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Abstract

A novel approach for selecting high-quality muon neutrino events
in IceCube data is presented. The rate of air shower events mis-
reconstructed as signal is first reduced via the use of the geometri-
cal (software) trigger. The final event selection is performed with a
machine-learning method, designed specifically for IceCube data.
It takes into account some generic properties of IceCube events,
e.g., the fact that separation of signal from background is more dif-
ficult (requiring tighter cuts on the quality parameters) for horizon-
tal rather than vertically up-going tracks. The method compares
favorably to other techniques in situations with both high and low
simulation statistics.

Introduction

An important task of a neutrino telescope like IceCube is identifying
extra-terrestrial neutrinos that are interspersed between orders of
magnitude higher background of particles originating in the show-
ers produced by cosmic rays in the Earth’s atmosphere.
As a first step a high purity atmospheric (plus possible extrater-
restrial) neutrino event sample is selected, with only a small con-
taminating fraction of mis-reconstructed atmospheric muon events.
Only neutrinos can cross the overburden of the Earth in the upward
direction; however, selecting events reconstructed as upward-
moving leaves many mis-reconstructed atmospheric muons in the
sample, improving the ratio of neutrino to contaminating muon
events (initially at ∼ 10−6) by only a factor of ∼ 100.
The problem is further exacerbated by a highly uneven contami-
nation of the mis-reconstructed muons in several of the analysis
variables, most importantly the zenith angle. This contamination is
smaller for up-going directions and increases for more horizontal
tracks, growing rapidly near and above the horizon. It is therefore
difficult to arrive at an event selection method that provides opti-
mized cut surfaces simultaneously for all zenith angles. Splitting
the cut optimization in different zenith bins leads to fluctuations of
the cut parameters from one zenith angle bin to the next that are
perceived as unphysical. In situations with limited simulated data,
splitting it in several zenith angle bins is undesirable.
This author has also performed an SVM-based event selection op-
timization and found that training the SVM gets more difficult for
zenith angle ranges extending above the horizon.
The above considerations led to the development of a new frame-
work for selecting and applying cuts on quality parameters, that in
the following is called “Subset Browsing Method”, or SBM for short.
The quality parameters used with the event selection method of
this paper build upon those discussed previously [1].

Simple example

First consider a simple example employing only two parameters
that select events with lower background contamination for lower
value of the quality parameter. These can be, e.g., zenith angle
(0 degrees for up-going to 90 for horizontal tracks) and estimated
angular resolution (e.g., describing the half-width of the likelihood
function at the minimum corresponding to the reconstructed track
direction). Both of these can be used to remove the background
of mis-reconstructed events, one through the basic reconstruction
property, and the other though our prior knowledge that the con-
tamination is higher for tracks near the horizon.
The toy simulated events are divided into two groups (randomly):
the training set that is used for the training of the machine, and the
testing set, that is used to judge its performance. Both sets, while
drawn from the same parent distribution, are statistically indepen-
dent. The toy “data” events are also simulated and drawn from a
somewhat wider signal distribution (to demonstrate the effect of
cuts in the transitional region between signal and background).
The 3 steps of the machine application are the steps 1a, 1b, and
2 as shown on Figure [1].
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Figure 1: Two event populations are shown: red is

signal for the training and simulated testing event

sets, and all data in the data set. Blue points (lo-

cated up and to the right from red points) describe

background events. Lower values on both x and y

mean better quality. In steps 1a and 1b empty cir-

cles show background events removed by the skele-

ton cuts, aqua and pink points show background

and signal (or data) events respectively that are re-

moved by the machine quality parameter cut set at

1.5. In the third column events removed by step 2

are shown as empty circles and events additionally

removed by the quality parameter cut are shown in

pink, same as before. The black lines show the

skeleton cuts and go through the out-most back-

ground events of the training set.

Figure 2: Shown are events remaining in the testing dataset after the appli-

cation of step 1a, signal in red, and background in blue. The legend indicates

the value of the SBM* quality parameter for the shown events. For each

value of the SBM* quality parameter the bad sides of a representative event

are shown with straight lines. The SBM* quality parameter is simply the

count of the “outlying” background events of the training dataset that gave

rise to the “angle cuts” of step 1a (indicated with black squares and black

solid lines).

