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Abstract. Propagation of muons through large amounts
of matter is a crucial necessity for analysis of data pro-
duced by muon/neutrino undergroundexperiments. A muon
may sustain hundreds of interactions before it is seen by
the experiment. Since a small uncertainty, introduced hun-
dreds of times may lead to sizable errors, requirements on
the precision of the muon propagation code are very strin-
gent. A new tool for propagating muon and tau charged
leptons through matter that is believed to meet these re-
quirements is presented here. The latest formulae avail-
able for the cross sections were used and the reduction
of the calculational errors to a minimum was our top pri-
ority. The tool is a very versatile program written in an
object-oriented language environment (Java). It supports
many different optimization (parametrization) levels. The
fully parametrized version is as fast or even faster than the
competition. On the other hand, the slowest version of
the program that does not make use of parametrizations,
is fast enough for many tasks if queuing or SYMPHONY
environments with large number of connected computers
are used. An overview of the program is given and some
results of its application are discussed.

1 Introduction
In order to observe atmospheric and cosmic neutrinos

with a large underground detector (e.g. AMANDA (An-
dres et al., 2001)), one needs to isolate their signal from
the 3-5 orders of magnitude larger signal from the back-
ground of atmospheric muons. Methods that do this have
been designed and proven viable (DeYoung, 2001). In
order to prove that these methods work and to derive in-
direct results such as the spectral index of atmospheric
muons, one needs to compare data to the results of the
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computer simulation. Such a simulation normally con-
tains three parts: propagation of the measured flux of the
cosmic particles from the top of the atmosphere down to
the surface of the ground (ice, water); propagation of the
atmospheric muons from the surface down to and through
the detector; generation of the Cerenkov photons emanat-
ing from the muon tracks in the vicinity of the detector
and their interaction with the detector components. The
first part is normally called generator, since it generates
muon flux at the ground surface; the second is propaga-
tor; and the third simulates the detector interaction with
the passing muons. Mainly two generators were used so
far (by AMANDA): basiev and CORSIKA (Heck, 1998).
Results and method of using CORSIKA as a generator
in a neutrino detector (AMANDA) were discussed in our
previous contribution (Chirkin and Rhode, 1999). Sev-
eral muon propagation Monte Carlo programs were used
with different degrees of success as propagators. Some
are not suited for applications which require the code to
propagate muons in a large energy range (e.g. mudedx),
the others seem to work in only some of the interesting
energy range (

�����
TeV, propmu) (Desiati and Rhode,

2001). Most of the programs use cross section formulae,
whose precision has been improved since their writing.
For some applications, one would also like to use the code
for the propagation of muons that contain

�����	�
�������
in-

teractions along their track, so the precision of each step
should be sufficiently high and the computational errors
should accumulate as slowly as possible. Significant dis-
crepancies between the muon propagation codes we tested
were observed, believed to be mostly due to algorithm er-
rors. This motivated writing of a new code that would re-
duce calculational errors to minimum, leaving only those
uncertainties that come from the imperfect knowledge of
the cross sections. Here we present a new tool (Muon
Monte Carlo: MMC), designed to meet this goal.



2

2 Description of the code
The primary design goals of MMC were uncompro-

mising computational precision and code clarity. It was
decided that the program should be written in JAVA, since
JAVA is an object-oriented programming language (for
best code readability) and has consistent behavior across
many platforms. MMC consists of pieces of code (classes),
each contained in a separate file. These pieces fulfill their
separate tasks and are combined in a structured way (Fig.
1). This simplifies code maintenance and introduction of
changes/corrections to the cross section formulae. It is
also very straightforward to even “plug in“ new cross sec-
tions, if necessary. Writing in an object-oriented language
allows several instances of the program to be created and
accessed simultaneously. This is useful for simulating the
behavior of the e.g. neutrino detectors, where different
conditions apply above, inside and below the detector.

