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Abstract

Propagation of muons through large amounts of matter is a crucial necessity for analysis of
data produced by muon/neutrino underground experiments. A muon may sustain hundreds of
interactions before it is seen by the experiment. Since a small uncertainty, introduced hundreds
of times may lead to sizable errors, requirements on the precision of the muon propagation code
are very stringent. A new tool for propagating muon and tau charged leptons through matter that
is believed to meet these requirements is presented here. The latest formulae available for the
cross sections were used and the reduction of the calculational errors to a minimum was our top
priority. The tool is a very versatile program written in an object-oriented language environment
(Java). It supports many different optimization (parametrization) levels. The fully parametrized
version is as fast or even faster than the competition. On the other hand, the slowest version of the
program that does not make use of parametrizations, is fast enough for many tasks if queuing or
SYMPHONY environments with large number of connected computers are used. An overview
of the program is given and some results of its application are discussed.

mmc code homepage is
http://area51.berkeley.edu/"dima/work/MUONPR/

mmc code available at
http://area51.berkeley.edu/"dima/work/ MUONPR/BKP/mmc.tgz



1 Introduction

In order to observe atmospheric and cosmic neutrinos with a large underground detector (e.g.
AMANDA [1]), one needs to isolate their signal from the 3-5 orders of magnitude larger signal from
the background of atmospheric muons. Methods that do this have been designed and proven viable
[2]. In order to prove that these methods work and to derive indirect results such as the spectral index
of atmospheric muons, one needs to compare data to the results of the computer simulation. Such a
simulation normally contains three parts: propagation of the measured flux of the cosmic particles
from the top of the atmosphere down to the surface of the ground (ice, water); propagation of the
atmospheric muons from the surface down to and through the detector; generation of the Cerenkov
photons emanating from the muon tracks in the vicinity of the detector and their interaction with
the detector components. The first part is normally called generator, since it generates muon flux at
the ground surface; the second is propagator; and the third simulates the detector interaction with
the passing muons. Mainly two generators were used so far (by AMANDA): basiev and CORSIKA
[3]. Results and method of using CORSIKA as a generator in a neutrino detector (AMANDA)
were discussed in our previous contribution [4]. Several muon propagation Monte Carlo programs
were used with different degrees of success as propagators. Some are not suited for applications
which require the code to propagate muons in a large energy range (e.g. mudedx), the others seem
to work in only some of the interesting energy range (E > 1 TeV, propmu) [5]. Most of the
programs use cross section formulae, whose precision has been improved since their writing. For
some applications, one would also like to use the code for the propagation of muons that contain
100—1000 interactions along their track, so the precision of each step should be sufficiently high and
the computational errors should accumulate as slowly as possible. Significant discrepancies between
the muon propagation codes we tested were observed, believed to be mostly due to algorithm errors.
This motivated writing of a new code that would reduce calculational errors to minimum, leaving
only those uncertainties that come from the imperfect knowledge of the cross sections. Here we
present a new tool (Muon Monte Carlo: MMC), designed to meet this goal.

2 Description of the code

The primary design goals of MMC were uncompromising computational precision and code clar-
ity. It was decided that the program should be written in JAVA, since JAVA is an object-oriented pro-
gramming language (for best code readability) and has consistent behavior across many platforms.
MMC consists of pieces of code (classes), each contained in a separate file. These pieces fulfill their
separate tasks and are combined in a structured way (Fig. 1). This simplifies code maintenance and
introduction of changes/corrections to the cross section formulae. It is also very straightforward to
even “plug in“ new cross sections, if necessary. Writing in an object-oriented language allows sev-
eral instances of the program to be created and accessed simultaneously. This is useful for simulating
the behavior of the e.g. neutrino detectors, where different conditions apply above, inside and below
the detector.

The code evaluates many cross-section integrals, as well as two tracking integrals. All integral
evaluations are done by the Romberg method of the 5th order (by default) [6] with a variable sub-
stitution (mostly log-exp). If an upper limit of an integral is an unknown (that depends on a random
number), an approximation to that limit is found during normalization integral evaluation, and then
refined by Newton-Raphson method combined with bisection [6].
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Fig. 1: MMC structure

Originally, the program was designed to be used in the Massively Parallel Network Computing
(SYMPHONY) [10] framework, therefore computational speed was considered only a secondary
issue. However, parametrization and interpolation routines were implemented for all integrals. These
are both polynomial and rational function interpolation routines spanned over varying number of
points (5 by default) [6]. Inverse interpolation is implemented for root finding (i.e. when x(f) is
interpolated to solve f(z) = y). Two dimensional interpolations are implemented as two consecutive
one-dimensional ones. It is possible to turn parametrizations on or off for each integral separately
at program initialization. The default energy range in which parametrized formulae will work was
chosen to be from 105.7 MeV (the muon rest mass) to 10'4 MeV and the program was tested to work
with much higher setting for the higher energy cutoff. With full optimization (parametrizations) this
code is at least as fast or even faster than the competition.

