interstellar medium towards astrophysical scenarios for the observations
 - better understand particle diffusion in magnetic fields

thanks for your attention

backup slides

IceTop shower reconstruction

Aartsen et al. PRD 88 (2013) 042004

IceTop-only all-particle spectrum estimating primary energy

IceTop-73 326 days livetime Jun 2010 - May 2011

IceTop-73 326 days livetime Jun 2010 - May 2011

Proton_total 10 He total total 10859 events C_total E^{2.7} × dN dE dA dΩ dt [GeV^{1.7} m⁻² sr⁻¹ s⁻¹] above 100 PeV O total Fe_total د] 10³ Z=53 group Z=80 group $\Delta \log_{10} E = 0.05$ $\begin{array}{c} E^{2.6} \times dN/dE \left[GeV^{1.6} \text{ m}^{-2} \right] \\ 0 \\ 0 \\ 0 \\ \end{array}$ 10⁴ **IceCube Preliminary** $\Delta \log_{10} E = 0.1$ Pamela Proton Pamela He CreamII Proton IceTop 73, cosθ≥ 0.8, λ=2.1m CreamII He CreamII C CreamII O 10³ Combined 3 years (2010-2011 + 2011-2012 + 2012-2013) CreamII Mg **CreamII Si** CreamII Fe 6.5 8.5 9.5 7.5 9 6 8 10⁸ 10⁹ 10⁶ 10¹⁰ 10¹¹ 10^{3} 10^{4} 10⁵ 10⁷ log₁₀(E/GeV) Primary Energy, E [GeV]

IceTop-only all-particle spectrum

IceTop 2.67 yr livetime 2010 - 2013

IceTop-73 326 days livetime Jun 2010 - May 2011

IceTop 2.67 yr livetime 2010 - 2013

IceTop-73 326 days livetime Jun 2010 - May 2011

IceTop/IceCube spectrum & composition

IT-40/IC-40

37—

IceTop/IceCube spectrum & composition

IT-40/IC-40

mass-independent primary energy resolution of 0.05 in logE

simultaneous EM and hadronic component measurement for spectrum/mass unfolding

experimental systematic uncertainties important

study being extended to IC59/IC59 & IT73/IC79

IceCube geometry

DeepCore geometry

detection principle

growing IceCube & event collection

Year	µ rate (SMT8)	CR shower rate (STA3)		
2007	500 Hz	13 Hz		
2008	1100 Hz	15 Hz		
2009	1700 Hz	25 Hz		
2010	2000 Hz	30 Hz		
2011+	2200 Hz	35 Hz		

growing IceCube & event collection

low energy cosmic ray anisotropy in arrival direction

cosmic ray anisotropy vs energy

J.L. Zhang et al., 31st ICRC Łódź - Poland, 2009

ARGO-YBJ

- data from 2008
- 365 days livetime
- ▶ 6.5·10¹⁰ events
- median CR energy ~ 1.1 TeV

Amenomori et al., Science Vol. 314, pp. 439, 2006

Tibet-III

- data from 1997 to 2005
- 1874 days livetime
- ▶ 3.7·10¹⁰ events
- ► angular resolution ~ 0.9°
- modal CR energy ~ 3 TeV

Super-Kamiokande

Guillian et al., Phys Rev D, Vol 75, 063002 (2007)

- data from 1996 to 2001
- ▶ 1662 days livetime
- ▶ 2.1.10⁸ events
- angular resolution $< 2^{\circ}$
- median CR energy ~ 10 TeV

Milagro

Abdo et al., ApJ, Vol 698-2, pag 2121 (2009)

- data from 2000 to 2007
- ▶ 9.5·10¹⁰ events
- angular resolution $< 1^{\circ}$
- median CR energy ~ 6 TeV

.006

1.004 7

1.002 ទ្ទ

0.998 3

0.996 0.994

0.992

IceCube muon bundle trigger statistics

detector	trigger rate (Hz)	actual time (d)	livetime (d)	number of events
IceCube-22	500	300	226	5.4×10
IceCube-40	1,100	358	324	19×10
IceCube-59	1,700	367	334.5	34×10
IceCube-79	2,000	365	337	40×10
IceCube-86	2,500	365 × 2	365 × 2	50×10

^{*)} number of events with _LH reconstruction from online-filter collected by DST

Rate of Events (Hz)

cosmic ray anisotropy analysis technique

raw map of events in equatorial coordinates $(\alpha, \delta)_i$

reference map from events scrambled over 24hr in α (or time)

rebin raw and reference maps to enhance inter-bin correlations

subtract reference map from raw map to determine the residual relative intensity map

cosmic ray anisotropy energy selection IceCube

cosmic ray anisotropy vs energy in IceCube-59

NOTE: anisotropy is not a dipole topology changes at high energy

IC59 Abbasi et al., ApJ, **746**, 33, 2012 IC22 Abbasi et al., ApJ, **718**, L194, 2010

Х

cosmic ray anisotropy large scale IceCube

NOTE: anisotropy is not a dipole topology changes at high energy

IC59 Abbasi et al., ApJ, **746**, 33, 2012 IC22 Abbasi et al., ApJ, **718**, L194, 2010