The code evaluates many cross-section integrals, as
well as two tracking integrals. All integral evaluations
are done by the Romberg method of the 5th order (by de-
fault) (Numerical Recipes, 1988) with a variable substitu-
tion (mostly log-exp). If an upper limit of an integral is an
unknown (that depends on a random number), an approxi-
mation to that limit is found during normalization integral
evaluation, and then refined by Newton-Raphson method
combined with bisection (Numerical Recipes, 1988).
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Fig. 1: MMC structure

Originally, the program was designed to be used in the
Massively Parallel Network Computing (SYMPHONY)
(Winterer, 1998) framework, therefore computational speed
was considered only a secondary issue. However, parametriza-
tion and interpolation routines were implemented for all
integrals. These are both polynomial and rational func-
tion interpolation routines spanned over varying number
of points (5 by default) (Numerical Recipes, 1988). In-
verse interpolation is implemented for root finding (i.e.
when � ����� is interpolated to solve

��� � ���
	
). Two di-

mensional interpolations are implemented as two consec-
utive one-dimensional ones. It is possible to turn parametriza-
tions on or off for each integral separately at program ini-

tialization. The default energy range in which parametrized
formulae will work was chosen to be from 105.7 MeV
(the muon rest mass) to

������
MeV and the program was

tested to work with much higher setting for the higher en-
ergy cutoff. With full optimization (parametrizations) this
code is at least as fast or even faster than the competition.

Generally, as a muon travels through matter, it loses
energy due to ionization losses, bremsstrahlung, photo-
nuclear interaction and pair production. Formulae for the
cross sections were taken from the recent contribution (Rhode
and Cârloganu, 1999). These formulae are claimed to be
valid to within about 1%. All of the energy losses have
continuous and stochastic components, the division be-
tween which is superficial and is chosen in the program
by selecting an energy cut ( ������� ) or a relative energy loss
cut ( � ����� ). In the following text � ����� and � ����� are con-
sidered to be interchangable and related by � ����� � � ����� �
(even though only one of them is a constant). Ideally,
all losses should be treated stochastically. However, that
would bring the number of separate energy loss events to
a very large value, since the probability of such events to
occur diverges as

��� ������� � for the bremsstrahlung losses,
as the lost energy approaches zero, and even faster than
that for the other losses. In fact, the only reason this large
number is not infinity is existence of kinematic cutoffs
(larger than some � � ) for all diverging cross sections. A
good choice of �!����� for the propagation of atmospheric
muons should lie in the range (

�#" �%$
-
�#" �

) (Bugaev et
al., 2000). For monoenergetic beams of muons, � ����� may
have to be chosen to be high as

���#&(' �
���)&(
.

2.1 Tracking formulae Let the continuous part
of the energy losses (a sum of all energy losses, integrated
from zero to � ����� ) be described by a function f(E):

��* �
* �

�+��� � � "

x xdxi f

Fig. 2: derivation of tracking formulae

The stochastic part of the losses is described by the
function , � � �

, which is a probability for any energy loss
event (with lost energy

� �����-� ) to occur along a path
of 1 cm. Consider the particle path from one interac-
tion to the next consisting of small intervals (Fig. 2). On
each of these small intervals probability of interaction is
*%. � � � �0/ �1�2� , � � � �0/ �1� * � . It is easy to derive an ex-
pression for the final energy on this step as a function of
the random number 3 . Probability to completely avoid
stochastic processes on an interval ( �4/ ; �(5 ) and then suffer
a catastrophic loss on * � at ��5 is
� � � *%. � � � �0/ �1����6 "�"7" 6!� � � *%. � � � �(5 �1���86 *%. � � � �(5 �1�

�:9<;)=>� � *!. � � � � / ���1�<6 "�"7" 6 9<;)=?� � *!. � � � � 5 �1�1�<6 *%. � � � � 5 �1�
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�:9 ;�= � ��������	� *!. � � � � �1��
 6 *!. � � � � 5 �1�

� * 5
�
� 9 ;)=>� � � ���� � , � � �

� ��� � � 6 * � � 
 � * � � 3 �� 3�� � �������
To find the final energy on each step the above equation is
solved for

� 5 :������ � , � � �
� ��� � � 6 * � � ������� � 3 � (energy integral).