Generally, as a muon travels through matter, it loses energy due to ionization losses, bremsstrah-
lung, photo-nuclear interaction and pair production. Formulae for the cross sections were taken from
the recent contribution [7]. These formulae are claimed to be valid to within about 1%. All of the
energy losses have continuous and stochastic components, the division between which is superficial
and is chosen in the program by selecting an energy cut (e.,;) or a relative energy 10ss cut (vey:).
In the following text v.,; and e.,; are considered to be interchangable and related by e.,; = veu F
(even though only one of them is a constant). Ideally, all losses should be treated stochastically.
However, that would bring the number of separate energy loss events to a very large value, since
the probability of such events to occur diverges as 1/ Ej,; for the bremsstrahlung losses, as the lost
energy approaches zero, and even faster than that for the other losses. In fact, the only reason this
large number is not infinity is existence of kinematic cutoffs (larger than some e,) for all diverging
cross sections. A good choice of v, for the propagation of atmospheric muons should lie in the



range (0.05 - 0.1) [8]. For monoenergetic beams of muons, v.,; may have to be chosen to be high as
1073 — 107,

2.1 Tracking formulae Let the continuous part of the energy losses (a sum of all energy
losses, integrated from zero to e.,,;) be described by a function f(E):

dE

- = 1(B)

\ \ \
X, dx X,

i
Fig. 2: derivation of tracking formulae

The stochastic part of the losses is described by the function o(£), which is a probability for
any energy loss event (with lost energy > e.,;) to occur along a path of 1 cm. Consider the particle
path from one interaction to the next consisting of small intervals (Fig. 2). On each of these small
intervals probability of interaction is dP(E(x;)) = o(FE(z;))dz. It is easy to derive an expression
for the final energy on this step as a function of the random number £. Probability to completely
avoid stochastic processes on an interval (z;;x ) and then suffer a catastrophic loss on dz at z is

(1 = dP(E(zi))) - ... - (1 = dP(E(zy))) - dP(E(zy))

= exp(—dP(E(z;))) - ... - exp(=dP(E(zy))) - dP(E(zy))

— oxp (_ / o dP(E(x))) - dP(E(xy))

E;
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To find the final energy on each step the above equation is solved for E:

Er o(F) _ _
/Ei —f(E)'dE— log(¢)  (energy integral).

This equation has a solution if

€>€o=exp(— Ei%-dE).

Here ¢, is a low energy cutoff, below which the muon is considered to be lost. Please note, that
f(E) is always positive due to ionization losses (unless e.,; ~ I(Z)). o(FE) is also always positive
because it includes the positive decay probability. If £ < &, the particle is stopped and its energy is
set to e;,,,. The corresponding displacement for all £ can be found from

€low

Ey
xf:xi—/ A (tracking integral).
B f(E)



2.2 Continuous randomization It was found that for higher v, muon spectra do not
look compact (Fig. 3). In fact, there is a large peak (at E,..x) that collects all particles that did not
suffer stochastic losses followed by the main spectrum distribution separated from the peak by at least
the value of v, Epeqr (the smallest stochastic loss). The appearance of the peak and its prominence
are governed by v.., initial energy — propagation distance ratio and the binning of the final energy
spectrum histogram. In order to be able to approximate the real spectra with even large v.,; and to
study the systematic effect at a large v, @ “continuous randomization” feature was introduced.

For a fixed v, Or e.,; a particle is propagated until the algorithm discussed above finds an in-
teraction point, i.e. a point where the particle loses more than the cutoff energy. The average value
of the energy decrease due to continuous energy losses is evaluated according to the energy integral
formula above. There will be some fluctuations in this energy loss, which are discarded by the for-
mula. Let’s assume there is a cutoff for all processes at some small ey < e.,;. Then the probability
p(e; F) for a process with eq < €;,5¢ < ey ON the distance dz is normalizable to 1. Let’s choose dx
so small that cous

poz/ ple; E)de-dr < 1
€0
Then the probability to not have any losses is 1 — py, and the probability to have two or more separate
losses is negligible. The standard deviation of the energy loss on dx from the average value

<e>=/ e-p(e; E) de - dx

€0

isthen < (Ae)? >=< e? > — < e >?, where

€cut
< e >=/ e’ - p(e; E) de - dx
€o
If veye OF ey Used for the calculation is sufficiently small, the distance =, — z; determined by
the energy and tracking integrals is so small that the average energy loss E; — E; is also small (as
compared to the initial energy F;). We therefore may assume p(e; E) ~ p(e; E;), i.e. the energy loss
distributions on the small intervals dx,, that sum up to the z; — z;, is the same for all intervals. Since
the total energy loss E; — Ey = ) _ e, the central limit theorem can be applied, and the final energy
loss distribution will be Gaussian with the average AE = E; — E; and width

