#ifdef XCPU #define __device__ #define __global__ #define rsqrtf 1/sqrtf #define __float2int_rn (int)lroundf #define __float2int_ru (int)ceilf #define __float2int_rd (int)floorf struct int2{ int x, y; }; struct uint4{ unsigned int x, y, z, w; }; struct float2{ float x, y; }; struct float3:float2{ float z; }; struct float4:float3{ float w; }; float int_as_float(unsigned int x){ union{ unsigned int i; float f; }; i=x; return f; } int atomicAdd(int * i, int j){ int k=*i; *i+=j; return k; } struct ThreadIdx{ int x; } threadIdx; struct BlockDim{ int x; } blockDim; struct BlockIdx{ int x; } blockIdx; struct GridDim{ int x; } gridDim; unsigned int seed=0; #endif __device__ float xrnd(uint4 & s){ unsigned int tmp; unsigned long long sda; do{ sda = s.z * (unsigned long long) s.x + s.y; s.x=sda; s.y=sda >> 32; tmp = s.x >> 9; } while(tmp==0); tmp |= 0x3f800000; return int_as_float(tmp)-1.0f; } __device__ void swap(float & x, float & y){ float a=x; x=y; y=a; } __device__ void rotate(float & cs, float & si, float3 & n, uint4 & s){ float3 p1, p2; int i=0; { float3 r; r.x=n.x*n.x, r.y=n.y*n.y, r.z=n.z*n.z; if(r.y>r.z){ if(r.y>r.x) i=(swap(n.x,n.y),swap(r.x,r.y),1); } else{ if(r.z>r.x) i=(swap(n.x,n.z),swap(r.x,r.z),2); } r.y=rsqrtf(r.x+r.y); p1.x=-n.y*r.y; p1.y=n.x*r.y; p1.z=0; r.z=rsqrtf(r.x+r.z); p2.x=-n.z*r.z; p2.y=0; p2.z=n.x*r.z; } { float4 q1; q1.x=p1.x-p2.x; q1.y=p1.y-p2.y; q1.z=p1.z-p2.z; p2.x+=p1.x; p2.y+=p1.y; p2.z+=p1.z; q1.w=rsqrtf(q1.x*q1.x+q1.y*q1.y+q1.z*q1.z); p1.x=q1.x*q1.w; p1.y=q1.y*q1.w; p1.z=q1.z*q1.w; q1.w=rsqrtf(p2.x*p2.x+p2.y*p2.y+p2.z*p2.z); p2.x*=q1.w; p2.y*=q1.w; p2.z*=q1.w; } { float2 p; float xi=2*fpi*xrnd(s); sincosf(xi, &p.y, &p.x); n.x=cs*n.x+si*(p.x*p1.x+p.y*p2.x); n.y=cs*n.y+si*(p.x*p1.y+p.y*p2.y); n.z=cs*n.z+si*(p.x*p1.z+p.y*p2.z); float r=rsqrtf(n.x*n.x+n.y*n.y+n.z*n.z); n.x*=r; n.y*=r; n.z*=r; if(i==1) swap(n.x,n.y); else if(i==2) swap(n.x,n.z); } } #ifdef TILT #ifndef XCPU __device__ int __float2int_rd(float x); __host__ int __float2int_rd(float x){ return (int)floorf(x); } __host__ #endif __device__ float zshift(dats & d, float4 & r){ if(d.lnum==0) return 0; float z=(r.z-d.lmin)*d.lrdz; int k=min(max(__float2int_rd(z), 0), d.lpts-2); int l=k+1; float nr=d.lnx*r.x+d.lny*r.y-d.r50; for(int j=1; j0?e.nfla:(blockIdx.x+MLTP)%WNUM __global__ void propagate(dats *ed, unsigned int num){ uint4 s; int niw=0; #ifdef XCPU float3 n; float4 r; dats & e = * ed; int eidx = XIDX; ices & w = * e.w[XWNM]; #else float3 n={0,0,0}; float4 r={0,0,0,0}; __shared__ dats e; __shared__ ices w; int & eidx = e.hidx; if(threadIdx.x==0){ if(blockIdx.x==0){ ed->hidx=0; __threadfence(); } e=*ed; eidx=XIDX; w=*e.w[XWNM]; } __syncthreads(); #endif const unsigned int