

Cosmic ray spectrum, composition and arrival direction distribution & PeV y rays at the South Pole

Paolo Desiati

WIPAC & Department of Astronomy University of Wisconsin - Madison

<<u>desiati@wipac.wisc.edu</u>>

Towards a Large Field-of-View TeV Experiment in the South Università di Roma Tor Vergata - January 14-15, 2016

IceCube Observatory the instrumentation

IceCube Observatory the instrumentation

20 cm

110 cm

40 cm

80 CT

IceCube Observatory the instrumentation

IceCube Observatory main physics goals

• astrophysical neutrinos from the sources of cosmic rays

bursts

gamma ray nuclei

spectrum

• atmospheric neutrinos: charm production, oscillations

cosmic rays: spectrum, composition & anisotropy

anisotropy

spectrum

halo WIMPS

neutron

point sources

neutrinos

beyond standard model & dark matter

PeV

gamma rays

stratospheric temperature seasonal variations

PeV γ-rays, **neutron point sources** & Earth sciences

IceCube Observatory main physics goals

nuclei

supernova

remnants

astrophysical neutrinos from the sources of cosmic rays

bursts

spin dependent

atmospheric neutrinos: charm production, oscillations

cosmic rays: spectrum, composition & anisotropy

halo WIMPS

beyond standard model & dark matter

stratospheric temperature seasonal variations

neutrinos

PeV γ-rays, neutron point sources & Earth sciences

neutrino identification astrophysical neutrinos

4 years of HE starting events $E_v > 60 \text{ TeV}$

ICRC 2015 Charge Threshold Bkg. Atmospheric Muon Flux (Tagged Data) 10⁷ Bkg. Atmospheric Neutrinos (π/K) Bkg. Uncertainties (All Atm. Neutrinos) 10⁶ Atmospheric Neutrinos (90% CL Charm Limit) Bkg.+Signal Best-Fit Astrophysical (best-fit slope $E^{-2.58}$ Bkg.+Signal Best-Fit Astrophysical (fixed slope E^{-2}) 10⁵ All Events (Trigger Level) Data Events per 1347 Days 10⁴ IceCube Preliminary 10³ 10² 10^{1} 10⁰ 10⁻¹ 10⁻² 10⁻³ 10^{4} 10⁵

Total Collected PMT Charge (Photoelectrons)

5

- 53(+1) events found
- estimated background

9.0^{+8.0}-2.2 atm. neutrinos

<u>12.6±5.1 atm. muons</u>

1 atm. muon passing veto

coincident CR showers

6.5 σ significance

Aartsen et al. PRD 88 (2013) 112008 Aartsen et al. Science 342 (2013) 1242856 Aartsen et al. PRL 113 (2014) 101101

neutrino identification astrophysical neutrinos

4 years of HE starting events $E_v > 60 \text{ TeV}$

ICRC 2015

- 53(+1) events found
- estimated background

9.0+8.0-2.2 atm. neutrinos

12.6±5.1 atm. muons

1 atm. muon passing veto

coincident CR showers

6.5 σ significance

Aartsen et al. PRD 88 (2013) 112008 Aartsen et al. Science 342 (2013) 1242856 Aartsen et al. PRL 113 (2014) 101101

full sky observations multi-experiment approach

and PeV gamma rays

cosmic and $\boldsymbol{\gamma}$ rays observations

cosmic rays spectrum indirect observations

- at high energy flux too small for direct observations
- ground-based, under-ground / water / ice detection

- atmosphere & interaction properties
- energy & mass observations tangled
- Imited energy & mass resolution

cosmic rays spectrum all-particle energy spectrum

cosmic rays spectrum all-particle energy spectrum

all-particle spectrum depends on the *assumed* mass composition of primary particles

cosmic rays spectrum all-particle energy spectrum

all-particle spectrum depends on the *assumed* mass composition of primary particles

cosmic rays composition coincident events

14

cosmic rays composition coincident events

Protons

80 %

cosmic rays composition other experiments

cosmic ray composition in

cosmic rays composition other experiments

- cosmic rays expected to be *almost* isotropic
- scrambled by galactic magnetic field
- anisotropy from source dist. & magnetic fields

-0.3

Relative Intensity [x 10^{-3}]

-0.6

• 6 years of IceCube

300 billion events

0.9

1.2

1.5

- anisotropy on the level of 10⁻³
- median cosmic ray energy 20 TeV
- trace sources ? Magnetic fields ?