<(AQAE)>=) (<2 >—<e,>?)

n

€cut €cut 2
= Z [(/ e - plen; Ey) den) dz,, — (/ en - plen; E;) den) dwi]
Ty Ecut Ty €cut 2
~ / dx - (/ e - ple; E(z)) de) —/ dx - </ e-ple; E(x)) de) dx

Here E; was replaced with average expectation value of energy at z, E(z). As dxz — 0, the second
term disappears. The lower limit of the integral over e can be replaced with zero, since all of the
cross sections diverge slower than 1/e3. Then,

< (A(AB)) >~ / f _Cfle) - ( /0 e p(e: B) de)




This formula is applicable for small v, as seen from the derivation. Energy spectra calculated with
“continuous randomization” converge faster than those without (see Fig. 4-5).
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Fig. 4. A close-up on the Fig. 3: ve = 0.05
(dashed), veyr = 0.01 (solid), veyr = 1073
(dotted), v = 10~* (dashed-dotted)
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3 Errors
All cross-section integrals are evaluated to the relative precision of 10~¢, the tracking integrals
are functions of these, so their precision was set to a higher value of 10 5. To check the precision



of interpolation routines, results of running with parametrizations enabled were compared to those
with parametrizations disabled. Fig. 7 shows relative energy losses for ice due to different mech-
anisms. Decay energy loss is shown here only for comparison and is evaluated by multiplying the
probability of decay by the energy of the particle. In the region below 1 GeV bremsstrahlung energy
loss has a double cutoff structure. This is due to a difference in the kinematic restrictions for muon
interaction with oxygen and hydrogen atoms. A cutoff (for any process) is a complicated structure
to parametrize and with only a few parametrization grid points in the cutoff region, interpolation
errors (epq, — enp)/€pa May become quite high, reaching 100% right below the cutoff, where the
interpolation routines give non-zero values, whereas the exact values are zero. But since the energy
losses due to either bremsstrahlung, photonuclear process or pair production are very small near
the cutoff in comparison to the sum of all losses (mostly ionization energy loss), this big relative
error results in a much smaller increase of the relative error of the total energy losses (Fig. 8). Be-
cause of that, parametrization errors never exceed 10~* - 10~3, for the most part being even much
smaller (1076 - 1075), as one can estimate from the plot. These errors are much smaller than the
uncertainties in the formulae for the cross sections. Now the question arises whether this precision
is sufficient to propagate muons with hundreds of interactions along their way. Fig. 6 is one of
the examples that demonstrate that it is sufficient: the final energy distribution did not change after
enabling parametrizations.

6
— 10 E o 1 E
£ 105} EEY:
o 4 E ioniz \%10 1 L
< 104 ¢ 210 ¢
o 3F nhoto 9 2 F
> 10 £ pll‘utu =10 .
B 102L S a3l
210 - decay g10 |
2 1 & g -4
o iF g10
=10 . & 2
(o)) 2 E (o] -5
T S s s s s s s s s 510
010 |k @o -6
-4 F 010 Il
10 _E o
5 E o 7
10 ¢ 10
10 7 § -8
10 N 10
£ 9l
0,58 10 b
10_10 2 210 f
10 H:Iium TRREITT IR \;Hm \;Hm \ZH\H \gmu \gmu \;Hm \éum \;\HH \l\SHH ll 10 H:Ii\m PN i \g ul ;Hm \ZHH \gmu \gmu \;HH \éum HgHHH \lHOHH\ ll
10 1 10 10 10 10 10 10 10 10 1010 10 10 1 10 10 10 10 10 10 10 10 1010 10
energy [GeV] energy [GeV]
Fig. 7: ioniz (upper solid curve), brems (dashed), Fig. 8: Interpolation precision (ep, — €np)/€pa

photo (dotted), epair (dashed-dotted) and decay
(lower solid curve) losses in ice

MMC has a low energy cutoff ¢, below which the muon is considered to be lost. By default
it is equal to the mass of the muon, but can be changed to any higher value. This cutoff enters
the calculation in several places, most notably in the initial evaluation of the energy integral. To
determine the random number &, below which the particle is considered stopped, the energy integral
is first evaluated from E; to e;,,. It is also used in the parametrization of the energy and tracking
integrals, since they are evaluated from this value to E; and Ey, and then the interpolated value for
Ey is subtracted from that for E;. Fig. 9 demonstrates the independence of MMC from the value of