The training of the machine in this simple example is achieved by
identifying the “outlying” background events (on the signal side of
the distribution), and creating the “angle cuts” (shown with black
straight lines) by cutting away everything on the rejected sides of
such cuts (i.e., everything above and to the right of the background
event, including that background event itself).
The cuts so identified will obviously remove all background events
in the training dataset. As seen from the second row of Figure
[1], these cuts do not remove all of the background events when
applied to the testing dataset, so a further step, here called 1b is
necessary. Using the angle cuts derived in step 1a a quality pa-
rameter (SBM*) is constructed, which is simply the count of “angle
cuts” of step 1a that fall into the bad quadrant (up and to the right)
of a tested event, see Figure [2]. This quality parameter could also
be constructed as a weighted sum, as described in the following
section, shown for comparison as SBM in Figure [4].
A map of the quality parameter (SBM*) is shown in Figure [3]. It is
clear that through application of the quality parameter some space
is inserted between the cut structure achieved in step 1a and events
with quality parameter greater than 0. Figure [4] shows that a value
of SBM*=2.5 completely separates signal from background in the
testing dataset of this simple example.
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Figure 3: Map of the quality param-

eter (SBM*) calculated according to

prescription of Figure [2]. Highest-

quality region is shown in red.

Figure 4: Quality parameters: sim-

ple sum over the “angle cuts”

(SBM*), and weighted sum (SBM).

Red solid and blue dotted lines

show the distribution of signal and

background events, respectively.
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Multi-dimensional generalization

First we re-iterate that the SBM method relies on the important ob-
servation that most of the quality parameters used in the analysis
of IceCube data have the following property: as the fits become
less constrained at lower number of channels Nch or strings Nstr
(that received hits), the cuts on the quality parameters necessary to
reach a given signal purity need to be tightened. Alternatively, the
cuts applied to quality parameters of events with higher Nch or Nstr
can be relaxed somewhat. A similar behavior of cuts on quality pa-
rameters can be argued for their dependence on the reconstructed
zenith angle θ: at angles closer to the horizon the number of back-
ground events seeping through is higher than for tracks going up
closer to the vertical, so to reach the same purity the cuts on the
quality parameters need to be tighter for events with higher recon-
structed zenith angle θ. To summarize, we introduce the following
Basic cut property: the cuts necessary to reach the same signal
purity satisfy the following conditions:

c(θ⋆, Nch, Nstr) ≤ c(θ0, Nch, Nstr) for θ⋆ ≥ θ0

c(θ,N⋆
ch, Nstr) ≤ c(θ,N0

ch, Nstr) for N⋆
ch ≤ N0

ch

c(θ,Nch, N⋆
str) ≤ c(θ,Nch, N0

str) for N⋆
str ≤ N0

str

This relies on the assumption that lower cut values imply tighter
cutsa. Parameters θ, Nch, and Nstr that allow such a behavior of
cuts are in the following called basic cut variables. The following
discussion is simplified with a
Definition: a cut c⋆ defined for a set of events with θ⋆, N⋆

ch, and
N⋆

str is said to be operating on a subset of events of a cut c0 defined
for a set of events with θ0, N0

ch, and N0
str if θ⋆ ≥ θ0, N⋆

ch ≤ N0
ch, and

N⋆
str ≤ N0

str.
Main cut property: a cut operating on a given set of events also
operates on all its subsets.
To rephrase, a cut c0 defined for a set of events with θ0, N0

ch, and
N0

str also applies to any set of events with θ⋆, N⋆
ch, and N⋆

str (that
has its own cut c⋆), if θ⋆ ≥ θ0, N⋆

ch ≤ N0
ch, and N⋆

str ≤ N0
str. To

prove we need to show that c0 ≥ c⋆. Using 2 intermediate sets of
events, and the basic cut property introduced above

c0 = c(θ0, N0
ch, N0

str) ≥ c(θ⋆, N0
ch, N0

str) ≥ c(θ⋆, N⋆
ch, N0

str) ≥
c(θ⋆, N⋆

ch, N⋆
str) = c⋆

aSome of the quality parameters may need to be taken with a minus sign or as one over their value to

satisfy this assumption

This property allows us to consider all cuts as operating not only
on events with θ = θ0, Nch = N0

ch, and Nstr = N0
str, but rather on all

events with θ ≥ θ0, Nch ≤ N0
ch, and Nstr ≤ N0

str.
Definition: The cut c0 associated with θ0, N0

ch, and N0
str is consid-

ered redundant if there exists another cut c⋆ associated with some
other θ⋆, N⋆

ch, and N⋆ such that

c⋆ ≤ c0, θ⋆ ≤ θ0, N⋆
ch ≥ N0

ch, and N⋆
str ≥ N0

str.

