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/AMANDA-II is a neutrino)
telescope composed of
Y optical Sensors
organized along 19
strings buried deep in

Qhe Antarctic ice cap. J
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Several samples (dif3
ferent seasons) of
AMANDA-II data from
\year 2000 were analyzed.




1 known CR spectra p, He, ..., Fe

2 air shower development CORSIKA
3 muon
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To simulate background an
air shower generator (COR-
SIKA) is run, then muons
are propagated (with MMCQC),
and then the photons are
propagated and detector re-
sponse is evaluated (with
AMASIM).
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AMANDA-B/Il Vertical Ice Map
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Properties of ice have been
measured quite precisely.
However, due to compu-
tational constraints exact
measured ice  properties
are difficult to implement.
Several ice models therefore
exist. Also, parameters
of ice models as well as
sensitivities of the optical
sensors have been varied
somewhat.
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QGSJET | VENUS | NEXUS | DPMJET | HDPM | SIBYLL

Gribov-Regge + + +
Minijets + + +
Sec. Interactions +
N-N Interactions + + +
Superposition + +
Max. Energy (GeV) > 10 2.10" | 2-10°% > 10 108 > 10
CPU time/shower (ms) 0.8 30 365 73 1.6 1.1




/Suppose a flux of vertical muons with spectrum\
b = Py E77 is propagated through ice, losing
energy continuously according to dE/dx = a+b-E.

Nen N/hQ dE(h)pdh— (a+bE)/ oan, <

where p is proportional to the vertical density of
optical sensors and depends on the their sensitiv-
ities and optical properties of the ice. Solving for
E(Ncp) and inserting it into @ = ®5- E~7 one gets
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One therefore gets the break in the N, distribu-
tion at Ncp g corresponding to Ep = (ebh2 — 1) a/b,)
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demonstrated

remarkable

stability with respect to detector
configuration changes and choice of
the ice model

~ = 2.76(H) — 0.063 4+ 0.007(ice) + 0.014(atm) & 0.009(conf) = 2.70 + 0.02
®o = 0.1057(H) + 0.000 + 0.002(ice) + 0.004(atm) + 0.006(conf) = 0.106 + 0.007
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Results for DPMJET, HDPM, NEXUS, QGSJET,
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Conclusions

1. Results depend on the strong features of the muon flux, not small varia-
tions in the detector simulation settings.

2. Muon flux is most consistent with predictions of the QGSJET, VENUS,
and NEXUS high-energy interaction models.

3. Detailed discussion of the method and results are to appear in my disser-
tation (look for it here: http://amanda.berkeley.edu/~dima/work/)