to be submitted to ApJ

-1.2

-0.9

13 TeV IceCube

- high energy observations MISSING in the northern hemisphere
- overlapping observations extending across the equator will help
- capable of energy/mass measurement

24 TeV

PRELIMINAR

21

24 TeV IceCube

Relative Intensity [x 10^{-3}]

- high energy observations MISSING in the northern hemisphere
- overlapping observations extending across the equator will help
- capable of energy/mass measurement

38 TeV IceCube

- high energy observations MISSING in the northern hemisphere
- overlapping observations extending across the equator will help
- capable of energy/mass measurement

71 TeV IceCube

71 TeV PRELIMINAR 21 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 -0.8 Relative Intensity [x 10⁻³]

- high energy observations MISSING in the northern hemisphere
- overlapping observations extending across the equator will help
- capable of energy/mass measurement

130 TeV IceCube

130 TeV PRELIMINARY 21 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 Relative Intensity [x 10^{-3}]

- high energy observations MISSING in the northern hemisphere
- overlapping observations extending across the equator will help
- capable of energy/mass measurement

240 TeV IceCube

240 TeV PRELIMINARY 21 0.8 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 Relative Intensity [x 10^{-3}]

- high energy observations MISSING in the northern hemisphere
- overlapping observations extending across the equator will help
- capable of energy/mass measurement

580 TeV IceCube

PRELIMINARY PRELIMINARY 1 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1 Relative Intensity [x 10⁻³]

- high energy observations MISSING in the northern hemisphere
- overlapping observations extending across the equator will help
- capable of energy/mass measurement

1.4 PeV IceCube

- high energy observations MISSING in the northern hemisphere
- overlapping observations extending across the equator will help
- capable of energy/mass measurement

1.6 PeV IceTop

1.6 PeV IceTop PRELIMINARY 21 0.6 -1.8 -1.2 1.2 1.82.4 -2.4 -0.6 0 Relative Intensity [x 10⁻³]

- high energy observations MISSING in the northern hemisphere
- overlapping observations extending across the equator will help
- capable of energy/mass measurement

5.4 PeV IceCube

5.4 PeV PRELIMINAR 21 2.4 -1.8 -1.2 -0.6 0 0.6 1.2 1.8 -2.4 Relative Intensity [x 10⁻³]

- high energy observations MISSING in the northern hemisphere
- overlapping observations extending across the equator will help
- capable of energy/mass measurement

- galactic sources of PeV γ rays
- disfavored by CASA-MIA & KASCADE
- ▶ HAWC, LHAASO, HISCORE ?
- IceCube the only experiment in Southern Hemisphere
- need to reduce the blind region in the southern hemisphere (where GC is located)

PeV gamma rays galactic origin

IC40 - Aartsen et al., 2012

PeV gamma rays

PeV gamma rays

cosmic and γ rays observations extended sky coverage

neutron point sources nearby galactic sources with 4 years of IceTop

- cosmic ray neutron range R ~ 10 pc × E_{PeV}
- ▶ all-visible-sky search > 10 PeV
- targeted source search > 100 PeV

ICRC 2015

neutron point sources nearby galactic sources with 4 years of IceTop

- cosmic ray neutron range R ~ 10 pc × E_{PeV}
- ▶ all-visible-sky search > 10 PeV
- targeted source search > 100 PeV

- no significant excess found in all-sky search
- no significant correlations found with candidate source catalogue

ICRC 2015

conclusions with extended or full sky coverage

neutral messengers

- important for astrophysics of cosmic ray origin
 - Earth v & γ observatories at comparable high energies (up to PeV range)
 - unveil galactic and/or extra-galactic sources of cosmic rays

charged cosmic rays

- important for **UHECR**: spectrum, composition & anisotropy (Auger & TA)
- bound to impact understanding of TeV/PeV CR anisotropy
 - probe into local interstellar medium: coherent and turbulent magnetic field
 - impact on e⁻e⁺ anomalies and disentanglement from astrophysical sources

GRAZIE!

backup slides

cosmic ray muons and neutrinos

- R_{event} ~ 2200 Hz
- µ and v produced in the atmosphere by cosmic rays
- atmospheric temperature seasonal variations

 ~ equal amount of µ and v

cosmic ray muons and neutrinos

- R_{event} ~ 2200 Hz
- µ and v produced in the atmosphere by cosmic rays
- atmospheric temperature seasonal variations