idx=threadIdx.x*gridDim.x+blockIdx.x; { #ifndef XCPU const unsigned int & seed = idx; #endif s.w=seed%e.rsize; s.x=e.rs[s.w]; s.y=e.rs[s.w] >> 32; s.z=e.rm[s.w]; } bool next=true; float TOT=0; for(unsigned long long i=idx; i0){ r.x=e.r[0]; r.y=e.r[1]; r.z=e.r[2]; r.w=0; float rms=0, up=0, hms=0; const float fcv=fpi/180.f, sq3=sqrtf(3.f); switch(e.type){ case 1: rms=9.2f; up=0.0f; hms=10.1f; break; case 2: rms=9.7f; up=48.f; hms=14.7f; break; // sin(hms/2)=sin(9.8/2)/cos(up) case 3: rms=0.0f; up=90.0f-41.13f; break; case 4: rms=0.0f; up=41.13f-90.0f; break; } float xi=xrnd(s); if(e.fldr<0) xi*=2*fpi; else{ int s=__float2int_rd(xi*=6); xi-=s; xi=(e.fldr+(2*xi-1)*hms*sq3+s*60)*fcv; } sincosf(xi, &n.y, &n.x); xi=(up+(2*xrnd(s)-1)*rms*sq3)*fcv; float np; sincosf(xi, &n.z, &np); n.x*=np; n.y*=np; } else{ photon & p = e.pz[i/OVER]; niw=p.q; n.x=p.n[0]; n.y=p.n[1]; n.z=p.n[2]; r.w=p.t; r.x=p.r[0]; r.y=p.r[1]; r.z=p.r[2]; rotate(w.coschr, w.sinchr, n, s); } TOT=-logf(xrnd(s)); next=false; } { float sca; { // get distance for overburden #ifdef TILT float z = r.z - zshift(e, r); #else float & z = r.z; #endif int i=__float2int_rn((z-e.hmin)*e.rdh); if(i<0) i=0; else if(i>=e.size) i=e.size-1; float h=e.hmin+i*e.dh; // middle of the layer float ahx=n.z<0?h-e.hdh:h+e.hdh; float SCA=-logf(xrnd(s)); float ais=(n.z*SCA-(ahx-z)*w.z[i].sca)*e.rdh; float aia=(n.z*TOT-(ahx-z)*w.z[i].abs)*e.rdh; int j=i; if(n.z<0) for(; j>0 && ais<0 && aia<0; ahx-=e.dh, ais+=w.z[j].sca, aia+=w.z[j].abs) --j; else for(; j0 && aia>0; ahx+=e.dh, ais-=w.z[j].sca, aia-=w.z[j].abs) ++j; float tot; if(i==j || fabsf(n.z)=0){ D=sqrtf(D); float h1=b-D, h2=b+D; if(h2>=0 && h1<=sca*np){ if(np>xx){ h1/=np, h2/=np; if(h1<0) h1=0; if(h2>sca) h2=sca; } else h1=0, h2=sca; h1=r.z+n.z*h1, h2=r.z+n.z*h2; float zl, zh; if(n.z>0) zl=h1, zh=h2; else zl=h2, zh=h1; int omin=0, omax=s.max; int n1=s.n-omin+min(omax+1, max(omin, __float2int_ru(omin-(zh-s.dl-s.h)*s.d))); int n2=s.n-omin+max(omin-1, min(omax, __float2int_rd(omin-(zl-s.dh-s.h)*s.d))); for(int l=n1; l<=n2; l++){ const DOM & dom=oms[l]; #ifdef OFLA if(l==e.fla) continue; #endif float b=0, c=0, dr; dr=dom.r[0]-r.x; b+=n.x*dr; c+=dr*dr; dr=dom.r[1]-r.y; b+=n.y*dr; c+=dr*dr; dr=dom.r[2]-r.z; b+=n.z*dr; c+=dr*dr; float D=b*b-c+R*R; if(D>=0){ float h=b-sqrtf(D); if(h>0 && h<=sca){ om=l; sca=h; } } } } } } } { // advance r.x+=sca*n.x; r.y+=sca*n.y; r.z+=sca*n.z; r.w+=sca*w.ocm; } if(om!=0){ bool flag=true; hit h; h.i=om; h.t=r.w; h.n=niw; h.z=n.z; #ifdef ASENS float sum; { float & x = n.z; float y=1; sum=e.s[0]; for(int i=1; ihidx, 1); if(j1) xi=1; else if(xi<-1) xi=-1; float si=sqrtf(1-xi*xi); rotate(xi, si, n, s); } } } { e.rs[s.w]=s.x | (unsigned long long) s.y << 32; } }