Muon Propagation Monte Carlo Written in Java
or
Muon Monte Carlo (mmc)

TABLE OF CONTENTS

COPYING

CREDITS

NEW RELEASES
INSTALLATION NOTES
DESCRIPTION

alrwE

1. COPYING

This program (MMC) was originally developed by Dmitry Chirkin.
You may use, modify, or redistribute it free of charge for all
legal purposes as long as you agree not to remove this notice.

Copyright 2001 (http://icecube.berkeley.edu/~dima/).

2. CREDITS

This program (MMC) was originally developed by Dmitry Chirkin at
Bergische Universitaet Gesamthochschule Wuppertal, Germany (2000)
and the University of California at Berkeley, USA (2001).

People who helped to test it, gave useful suggestions and
encouraged its development are (in alphabetical order)

Paolo Desiati
Heiko Geenen
Marek Kowalski
Predrag Miocinovic
Wolfgang Rhode
Kosta Schinarakis
Frank Schroeder

Thank you!

3. NEW RELEASES
The latest version of the mmc can be found at the MMC homepage:

http://dima.lbl.gov/~dima/work/MUONPR/
http://icecube.wisc.edu/~dima/work/MUONPR/

(all are the same).

Please refer to the HISTORY file for the latest changes. If your distribution
does not contain the full HISTORY file, it can be obtained from the MMC



homepage, which also contains an extensive description of the algorithm and
its precision and summary of formulae used in MMC.

4. INSTALLATION NOTES

Since this program does not work with the default jdk included with Redhat
(Kaffe), you will need to install the official SUN jdk distribution available

at http://java.sun.com/j2se/. Versions 1.3x and 1.2.2 of Java were tested with
the mmc v 0.08.7 and up.

Java ports for platforms, other than Solaris SPARC/x86, Linux x86 and
Microsoft Windows can be found at http://java.sun.com/cgi—bin/java—ports.cgi.
UNIX/Alpha ports are located at http://www.compaq.com/java/download/.

You may want to use Java from IBM instead. It is 1.5-2 times faster than Java
from SUN. Download it from http://www.ibm.com/developerworks/java/jdk/. If you
have several different Java installations and prefer to use some other version
than would normally be chosen by ammc, create a link to the distribution that
you would like to use with the name jdk1.x in your MMC or home directory.
Choose the version number in the name (1.x in jdk1.x) higher than version
numbers of your Java distributions.

To see if you have a Java distribution and/or it is compatible with MMC, run
"ammc" from the MMC directory. The script looks for the highest version Java
distribution on your computer in one of the standard directories and reports
whether it is sufficient to run mmc. If your Java distribution is not found,

add the directory in which it resides to the "JAVA_DIR" variable inside ammc
script. "ammc —compile” will compile the Amanda program, and "ammc —run" will
run it. Add "—frejus” flag to compile or run Frejus program.

If you have gcc v. 3.0 or higher, you can compile static executables for your
platform that do not require Java do be run. Change GCC_DIR to point to the
location of your gcc distribution and run "ammc —gcj [-frejus]".

Please note that the first time you run the program it will create a file

(files) containing parametrization tables. This file will become corrupt if

you break the execution of the program at this stage. The program will realize
this at the next time you run it, it will re—calculate the tables and

overwrite the corrupted file. You **should**, however, explicitly delete the

file if you install the new version of the program, or use any of the hidden
settings (unless you change the name of the file — see below). By default the
parametrization—table file name starts with the dot, therefore, since no other
files in the program directory start with the dot, it should be easy to find.

Do not forget to change length=720, radius=180, depth=1730 when running
Amanda, if these numbers are different from the settings of your air-shower
generator files or do not describe the location of the effective volume of the
detector. Just add them as parameters to the ammc script, e.g. "ammc —run
-length=800 -radius=400".

5. DESCRIPTION

This program is designed to fulfill the goal of propagating a muon through
matter. Generally, as a muon travels through matter, it looses energy due to
ionization losses, bremsstrahlung, photo—nuclear interaction and pair
production. All of these losses have continuous and stochastic components,
division between which is artificial and is chosen in the program by selecting



an energy cut (ecut) or a relative energy loss cut (vcut). Ideally, all losses
should be treated as stochastic. However, that would bring the number of
separate energy loss events to infinity, since the probability of such events
to occur diverges as 1/E_lost for the bremsstrahlung losses, as the lost
energy approaches zero, and even faster than that for the other losses. The
value of the cut should be chosen carefully, in such a way that you get the
best accuracy with the reasonable calculation time. For example, if the
problem is to propagate a muon until it looses all its energy (disappears),
then vcut can be set to 0.1-0.2. If, however, one needs to propagate 1 TeV
muon beam through only 3 meters of iron, then in order to see a reasonable
approximation to the shape of the true final muon energy distribution, the
value of vcut may have to be set as low as 0.01-1.e-3.

The program provides classes for the calculation of all components of the muon
energy loss separately. To learn their names and parameters, see the javadoc
generated manual pages. | suggest you start with the class hierarchy tree —
it's easiest to find the energy loss you're looking for by name there. An
example of how to use the classes is contained in the class Test. Each of the
4 main components has 3 classes: one is the entry class that has some
definitions, and provides a function for evaluating of the integration limits.