elow- FOr the curve with e, = m,, integrals are evaluated in the range 105.7 MeV — 100 TeV, i.e.
over six orders of magnitude, and they are as precise as those calculated for the curve with ¢e;,,,=10
TeV, with integrals being evaluated over only one order of magnitude.
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Fig. 10 demonstrates the spectra of secondaries (delta electrons, bremsstrahlung photons, excited
nuclei and electron pairs) produced by the muon, which energy is kept constant at 10 TeV. The
thin lines behind the histograms are the probability functions (roughly cross sections) used in the
calculation. They have been corrected to fit the logarithmically binned histograms (multiplied by the
size of the bin which is proportional to abscissa, i.e. energy). While the agreement is trivial from the
Monte Carlo point of view, it demonstrates that the computational algorithm is correct.
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Fig. 11 shows the relative deviation of the average final energy of the 4 - 106 1 TeV and 100
TeV muons propagated through 100 m of Fr ejus rock with the abscissa setting for ,;, from the
final energy obtained with v.,; = 1. Just like in [8] the distance was chosen small enough so that
only a negligible number of muons stop, while big enough so that the muon suffers a big number
of stochastic losses (> 10 for v.,; < 1072). All points should agree with the result for v.,; = 1,



since it should be equal to the integral of all energy losses, and averaging over the energy losses for
veur < 1 1S evaluating such an integral with the Monte Carlo method. There is a visible systematic
shift <1 —2-10~* (similar for other muon energies), which can be considered as another measure
of the algorithm accuracy [8].
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Fig. 12: 10% muons with energy 9 TeV propagated through 10 km of water: regular (dashed) vs.
“cont” (dotted)

In case when almost all muons stop before passing the requested distance (see Fig. 12), even
small algorithm errors may affect survival probabilities by a lot. The following table summarizes the
survival probabilities of monochromatic muon beam of 10 muons with three initial energies (1 TeV,
9 TeV and 10° TeV) going through three distances (3 km, 10 km and 40 km) in water. One should
note that these numbers are very sensitive to the formulae of cross sections used in the calculation;
e.g. for the muons with energy 10° GeV propagated through 40 km the rates decrease 30 % when
the default photonuclear cross section is replaced with the ZEUS parametrization (case number four
from Sec. 6.3). However, the same set of formulae was used throughout the calculation. The errors
of the values in the table are statistical and are < £0.001.

Vewr cont” 1TeV3km 9TeV10km 10° TeV 40 km
0.2 no 0 0 0.153

0.2 yes 0.010 0.057 0.177
0.05 no 0 0.035 0.143
0.05 yes 0.045 0.039 0.139
0.01 no 0.030 0.037 0.142
0.01 yes 0.034 0.037 0.139
1073 no 0.034 0.037 0.140
1073 yes 0.034 0.037 0.135

The survival probabilities converge on the final value for v.,; < 0.01 in the first two columns. Using
the “cont” version helped the convergence in the first column. However, the “cont” values departed
from regular values more in the third column. The relative deviation (3.5%) can be used as an
estimate of the continuous randomization algorithm precision (not calculational errors) in this case.
One should note, however, that with the number of interactions > 103 the continuous randomization
approximation formula was applied > 103 times. It explains why the value of “cont” version for
veur = 0.01 is closer to the converged value of the regular version than for v,,; = 1073,

4 Results

The code was incorporated into the Monte Carlo chains of two detectors: Frejus [9] and AMANDA
[5]. In this section some general results are presented.



The energy losses plot was fitted to the function dE/dx = a + bE (Fig. 13). The first two
formulae for the photonuclear cross section (Sec. 6.3) can be fitted the best, all others lead to energy
losses deviating more at higher energies from this simple linear formula; therefore the numbers given
were evaluated using the first photonuclear cross section formula. In order to choose low and high
energy limits correctly (to cover the maximum possible range of energies that could be comfortably
fitted with a line), a x? plot was generated and analysed (Fig. 14). It can be seen that x? plot at
the low energies goes down sharply, then levels out. This corresponds to the point where linear
approximation starts to work. At high energies x? rises monotonically. This means that a linear
approximation, though valid, has to describe a growing energy range. An interval of energies from
20 GeV to 10! GeV is chosen for the fit. The following table summarizes the found fits to a and b:

medium | a, €Y [ b, 2% | av. dev. | max. dev.

mwe mwe

ice 0.259 | 0.357 | 3.7% 6.6%
fr.rock | 0.231 | 0.429 | 3.0% 5.1%

The errors in the evaluation of a and b are in the last digit of the given number. However, if the lower
energy boundary of the fitted region is raised and/or the upper energy boundary is lowered, each by
an order of magnitude, a and b change by about 1%.
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To investigate the effect of stochastic processes, muons with energies 105.7 MeV - 10! GeV were
propagated to the point of their disappearance. v.; = 5- 1072 was used in this calculation; using the
version with the continuous randomization did not change the final numbers. Average final distance
(range) for each energy was fitted to the solution of the energy loss equation dE/dx = a + bE:

(Fig. 15). The same analysis of the x2 plot as above was done in this case (Fig. 16). A region of
initial energies from 20 GeV to 10! GeV was chosen for the fit. The following table summarizes
the results of these fits:



medium | a G | p, 0% | av. dev.
mwe

ice 0.268 | 0.470 | 3.0%
frejusrock| 0.218| 0.520| 2.8%
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As the energy of the muon increases, it suffers more interactions before it is lost and the range
distribution becomes more Gaussian-like (Fig. 17). It is obvious that the inclusion of stochastic
processes into consideration leads in general to larger energy losses at higher energies than with only
continuous processes and the center of gravity of the muon beam travels to a smaller distance.