 ~1/10⁶ TeV neutrinos interact in the ice and is detected and reconstructed in IceCube

cosmic rays spectrum all-particle energy spectrum

cosmic rays spectrum all-particle energy spectrum

cosmic rays spectrum all-particle energy spectrum

log₁₀(S₁₂₅/VEM)

cosmic rays spectrum all-particle energy spectrum

all-particle spectrum depends on the *assumed* mass composition of primary particles

raw map of events in equatorial coordinates $(\alpha, \delta)_i$

reference map from events scrambled over 24hr in α (or time)

subtract reference map from raw map to determine the residual relative intensity map

measuring cosmic ray anisotropy relative intensity

sky maps show ONLY modulations across right ascension and NOT declination

a known anisotropy Earth's motion around the Sun

Compton & Getting, Phys. Rev. 47, 817 (1935) Gleeson, & Axford, Ap&SS, 2, 43 (1968)

-0.0010

350

300

250

200

Right Ascension [°]

150

100

50

cosmic rays anisotropy large and small angular scale

cosmic rays anisotropy large and small angular scale

m≞∩

46

PeV gamma rays galactic origin

IC40 - Aartsen et al., 2012

neutron point sources nearby galactic sources with 4 years of IceTop

ICRC 2015

Targeted search catalogs

M. Sutherland - OSU

What would comprise good Galactic source candidates? - nearby, known distances, high energy γs with an adequate energy flux at Earth

msec pulsars [Manchester et al. 2005]:

- http://www.atnf.csiro.au/research/pulsar/psrcat/
- 17 objects with P < 10 msec
- median distance ~ 1.9 kpc $-> E_c \sim 220 \text{ PeV}$

y pulsars [Abdo et al. 2013]: confirmed high energy photons

- http://fermi.gsfc.nasa.gov/ssc/data/access/lat/2nd_PSR_catalog +105°
- 16 objects
- median distance ~ 2.7 kpc $-> E_c \sim 320 \text{ PeV}$

HMXB [Liu et al. 2007]: compact object + massive star

- http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/442/1135
- 20 objects
- median distance ~ 4.2 kpc $-> E_c \sim 480 \text{ PeV}$

neutron point sources nearby galactic sources with 4 years of IceTop

Results: all-sky search

M. Sutherland - OSU

ICRC 2015

neutron point sources

nearby galactic sources with 4 years of IceTop

Results: targeted search

M. Sutherland - OSU

Eichor /

ICRC 2015

	Catalog	Objects	(post-trials <i>p</i>)	(post-trials <i>p</i>)
Post-trials <i>p</i> = fraction of MC with corresponding value less than that in observed dataset	γ pulsars	17	0.998 (0.947)	0.887 (0.727)
Underfluctuation near <i>b</i> =0° relative to	msec pulsars	16	0.820 (0.457)	0.898 (0.791)
background <i>plus</i> preferential catalog clustering produces artificially high <i>P</i> -	НМХВ	20	0.999 (0.997)	0.945 (0.972)

No statistically significant correlations observed between candidate catalogs and (E > 100 PeV) cosmic rays

Catalog	Object Name	R.A. [deg]	Dec [deg]	Observed	Expected	NuL	<i>FuL</i> [km ⁻² yr ⁻¹]	<i>energy Ful</i> [eV cm ⁻² sec ⁻¹]	Poisson <i>p</i> (post-trials <i>p</i>)
γ pulsars	J1048-5832	162.05	-58.53	5	2.40	7.60	11.35	0.65	0.095 (0.665)
msec pulsars	J1933-6211	293.39	-62.20	6	2.57	8.90	14.87	0.86	0.047 (0.419)
НМХВ	2S1417-624	215.30	-62.70	4	2.65	5.95	10.11	0.58	0.274 (0.993)

astrophysical neutrinos extra-galactic origin

Aartsen et al. arXiv:1412.5106

- γ -rays & v's from pp interactions
- extra-galactic emission (cascaded in EBL): E^{-2.1} - E^{-2.2}
- these cosmic ray sources contribute to 30%-40% of diffuse γ-ray background @100 GeV
- low energy tail of GeV-TeV neutrino/γ-ray spectra

- sources can be opaque in γ-ray
- v to probe dense environments

astrophysical neutrinos correlations with UHECR from Auger ?

Maximum separation angle [°]

Maximum separation angle [°]

astrophysical neutrinos galactic origin

galactic cosmic rays with cut-off of 10 PeV ?