Fraction of events 90.0 events 90.0 events 90.0 events 90.0 events 90.0 events

0.03 0.02 0.01 20 TeV 400 TeV

mixed

composition

53

cosmic ray anisotropy vs energy in IceCube-59

- reference map derived from data with time scrambling
- smoothing radius optimized on highest significance in excess/deficit region

cosmic ray anisotropy large scale IceTop

Aartsen et al., ApJ, **765**, 55, 2013

NOTE: global topology does not change

deficit amplitude increases with energy

NOTE: different energy response distribution

IceTop with sharper low energy threshold

might explain IC/IT amplitude differences

cosmic ray anisotropy large scale IceTop

Aartsen et al., ApJ, **765**, 55, 2013

NOTE: global topology does not change

deficit amplitude increases with energy

IceCube

Proton_total

Z=53 group

Z=80 group

10¹⁰ 10¹¹

0.015

0.01

0.005

-0.005

-0.01

-0.015

He_total C_total O_total Fe_total

IceTop

cosmic ray anisotropy large scale energy dependency

cosmic ray anisotropy large scale energy dependency

a known anisotropy Earth's motion around the Sun

Compton & Getting, Phys. Rev. 47, 817 (1935) Gleeson, & Axford, Ap&SS, 2, 43 (1968)

a known anisotropy Earth's motion around the Sun

- the observation of the solar dipole supports the observation of the sidereal anisotropy in cosmic ray arrival direction
- NO Compton-Getting Effect signature from galactic rotation observed

origin of large scale anisotropy : Compton-Getting Effect ?

Compton & Getting, Phys. Rev. 47, 817 (1935) Gleeson, & Axford, Ap&SS, 2, 43 (1968)

θ

 $\frac{\Delta I}{I} = (\gamma + 2)\frac{v}{c}\cos\theta$

- motion of solar system around galactic center ~ 220 km/s
- reference system of cosmic rays is unknown
 - at most one dipole component of the observation

anti-/extended-sidereal distributions vs energy in IceCube-59

systematic uncertainties IceCube-59

cosmic ray anisotropy small scale IceCube

region	right ascension	declination	optimal scale	peak significance	post-trials	IC79 (post-trials)
1	$(122.4^{+4.1}_{-4.7})^{\circ}$	$(-47.4^{+7.5}_{-3.2})^{\circ}$	22°	7.0σ	5.3σ	6.8σ
2	$(263.0^{+3.7}_{-3.8})^{\circ}$	$(-44.1^{+5.3}_{-5.1})^{\circ}$	13°	6.7σ	4.9σ	5.4σ
3	$(201.6^{+6.0}_{-1.1})^{\circ}$	$(-37.0^{+2.2}_{-1.9})^{\circ}$	11°	6.3σ	4.4σ	6.4σ
4	$(332.4^{+9.5}_{-7.1})^{\circ}$	$(-70.0^{+4.2}_{-7.6})^{\circ}$	12°	6.2σ	4.2σ	6.1σ
5	$(217.7^{+10.2}_{-7.8})^{\circ}$	$(-70.0^{+3.6}_{-2.3})^{\circ}$	12°	-6.4σ	-4.5σ	-6 .1σ
6	$(77.6^{+3.9}_{-8.4})^{\circ}$	$(-31.9^{+3.2}_{-8.6})^{\circ}$	13°	-6.1σ	-4.1σ	-4.3σ
7	$(308.2^{+4.8}_{-7.7})^{\circ}$	$(-34.5^{+9.6}_{-6.9})^{\circ}$	20°	-6.1σ	-4.1σ	-4.4σ
8	$(166.5^{+4.5}_{-5.7})^{\circ}$	$(-37.2^{+5.0}_{-5.7})^{\circ}$	12°	-6.0σ	-4.0σ	-6.4σ

IC59 Dipole + Quadrupole Fit Residuals (20° Smoothing)

0h

6.5

5

anisotropy vs. angular scale

-2

cosmic ray anisotropy AMANDA-IceCube 2000-2011

Preliminary

Period	Detector	Start	End	Live-time (days)	No. of events $(\times 10^9)$	χ²/dof	p-value
1	AM-II	02/13/2000	11/02/2000	213.4	1.4	11.3/15	0.73
2	AM-II	02/11/2001	10/19/2001	235.3	2.3	16.6/15	0.34
3	AM-II	01/01/2002	08/02/2002	169.2	2.4	26.0/15	0.04
4	AM-II	02/09/2003	12/17/2003	236.0	2.2	19.3/15	0.20
5	AM-II	01/05/2004	11/02/2004	225.8	2.5	14.3/15	0.50
6	AM-II	12/30/2004	12/23/2005	242.9	2.6	21.0/15	0.14
7	AM-II	01/01/2006	09/13/2006	213.1	2.4	24.4/15	0.06
8	IC22	06/01/2007	03/30/2008	269.4	5.3	45.2/15	7×10^{-5}
9	IC40	04/18/2008	04/30/2009	335.6	18.9	12.8/15	0.62
10	IC59	05/20/2009	05/30/2010	335.0	33.8	11.1/15	0.75
11	IC79	05/31/2010	05/12/2011	299.7	39.1	6.5/15	0.97
12	IC86	05/13/2011	05/14/2012	332.9	52.9	8.9/15	0.88

statistical uncertainties only

cosmic ray anisotropy probing heliospheric magnetic structure

downstream instabilities on the flanks of heliotail

effects of magnetic polarity reversals from solar cycles