5 Conclusions

A very versatile, clear-coded and easy-to-use Muon propagation Monte Carlo program (MMC) is
presented. It is capable of propagating muon and tau leptons of energies from 105.7 MeV (muon rest
mass, higher for tau) to 10 GeV (or higher), which should be sufficient for the use as propagator
in the simulations of the modern neutrino detectors. A very straightforward error control model is
implemented, which results in computational errors being much smaller than uncertainties in the for-
mulae used for evaluation of cross sections. It is very easy to “plug in” cross sections, modify them,
or test their performance. The program was extended on many occasions to include new formulae or
effects. MMC does all calculations and checks in three dimensions and takes into account Moliére
scattering on the atomic centers, which could be considered as the zeroth order approximation to
true muon scattering since bremsstrahlung and pair production are effects that appear on top of such
scattering. A more advanced angular dependence of the cross sections can be inserted at a later date,
if necessary.

The MMC program was successfully incorporated into and used in the Monte Carlo chains of
AMANDA and Frejus experiments. We hope that the combination of precision, code clarity, speed
and stability will make this program a useful tool in the research connected with high energy particles
propagating through matter.



Also, a calculation of coefficients in the energy loss formula dE/dx = a + bE is presented
for both continuous and full (continuous and stochastic) energy loss treatments. The calculated
coefficients apply in the energy range from 20 GeV to 10! GeV with an average deviation from the
linear formula of 3.7% and maximum of 6.6%.
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Fig. 17: Range distributions in Fréjus rock: solid line designates the value of the range evalu-
ated with the second table (continuous and stochastic losses) and the broken line shows the range
evaluated with the first table (continuous losses only).

6 Formulae

This section summarizes cross sections formulae used in MMC. In the formulae below FE is the
energy of the incident muon, while v = v E is the energy of the secondary particle: knock on electron
for ionization, photon for bremsstrahlung, virtual photon for photonuclear process and electron pair
for the pair production. 8 = v/cand v = (1 — 82) /%, j is muon mass, m = m, is electron mass



and M is proton mass. Please refer to the next section for values of any constants appearing below.
Most of the formulae in Sec. 6.1- 6.4 are taken directly from [7]

6.1 lonization A standard Bethe-Bloch equation given in [11] was modified for muon and
tau charged leptons (massive particles with spin 1/2 different from electron) following the procedure
outlined in [12]. The result is given below:

2m, 2.2 2 2
_dE _ Kzgi L2 By vupper)  B? | 4 Vupper —i—l vupper 9
dzx AB?% |2 I(Z)? 2 vmax 2\2E(1+1/) 2

2me (2 — 1)
2
14297 + (%)
The density correction § is computed as for nonconductors:
0 = 0, IfX <X,
§ = 2(n10)X +C+a(X; — X)", ifX, <X <X,
d = 2(n10)X+C, ifX>X; where X =logio(57)

where vmax —

and vupper = man(veyt, Ymax)

EN 1,711

dvdz 27 A B2 2

v (v Y
! ﬁVmax+2<E(1+1/’7))]

2
This formula, integrated from vy, = 5 - (%)) t0 Vupper» gives the expression for energy loss

above, less the density correction and 32 terms (plus two more terms which vanish if v, < Vigper)-

6.2 Bremsstrahlung According to [13], bremsstrahlung cross section may be represented
by the sum of elastic component (o, discussed in [14, 15]) and two inelastic components (Aaf]}n

0 =0+ Aoc" + Ao,

6.2.1 Elastic Bremsstrahlung

M

is the minimum momentum transfer. The formfactors (atomic A and nuclear A%) are

1
el _
AZ(0) = In [1+ 6\/EBZ_1/3/m}
D,

N0 = | )

D,, = 1.54A%%




6.2.2 Inelastic Bremsstrahlung The effect of nucleus excitation can be evaluated as
1
Z
Bremsstrahlung on the atomic electrons can be described by the following diagrams:

Aln = Al (7 #1)

e diagrams

e-diagram is included with ionization losses (because of its sharp 1/v? energy loss spectrum), as

described in [16] , ,

d*N d*N e

A = - —(a(2 — v
dvdz (dl/dﬂ?)I 2m (a(2b+¢) =)
a=1log(1+2v/me), b=1og((1—v/Vme)/(1—v/E)),

¢ = log((2v(1 — v/E)me)/(muv/E))
Maximum energy lost by a muon is the same as in the pure ionization (knock-on) energy losses.
Minimum energy is taken as v,,,;;, = I(Z). In the above formula v is the energy lost by the muon,

i.e. the sum of energies transferred to both electron and photon. On the output all of this energy is
assigned to the electron.