This equation has a solution if

3 � 3 � �:9 ;�= � ��� �	������! , � � �
��� � � 6 * � 
 "

Here � �7�#" is a low energy cutoff, below which the muon
is considered to be lost. Please note, that

��� � �
is always

positive due to ionization losses (unless � ������$&% �(' � ).
, � � �

is also always positive because it includes the pos-
itive decay probability. If 3*) 3 � , the particle is stopped
and its energy is set to � �7��" . The corresponding displace-
ment for all 3 can be found from

�(5 � �0/ � � ����	� * ���� � � (tracking integral).

2.2 Continuous randomization It was found
that for higher � ����� muon spectra do not look compact
(Fig. 3). In fact, there is a large peak (at

�,+ �.-�/ ) that col-
lects all particles that did not suffer stochastic losses fol-
lowed by the main spectrum distribution separated from
the peak by at least the value of � ����� �0+ �.-1/ (the small-
est stochastic loss). The appearance of the peak and its
prominence are governed by � ���-� , initial energy

�
prop-

agation distance ratio and the binning of the final energy
spectrum histogram. In order to be able to approximate
the real spectra with even large �%���-� and to study the sys-
tematic effect at a large �!����� , a “continuous randomiza-
tion” feature was introduced.

For a fixed � ����� or �����-� a particle is propagated until
the algorithm discussed above finds an interaction point,
i.e. a point where the particle loses more than the cut-
off energy. The average value of the energy decrease due
to continuous energy losses is evaluated according to the
energy integral formula above. There will be some fluc-
tuations in this energy loss, which are discarded by the
formula. Let’s assume there is a cutoff for all processes at
some small � �32 � ����� . Then the probability 4 � � � � �

for
a process with � � )
� ����� � ) � ����� on the distance * � is
normalizable to 1. Let’s choose * � so small that4 � � � �.5768�.9 4 � � � � � * � 6 * � 2 �

Then the probability to not have any losses is
� � 44� , and

the probability to have two or more separate losses is neg-
ligible. The standard deviation of the energy loss on * �
from the average value

) � � � � �.5768� 9 � 6 4 � � � � � * � 6 * �

is then ) �!: � �.; � � ) � ; � � ) � � ; , where

) � ; � � � � 5768� 9 � ; 6 4 � � � � � * � 6 * �

If � ���-� or � ����� used for the calculation is sufficiently
small, the distance � 5 � � / determined by the energy and
tracking integrals is so small that the average energy loss� / �
� 5 is also small (as compared to the initial energy� / ). We therefore may assume 4 � � � � �3< 4 � � � � / � , i.e.
the energy loss distributions on the small intervals * �	=
that sum up to the �45 � �0/ , is the same for all inter-
vals. Since the total energy loss

� / � � 5 �?> � = , the
central limit theorem can be applied, and the final en-
ergy loss distribution will be Gaussian with the average: � � � / � � 5 and width) �!: �!: � ��� ; � �A@ =CB ) � ;= � � ) �D= � ;FE

� @ =HGJI � �.5768� 9 � ;= 6 4 � � = � � / � * � =LK * � = �
I � �.5M68� 9 � = 6 4 � � = � � / � * � = K ; * � ;=ON

< ��PQ�P � * � 6 I � �.5M68� 9 � ; 6 4 � � � � � � ��� * �DK �
��PJ�PF� * � 6 I � �.5768�.9 � 6 4 � � � � � � ��� * � K ; * �

Here
� / was replaced with average expectation value of

energy at � ,
� � � � . As * �SR �

, the second term disap-
pears. The lower limit of the integral over � can be re-
placed with zero, since all of the cross sections diverge
slower than

��� � ' . Then,

) �!: �!: � ��� ; � < ��PQ�PD� * �
� ��� � � 6 I � �.5768

� � ; 6 4 � � � � � * � K
This formula is applicable for small �%����� , as seen from
the derivation. Energy spectra calculated with “contin-
uous randomization” converge faster than those without
(see Fig. 4-5).
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Fig. 3: Distribution of the final energy of the muons that
crossed 300 m of Fréjus Rock with initial energy 100 TeV:
���������	��
 �� (solid), ����������������� (dashed-dotted), ���������
��
 �� and “cont” option (dotted)
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Fig. 4: A close-up on the Fig. 3: ������������
 �� (dashed),
� ����� ����
 ��� (solid), � ����� ��������� (dotted), � ����� ���������

(dashed-dotted)

3 Errors
All cross-section integrals are evaluated to the relative

precision of
��� &��

, the tracking integrals are functions of
these, so their precision was set to a higher value of

��� &! 
.