This is because the new cut c⋆ clearly implies c0 by the main cut
property.
For each background event ib in the simulated training dataset its
quality parameters are used to create n cuts associated with θib,
N ib

ch, and N ib
str of the event. The signal purity pib = sib/(sib+bib) of the

events with θ ≥ θib, Nch ≤ N ib
ch, and Nstr ≤ N ib

str is then calculated
and used to find the ib that defines cuts in a region with the worst
purity. Out of the n cuts associated with ib the cut that results
in a smallest loss of signal events is then chosen and applied to
the whole subset on which this cut operates. To accelerate this
process if a cut in encountered that removes no signal events it
is immediately used without taking into account the purity of the
subset of events on which this cut operates.
This procedure is then repeated until the background events in the
simulated training dataset are exhausted. At that point all cuts of
all background events are cycled through once again, and those
that result in no further loss of remaining signal events (which are
said to form a core or signal events) are saved into the trained cut

set of the machine. One can further reduce this set by removing the
redundant cuts from it, thus resulting in an irreducible trained cut

set, which is the result of this machine training procedure.
One can obviously remove all background events (i.e., reach a
100% signal purity) by applying all cuts from the irreducible trained

cut set to the simulated training dataset. However, when the same
is applied to the separately generated testing dataset a number
of background events seep through and the signal purity never
reaches 100%.
This may happen, e.g., if we encounter a background event with,
say, N⋆

ch higher than N ib
ch of every background event in the simu-

lated training dataset, thus there are no cuts available that would
remove such an event from the testing dataset.

A way around this is to find at least one cut c with θc ≥ θ⋆, N c
ch ≤

N⋆
ch, and N c

str ≤ N⋆
str such that c⋆ = q⋆ ≤ c (q⋆ being the quality

parameter of the tested event). By the main cut property the cut
that would achieve the same purity pc on the subset defined by θ⋆,
N⋆

ch, and N⋆
str as the cut c on the subset defined by θc, N c

ch, and
N c

str is necessarily no more tight as the cut c. That is, applying the
cut c on the subset defined by θ⋆, N⋆

ch, and N⋆
str achieves at least

the same or higher level of purity as pc. Now, if an event defined by
its quality parameters c⋆ = q⋆ but at the basic cut variables θc, N c

ch,
and N c

str of the cut c is passed by the trained cut set, cut c is called
the purity cut defined for the original event (defined by its own c⋆,
θ⋆, N⋆

ch, and N⋆
str).

Existence of at least one such cut c for each of the testing dataset
events passed by the machine guarantees that the purity in the re-
gions with extrapolated θ, Nch, and Nstr is at least as good or bet-
ter than in the regions for which background events existed in the
simulated training dataset. This is an important advantage of the
discussed method compared to the other machine learning tech-
niques.
Counting all purity cuts available for a given testing dataset event
provides one with an important machine quality parameter which
value is higher for events that are more likely to be signal and lower
for events that are more likely to be background. It appears that a
cut on this parameter improves the purity in all subsets by equal
amount. In order to improve the purity in all subsets to the same
final value one may weight the terms in the quality parameter sum
with the initial purity of the simulated training dataset on the sub-
sets of the cuts used in the sum (thus leading to the weighted sum
definition of SBM, as shown in Figure [4]).
We call the machine learning method described here the subset

browsing method because of the technique in which one has to
browse through the subsets on which the cuts of the trained cut set

are defined to calculate the quality parameter separating signal
from background. The quality parameter itself is called the SBM

quality parameter: SBM .
The irreducible trained cut set forms a “skeleton” of cuts that are
applied to the testing dataset achieving the initial SBM cut level:
SBM = 0. The SBM quality parameter is usually normalized so
that the highest value of SBM of a background event in a simulated
testing dataset is 1.
The cut framework method discussed in this poster was used for
event selection of [2].