The contribution of the u-diagram (included with bremsstrahlung) is discussed in [13]:

; e} m \> (4 4 -
Ao (E,v) ~ — <2Z—re> (— - -v+ v2> A

v 7 3 3
n 1 Fin H Fin _ /‘[’/5 m
A~ Z(I)a (0) with @(6) =In [5u/m2 n \/€:| In [1 + 5\/EB’Z2/3:|

B'=1429 for Z > 2 and B’=446 for Z=1.
The maximum energy, transferred to the photon is

o = mE—p)

On the output all of the energy lost by a muon is assigned to the bremsstrahlung photon.




6.3 Photonuclear Interactions

7(Q% V)

Photonuclear cross section is used as parametrized in [17]:

do o m? km?  2u?
o _ 9y . 1 L
7 5, Ao {O 75G (x) [/{ n ( + ) - SR ] +

+ 0.25 |kIn 1+— ——2 + = : 0.75G(x) m +025@1n 1+i
' 2t | mi+t Tt m3

w2

ma;c_ 1— )

2 2
where ¢ = k=l-—+—, m? =0.54GeV? | and m3 = 1.8 GeV?

Nucleon shadowing is taken care of by

0'7A(I/) = AO',YN(I/){O75G($)+025}
3

2
with G(z) = ] (% —1+4+e™ (1 +x)) , forZ#1,and G(z) =1 for Z=1

z = Rno,y ~ 0.00282450,y(v)
Several parametrization schemes for the photon-nucleon cross section are implemented. The first is

82
oyw(v) = 96.1+ 7 for v <17 GeV
on(v) = 114.3 4 1.647In%[0.02131] ub, for v € [17,200 GeV] [17]
o,n(v) = 49.2+11.11n[v] + 151.8/y/v ub, above 200 GeV [18]

The second is based on the table parametrization of [19] below 17 GeV. Since the second formula
from above is valid for energies up to 10 GeV, it is taken to describe the whole energy range alone
as the third case. Formula [20]

o, n(v) = 63.55"%7 + 1455 %% ub  with s =2Mv

can also be used in the whole energy range, representing the forth case (see Fig. 18). Finally, the
ALLM parametrization (discussed in Sec. 6.8) can be enabled. It does not rely on the assumption that
the virtual photon can be considered as real and involves integration over the square of the photon
4-momentum (Q?).

Integration limits used for the photonuclear cross section are (kinematic limits for Q2 are used
for the ALLM cross section)

m2 5 M ) m;,
mitor <V <Fo5 Ut

4

m’v? m
ENE’ _QENE’ < Q*<2Mv-mg)—-m2, E'=E-v




6.4 Electron Pair Production Two out of four diagrams describing pair production are
shown below. These describe the dominant “electron” term. The other two have muon interacting
with the atom and represent the “muon” term. The cross section formulae used here were first derived
in [21, 22, 23].

do(E,v,p) 2 ,1—w m?
NP _ 2 gz . o, + "o
d’Udp I ( + C)(CYT ) v + ,LL2 I3

v=_(&s+e)/E, p=(e—€)/E

P, = {[(2+ )1+ B) +£(3+ p?)]In <1+1> +ﬂ— 3+ 2)}L
e p p ¢ T1¢ p e
o, = {0+ (1+36) - tar2m0- ) ma e
1 -p*-5)
+ 1—+§ + (1 —+ 2ﬂ)(1 — p2)} Lu
BZ 3./ +&61+Y,) 1 3m 2
Le = In 1+ zm\/\é{ez—I/S(HE)(lH@) - §ln 1+ (EZI/?’) (1+&01+Ye)
Eu(1-p?)
ZLB7=23
Lu = In 1+ 2m\/EBZE_1(/13(1;')§)(1+Yu)
v(l—p
v _ 5-p"+48(1 + p*)
‘ 21+38)In(3 +1/&) — p* — 28(2 — p?)
v 4+ 0%+ 38(1+ p?)
u

(1+p2)(3/2+28)In(3+&) +1— 3p?

2

v (v 2] — p?
ﬁ_2(1—v)’ 5—(%) 1—w

1+m1 Z2/3E/u

| 0.0731In (Ei/“) —0.26
paZT(E’ Z) ~

loss

E/

7 =19510"° and v =5310"° for Z#1
71 =4410" and 1 =4.810" for Z=1



Integration limits for this cross section are
4m 3+/€e
=  Umin <’Ugvmaz:1_iﬁzl/3

E - 4 FE
4m 612
< < max = 1 R 1 — o1\
0= ll=p Ev [ E2(1—v)]
Muon pair production is discussed in detail in [24] and is not considered by MMC. Its cross section

is estimated to be ~ 2 - 10* times smaller than the direct electron pair production cross section
discussed above.