To check the precision of interpolation routines, results of
running with parametrizations enabled were compared to
those with parametrizations disabled. Fig. 7 shows rel-
ative energy losses for ice due to different mechanisms.
Decay energy loss is shown here only for comparison and
is evaluated by multiplying the probability of decay by
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Fig. 5: Same as in Fig. 4, but with “cont” option enabled
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Fig. 6: Comparison of paramerized (dashed-dotted) with ex-
act (non-parametrized, dotted) versions for � ����� �"��
 ��� .
Also shown is the relative difference of the curves.

the energy of the particle. In the region below 1 GeV
bremsstrahlung energy loss has a double cutoff structure.
This is due to a difference in the kinematic restrictions
for muon interaction with oxygen and hydrogen atoms.
A cutoff (for any process) is a complicated structure to
parametrize and with only a few parametrization grid points
in the cutoff region, interpolation errors

� � + - � � = + � � � + -
may become quite high, reaching 100% right below the
cutoff, where the interpolation routines give non-zero val-
ues, whereas the exact values are zero. But since the
energy losses due to either bremsstrahlung, photonuclear
process or pair production are very small near the cutoff
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Fig. 7: ioniz (upper solid curve), brems (dashed), photo (dot-
ted), epair (dashed-dotted) and decay (lower solid curve)
losses in ice
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Fig. 8: Interpolation precision ���������	��
�����������

in comparison to the sum of all losses (mostly ioniza-
tion energy loss), this big relative error results in a much
smaller increase of the relative error of the total energy
losses (Fig. 8). Because of that, parametrization errors
never exceed

��� &0
-
��� &('

, for the most part being even
much smaller (

��� &��
-
��� &� 

), as one can estimate from the
plot. These errors are much smaller than the uncertain-
ties in the formulae for the cross sections. Now the ques-
tion arises whether this precision is sufficient to propagate
muons with hundreds of interactions along their way. Fig.
6 is one of the examples that demonstrate that it is suf-

ficient: the final energy distribution did not change after
enabling parametrizations.
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Fig. 9: Comparison of ��� ��� ����� (dotted-dashed) with
� � ��� =10 TeV (dotted). Also shown is the relative difference
of the curves.
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Fig. 10: ioniz (upper solid curve), brems (dashed), photo
(dotted), epair (dashed-dotted) spectra for � � =10 TeV in the
Fréjus rock

MMC has a low energy cutoff � �7�#" below which the
muon is considered to be lost. By default it is equal to the
mass of the muon, but can be changed to any higher value.
This cutoff enters the calculation in several places, most
notably in the initial evaluation of the energy integral. To
determine the random number 3 � below which the particle
is considered stopped, the energy integral is first evaluated
from

� / to � �7��" . It is also used in the parametrization of
the energy and tracking integrals, since they are evaluated
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from this value to
� / and

� 5 , and then the interpolated
value for

� 5 is subtracted from that for
� / . Fig. 9 demon-

strates the independence of MMC from the value of � �7��" .
For the curve with � ����" �����

integrals are evaluated in
the range 105.7 MeV

�
100 TeV, i.e. over six orders of

magnitude, and they are as precise as those calculated for
the curve with � �7�#" =10 TeV, with integrals being evalu-
ated over only one order of magnitude.