It also creates 2 sub—classes and keeps references to them: one defines
continuous part of the loss, and the other stochastic. Since the sub—classes
have all functions of the superclass, it could be tempting to call the

functions of the superclass (or, rather, the object, standing above) directly.

It, however, creates chaos, and the only case where this is used is with the
integration limits. All other supplementary functions of the superclass are
called with the class pointer dot name of the function. The superclass pointer
is created by the superclass and passed along to the subclass at the
initialization stage. This strategy keeps user, e.g. from having to set the

"bb" variable in the photo—nuclear class three times — once for the

superclass, and two times for the sub—classes.

All superclasses for the cross sections are united under another superclass
CrossSections. In addition to the 4 energy losses mentioned above this class
contains also subclass Decay which is there to make sure that the tracking
integral is non-zero (it may also prove helpful when tracking taus). If
initialized, class CrossSections creates all sub—classes and keeps references
to them. It also defines some auxiliary functions for the displacement

integral.

The main class of the program is Propagate. You can create this class by
calling the Propagate(w, ecut, vcut) constructor. It creates the Particle

class, CrossSections, and Medium. All parameters are passed along to the
constructor of the Medium class. They are: name of the medium (e.g. "Water"),
value of the ecut and vcut. If both ecut and vcut make sense (ecut>0 and
O<vcut<=1), then the lower one is chosen for each particular energy of the
primary (muon). If only one of the cuts makes sense, then only that one is
used. If both parameters are out of their ranges of reasonable values, then
vcut=1 is used instead. Class Particle contains everything this program needs
to know about the particle, like it's location, direction, energy and mass.

All variables except energy show the particle’s actual state. Energy and
momentum are used for the all-around calculations, however.

The main routine propagateTo(r, ) of the class Propagate returns the energy
of the particle after passing distance r if the particle has survived, or the
traveled distance to the point of disappearance with a minus sign otherwise.
As this routine returns, the Particle object, referenced by Propagate,
describes the final state of the patrticle.

Since the program needs to evaluate up to 3—fold integrals, calculation time

may become quite large (minutes) even for one muon. In its simplest form the

program is designed to be used in the SYMPHONY framework (see class MPMCWJ for
an example of how to do that). For more practical applications, however,



parametrization (interpolation) routines are implemented. Enable them by
calling interpolate("all") after the Propagate class is created. You may
choose to enable just some of the parameterizations by replacing the word
"all" with the list of things to parametrize. E.g. "bremsE trackX" will enable
parametrization of the continuous part of bremsstrahlung loss and the
displacement integral. This example will, however, take a long, long time to
initialize, since trackX will call other (not parametrized) functions many,
many times. In such a case you may be better off by omitting the trackX
parametrization altogether. You can also save parametrization tables in a file
and read them at in at a later time. Just call interpolate with a second
parameter, e.g. interpolate("all, ™). The file will have a unique name based
on the parameters you gave while initializing Propagate class. If you use any
of the "less obvious" features listed below, or do some other changes in the
code, the parametrization tables will become invalid. In such case you should
delete the file with tables, or give it a different name by setting the second
parameter of interpolate to something other than just an empty string.

Most of the features of the program can be switched on by using the command-
line options of the front—end programs (Amanda, Frejus or Test). The name of
the file to which the parametrization tables are saved changes when changing
these options. By selecting appropriate options you can choose one of 5
photonuclear cross sections, turn on the LPM effect, enable Moliere

scattering, continuous randomization, exact time of flight calculation and

more. To obtain the list of options run the appropriate front—end program with
the "——help" option.

Among the less obvious (hidden) features is the possibility to change e_low
setting at which the muon is considered lost by the program. By default it is
set to the muon rest mass. Stopped muon decay will also be considered if you
use option "—sdec". It is possible to change the highest energy treated by the
program (with parameterizations on). By default it is set to bigEnergy=1.e14
MeV. You can also choose to enable the high energy cutoff for the
bremsstrahlung photons. It should to some extent approximate the behavior of
the photons if the Lorenz invariant were not conserved. Enable it by setting
Propagate.s.b.lorenz=true and Propagate.s.b.lorenzCut=1.e6, with the second
expression setting the high energy cutoff in MeV. You need to change it to a
more realistic value before using. If you choose to enable any of these
options, you should of course do so before any parameterizations are done.

You will find programs Frejus, Amanda and Test in the package. The first one
gives you an interactive way to set the energy and the distance from the

keyboard after it initializes. This could be useful for using the program in

UNIX pipes. The second program Amanda is an attempt to tailor this mmc package
to the purposes of propagating the muons for the AMANDA mass production chain.
It reads and outputs data in F2000 compliant format to and from the standard
input/output. The last of the three front—end programs is Test. It can be used

to perform a number of tests and is a useful tool for plotting cross sections

and energy losses.

We hope that you enjoy using this program and welcome any comments (and bug
reports). The primary design goals while writing this program were

uncompromising computational precision and code clarity (for ease of future

changes and corrections). Since the program was designed to be used in the
SYMPHONY framework, computational speed was only a secondary issue. However,
with full optimization (parameterizations) this code is at least as fast or

even faster than the competition. We hope that the combination of precision,

code clarity, speed and stability will make this program package a useful tool

in the research connected with high energy particles propagating through

matter.

Last modified on Sep 07 2001.