6.5 Muon decay Muon decay probability is calculated according to
v _ 1
de — ~yBer

The energy of the outgoing electron is evaluated as
Ve =7 (Vrest + ﬁ Vzest - mg COS(H)>
cos(#) is distributed uniformly on (—1, 1) and v, is determined at random from the distribution

dN  G?*i° v . p? +m?
— = 3—2x)x?, x= with = and =0 e
dx 19273 ( et @ Vinaz Vmin = 1Me Vmaz 21

6.6 Moliere scattering After passing through distance x angle distribution is assumed Gaus-
sian with a width /26, [11]

_ 13.6MeV
Bep

6o zv/x/Xo [1 4+ 0.038In(z/X))]

. Tems Ez -
Xy isevaluatedas X, = [%T(M)] for By ~ 107V
big

X

y
<

Deviations in two directions, perpendicular to the muon track are independent, but for each direction
exit angle and actual deviation are correlated:

Yplane = zleO/v 12 + ZQ.TG()/Q and epl,me = 2200

for independent standard Gaussian random variables (z1, z2). A more precise treatment should take
the finite size of nuclei into account as described in [25]. See Fig. 22 for an example of Moliére
scattering of a high energy muon.



6.7 Landau-Pomeranchuk-Migdal and Ter-Mikaelian effects These affect brems-
strahlung and pair production. See Fig. 21 for the combined effect in ice and Fr“ejus rock.

6.7.1 LPM suppression of the bremsstrahlung cross section  Bremsstrahlung cross section is
modified as follows [26, 27, 28]:

%(1 —v) + 0% = i;) (L*G(s) +2[1 + (1 - v)")(s))

The regions of the following expressions for ¢(s) and G(s) were chosen to represent the best con-
tinuous approximation to the actual functions.
3

S

= 1- —6s[1 + (3 — for < 1.54954
9(5) oxp < S+ B =msl+ 555 70,7965 + 0.65852) °
p(s) = 1-0.012/s* for s> 1.54954
P(s) 1—e 4s 87

= — ex — —

P 1+ 3.9365 + 4.975% — 0.055° + 7.50s"
G(s) = 3Y(s) —2¢(s) for s<0.710390
G(s) = 36s2/(36s2+1) for 0.710390 < s < 0.904912
G(s) = 1-0.022/s* for s> 0.904912
Here the SEB scheme [29] is employed for evaluation of ¢(s) and ¢ (s) and £(s) below:
s = 2 for §'<s

0.08(1 — h)[1 — (1 — h)?]

for s <s <1
In s;

&8y = 14+h-
() = 1 for & >1

a(uc?)? X,
4mhe
X is the same as in Sec. 6.6. Here are the rest of the definitions:

s' 73D, m Erpyv Ins
= — = 2 n_¢ I — - h = —
° VE 1= V2 B pu ° \/ 8E(1—w) In sq

6.7.2 Dialectric(Longitudinal) suppression effect  In addition to the above change of the brems-
strahlung cross section, s is replaced by I" - s and functions £(s), ¢(s) and G(s) are scaled as [28]

E(s) = &(T's)  ¢(s) = ¢(I's)/T G(s) = G(I's)/T*
Therefore the first formula in the previous section is modified as

£ (2G0
3 I?

ELPM =

+2l+(1- v)Q]‘/’(FS))

4
(1 — 2
(1—-v)+0v°— T

3

L iy
I' isdefinedas I =14~? (—”)
vE
where w, = \/4mN Ze?/m is plasma frequency of the medium and v E is the photon energy. The
dialectric suppression affects only processes with small photon transfer energy, therefore it is not
directly applicable to the direct pair production suppression.



6.7.3 LPM suppression of the direct pair production cross section &, from the pair produc-
tion cross section is modified as follows [28, 30]:

®, — (1+B)(A+[1+p%)B) + B(C+ L+ p*|D) + (1 — p»)E) - L,

1 [Erpm 1
5=~
4\ E, v(l—p?

E' par energy definition is different than in the bremsstrahlung case:

"

N — -1/3
Erpu Dy Z 72T where L ]n(325BZ )
Functions A(s, &), B(s, &), C(s,&) and D(s, ) are based on the approximation formulae

65 _ (6s)?
65 T 1 and G(S) = W

P(s) =

and are given below

36s*(1+z)? +1
365222

2 _
A(s,x) = %(1+2Giﬁ) In —G+6Gs (1 + 365 —1 ) (arctan((js[ac +1]) — g)

3652+ 1

6s(1 1
LG +z)+1

B(s,z) = ®(1 + ®x)1 Sz o
36s*(1+1z)? +1 G*(36s% — 1) 7r
— (2 _ T \ve T _
C(s,z) = =G°z1In 65722 +G s x (arctan(Gs[x +1]) 2)
1 1
D(s,z) = ® — ®*z1n 6s(1+2)+1
bsx