Fig. 10 demonstrates the spectra of secondaries (delta
electrons, bremsstrahlung photons, excited nuclei and elec-
tron pairs) produced by the muon, which energy is kept
constant at 10 TeV. The thin lines behind the histograms
are the probability functions (roughly cross sections) used
in the calculation. They have been corrected to fit the log-
arithmically binned histograms (multiplied by the size of
the bin which is proportional to abscissa, i.e. energy).
While the agreement is trivial from the Monte Carlo point
of view, it demonstrates that the computational algorithm
is correct.
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Fig. 11

Fig. 11 shows the relative deviation of the average final
energy of the

� 6 ��� �
1 TeV and 100 TeV muons propagated

through 100 m of Fr éjus rock with the abscissa setting
for � ����� , from the final energy obtained with � ���-� � �

.
Just like in (Bugaev et al., 2000) the distance was chosen
small enough so that only a negligible number of muons
stop, while big enough so that the muon suffers a big num-
ber of stochastic losses (

� ���
for � ������� ���)&('

). All
points should agree with the result for � ����� � �

, since
it should be equal to the integral of all energy losses, and
averaging over the energy losses for �%����� ) �

is evaluat-
ing such an integral with the Monte Carlo method. There
is a visible systematic shift � � �	� 6 ��� &(

(similar for

other muon energies), which can be considered as another
measure of the algorithm accuracy (Bugaev et al., 2000).
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Fig. 12: ����
 muons with energy 9 TeV propagated through
10 km of water: regular (dashed) vs. “cont” (dotted)

In case when almost all muons stop before passing the
requested distance (see Fig. 12), even small algorithm er-
rors may affect survival probabilities by a lot. The follow-
ing table summarizes the survival probabilities of monochro-
matic muon beam of

��� �
muons with three initial energies

(1 TeV, 9 TeV and
��� �

TeV) going through three distances
(3 km, 10 km and 40 km) in water. One should note that
these numbers are very sensitive to the formulae of cross
sections used in the calculation; e.g. for the muons with
energy

����
GeV propagated through 40 km the rates de-

crease 30 % when the default photonuclear cross section
is replaced with the ZEUS parametrization (case number
four from Sec. 6). However, the same set of formulae was
used throughout the calculation. The errors of the values
in the table are statistical and are ��� �#" ��� � .

� ����� “cont” 1 TeV 9 TeV
��� �

TeV
3 km 10 km 40 km

0.2 no 0 0 0.153
0.2 yes 0.010 0.057 0.177

0.05 no 0 0.035 0.143
0.05 yes 0.045 0.039 0.139
0.01 no 0.030 0.037 0.142
0.01 yes 0.034 0.037 0.139���)&4'

no 0.034 0.037 0.140���)&4'
yes 0.034 0.037 0.135

The survival probabilities converge on the final value for
� ����� � � " � �

in the first two columns. Using the “cont”
version helped the convergence in the first column. How-
ever, the “cont” values departed from regular values more
in the third column. The relative deviation (3.5%) can be
used as an estimate of the continuous randomization algo-
rithm precision (not calculational errors) in this case. One
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should note, however, that with the number of interactions� ��� '
the continuous randomization approximation for-

mula was applied
� ���!'

times. It explains why the value
of “cont” version for � ����� � �#" � �

is closer to the con-
verged value of the regular version than for � ����� � ���)&4'

.

4 Results

The code was incorporated into the Monte Carlo chains
of two detectors: Fr éjus (Schröder, 2001) and AMANDA
(Desiati and Rhode, 2001). In this section some general
results are presented.

The energy losses plot was fitted to the function * � � * � �
����� � (Fig. 13). The first two formulae for the photonu-
clear cross section (Sec. 6) can be fitted the best, all others
lead to energy losses deviating more at higher energies
from this simple linear formula; therefore the numbers
given were evaluated using the first photonuclear cross
section formula. In order to choose low and high energy
limits correctly (to cover the maximum possible range of
energies that could be comfortably fitted with a line), a
� ; plot was generated and analysed (Fig. 14). It can be
seen that �

;
plot at the low energies goes down sharply,

then levels out. This corresponds to the point where linear
approximation starts to work. At high energies �

;
rises

monotonically. This means that a linear approximation,
though valid, has to describe a growing energy range. An
interval of energies from 20 GeV to

��� � �
GeV is chosen

for the fit. The following table summarizes the found fits
to a and b:

medium a, �
�	�


 " � b,
� ����
 " � av. dev. max. dev.

ice 0.259 0.357 3.7% 6.6%
fr. rock 0.231 0.429 3.0% 5.1%

The errors in the evaluation of a and b are in the last digit
of the given number. However, if the lower energy bound-
ary of the fitted region is raised and/or the upper energy
boundary is lowered, each by an order of magnitude, a
and b change by about 1%.

dE/dx=a+bE
a=0.259425 [ GeV/mwe ],
b=0.000357204 [ 1/mwe ]
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Fig. 13: Fit to the energy losses in ice
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Fig. 14: ��� plot for energy losses in ice

To investigate the effect of stochastic processes, muons
with energies 105.7 MeV -

����� �
GeV were propagated to

the point of their disappearance. � ����� � $ 6 ��� &('
was used

in this calculation; using the version with the continuous
randomization did not change the final numbers. Aver-
age final distance (range) for each energy was fitted to the
solution of the energy loss equation * � � * � � ����� � :

�(5 � � � � � � � � / 6 � � � � � �
. The same analysis of the �

;
plot as above was done

in this case. A region of initial energies from 20 GeV
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to
�����

GeV was chosen for the fit. The following table
summarizes the results of these fits:

medium a, �
� �


 " � b,
� ����
 " � av. dev.

ice 0.268 0.470 3.0%
fr éjus rock 0.218 0.520 2.8%

As the energy of the muon increases, it suffers more
interactions before it is lost and the range distribution be-
comes more Gaussian-like (Fig. 17). It is obvious that the
inclusion of stochastic processes into consideration leads
in general to larger energy losses at higher energies than
with only continuous processes and the center of gravity
of the muon beam travels to a smaller distance.

5 Conclusions
A very versatile, clear-coded and easy-to-use Muon

propagation Monte Carlo program (MMC) is presented.
It is capable of propagating muon and tau leptons of en-
ergies from 105.7 MeV (muon rest mass, higher for tau)
to
�������

GeV (or higher), which should be sufficient for
the use as propagator in the simulations of the modern
neutrino detectors. A very straightforward error control
model is implemented, which results in computational er-
rors being much smaller than uncertainties in the formu-
lae used for evaluation of cross sections. It is very easy
to “plug in” cross sections, modify them, or test their per-
formance. The program was extended on many occasions
to include new formulae or effects. MMC does all cal-
culations and checks in three dimensions and takes into
account Molière scattering on the atomic centers, which
could be considered as the zeroth order approximation to
true muon scattering since bremsstrahlung and pair pro-
duction are effects that appear on top of such scattering.
A more advanced angular dependence of the cross sec-
tions can be inserted at a later date, if necessary.

The MMC program was successfully incorporated into
and used in the Monte Carlo chains of AMANDA and
Fr éjus experiments. We hope that the combination of pre-
cision, code clarity, speed and stability will make this pro-
gram a useful tool in the research connected with high en-
ergy particles propagating through matter.

Also, a calculation of coefficients in the energy loss
formula * � � * � � � � � � is presented for both con-
tinuous and full (continuous and stochastic) energy loss
treatments. The calculated coefficients apply in the en-
ergy range from 20 GeV to

���)� �
GeV with an average

deviation from the linear formula of 3.7% and maximum
of 6.6%.

30 GeV

en
tr

ie
s 7 ⋅ 103 GeV

1.7 ⋅ 106 GeV 4 ⋅ 108 GeV

distance [ m ]

20 30 40 50 60 0 2000 4000

0 5000 10000 0 10000 20000

Fig. 17: Range distributions in Fréjus rock: solid line desig-
nates the value of the range evaluated with the second table
(continuous and stochastic losses) and the broken line shows
the range evaluated with the first table (continuous losses
only).

6 Formulae
For a complete summary of the formulae and tables

used in MMC see our technichal document available at
(MMC homepage, 2001)
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Schr öder, F., Rhode, W., Meyer, H., 27th ICRC, HE 2.2 Ham-

burg, 2001
Winterer, V.-H., SYMPHONY (talk)
MMC homepage:

http://area51.berkeley.edu/˜dima/work/MUONPR/