E(s,z) = —6s (arctan((js[z +1]) — g)
6.8 The Abramowicz Levin Levy Maor (ALLM) parametrization of the pho-
tonuclear cross section  The ALLM formula is based on the parametrization [31, 32, 33]

do(v,Q*) _ 4ma® Fy [1 e Mzv N ( 2u2) v2(1+4M2x2/Q2)]

dvdQ®> ~ Q' w 2F 1_@ 2(1+ R))

2
T = @
2M Ev
The limits of integration over Q2 are given in the section for photonuclear cross section.

Fy=a(Z+ (A—2)P)F} Here a(A, z,Q%) ~a(A,x)

a(A,z) = A% for 2 <0.0014
a(A,x) = AL09lgw0 =007 for (0.0014 < 2 < 0.04
a(A,z) = 1 for z>0.04



Q2
T

s (Fy + Fy)
0
Fi(z,Q%) = ¢zfi(1

Fy(z,Q%) =

—z)% for i=PR

For f =cg,ar,bg,bp ft) = fr + fot”
For g=cp,ap 9(t) = g1+ (91 — g2) [1 T 1}
In QQ’LQQ%
t=1In—=2
ln%
2 2
7 @+ mi for i=PR

:QQ—i—m?—i-WZ—MZ

W is the invariant mass of the nucleus plus virtual photon [34]: W?2 = M? + 2M Ev — Q2. Fig. 19
compares ALLM-parametrized cross section with formulae of Bezrukov and Bugaev from Sec. 6.3.
R(x,Q?) is not very well known, although it has been measured for high x (z > 0.1) [35]
and modeled for small x (10~7 < z < 0.1, 0.01GeV? < Q? < 50GeV?) [36]. It is of the order
~ 0.1 — 0.3 and even smaller for small Q? (behaves as O(Q?)). In the Fig. 20 three photonuclear
energy loss curves for R=0, 0.3 and 0.5 are shown. The difference between the curves never exceeds
7%. In the absence of a convenient parametrization for R at the moment, it is set to zero in MMC.
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7 Tables

All cross sections were translated to units [1/cm] via multiplying by number of molecules per vol-
ume. Unit conversions (like eV — J) were achieved using values of o = €2/hc and r, = €2 /m,c?.

7.1 Summary of physical constants employed by MMC

| o 1/137.03599976 | re 2.817940285-10"" cm |
| N, 6.02214199-10% 1/mol | K 0.307075 MeV - cm?/g |
| ¢ 299792458 -10"cm/s | R, 13.60569172eV |
| m. 0.510998902 MeV | m. 139.57018 Mev |
| m, 938.271998 MeV | m, 939.56533 MeV |
| m, 105.658389 MeV | 7. 2.19703-107%s |
| m, 1777.03 MeV | = 290.6-10"""s |
7.2 Media constants
Material Z A 1, eV C a m X X, p, g/cm?
Water 1+ 1.00794 750 -3.5017 0.09116 3.477 0.240 2.8004  1.000
Ice +8 159994 75.0 -3.5017 0.09116 3.477 0.240 2.8004 0.917
Stand. Rock 11 22 1364 -3.774 0.083 3.412 0.049 3.055  2.650
FrejusRock 10.12 2034  149.0 -5.053 0.078 3.645 0.288 3.196  2.740
Iron 26 55.845 286.0 -4.291 0.147 2963 -0.001 3.153  7.874
Hydrogen 1 1.00794 21.8 -3263 0.135 5.625 0476 1922  0.063
Lead 82  207.200 823.0 -6.202 0.094 3.161 0.378 3.807 11.350
Uranium 92 238.0289 890.0 -5.869 0.197 2.817 0226 3.372 18.950
7.3 Radiation logarithm constant B (taken from [37])
Z B Z B Z B Z B Z B
1 2024 8 1734 15 172.2 22 176.8 53 178.6
2 1519 9 170.0 16 173.4 26 175.8 74 1776
3 1599 10 165.8 17 1743 29 173.1 82 178.0
4 1723 11 165.8 18 174.8 32 173.0 92 179.8
5 177.9 12 167.1 19 175.1 35 1735
6 178.3 13 169.1 20 175.6 42 175.9 other 182.7
7 176.6 14 170.8 21 176.2 50 177.4
7.4 ALLM parameters (asin [32,38])
api -0.0808 aps -0.44812 aps 1.1709
aR1 0.58400 aRs 0.37888 aRs 2.6063
bpi 0.602432 bps 1.37542 bps 1.8439
bri 0.107112 bro 1.93862 brs 0.49338
Cp1 0.28067 Cpo 0.22291 Cp3 2.1979
CRr1 0.80107 CR2 0.97307 CR3 3.4942
m%  49.457 - 105 MeV? A2 0.06527 - 10 MeV? || m2  0.31985 - 105 MeV?
m?%  0.15052- 105 MeV? | Q2 — A% 0.46017 - 10° MeV?
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