#ifdef XCPU #define __device__ #define __global__ #define rsqrtf 1/sqrtf #define __float2int_rn (int)lroundf #define __float2int_ru (int)ceilf #define __float2int_rd (int)floorf struct int2{ int x, y; }; struct uint4{ unsigned int x, y, z, w; }; float int_as_float(unsigned int x){ union{ unsigned int i; float f; }; i=x; return f; } unsigned int atomicAdd(unsigned int * i, unsigned int j){ unsigned int k=*i; *i+=j; return k; } struct ThreadIdx{ int x; } threadIdx; struct BlockDim{ int x; } blockDim; unsigned int seed=0; #endif __device__ float xrnd(uint4 & s){ unsigned int tmp; unsigned long long sda; do{ sda = s.z * (unsigned long long) s.x + s.y; s.x=sda; s.y=sda >> 32; tmp = s.x >> 9; } while(tmp==0); tmp |= 0x3f800000; return int_as_float(tmp)-1.0f; } #ifdef LONG __device__ float mrnd(float k, uint4 & s){ // gamma distribution float x; if(k<1){ // Weibull algorithm float c=1/k; float d=(1-k)*powf(k, k/(1-k)); float z, e; do{ z=-logf(xrnd(s)); e=-logf(xrnd(s)); x=powf(z, c); } while(z+er.z){ if(r.y>r.x) i=(swap(n.x,n.y),swap(r.x,r.y),1); } else{ if(r.z>r.x) i=(swap(n.x,n.z),swap(r.x,r.z),2); } r.y=rsqrtf(r.x+r.y); p1.x=-n.y*r.y; p1.y=n.x*r.y; p1.z=0; r.z=rsqrtf(r.x+r.z); p2.x=-n.z*r.z; p2.y=0; p2.z=n.x*r.z; } { float4 q1; q1.x=p1.x-p2.x; q1.y=p1.y-p2.y; q1.z=p1.z-p2.z; p2.x+=p1.x; p2.y+=p1.y; p2.z+=p1.z; q1.w=rsqrtf(q1.x*q1.x+q1.y*q1.y+q1.z*q1.z); p1.x=q1.x*q1.w; p1.y=q1.y*q1.w; p1.z=q1.z*q1.w; q1.w=rsqrtf(p2.x*p2.x+p2.y*p2.y+p2.z*p2.z); p2.x*=q1.w; p2.y*=q1.w; p2.z*=q1.w; } { float2 p; float xi=2*fpi*xrnd(s); sincosf(xi, &p.y, &p.x); n.x=cs*n.x+si*(p.x*p1.x+p.y*p2.x); n.y=cs*n.y+si*(p.x*p1.y+p.y*p2.y); n.z=cs*n.z+si*(p.x*p1.z+p.y*p2.z); float r=rsqrtf(n.x*n.x+n.y*n.y+n.z*n.z); n.x*=r; n.y*=r; n.z*=r; if(i==1) swap(n.x,n.y); else if(i==2) swap(n.x,n.z); } } #ifdef TILT #ifndef XCPU __device__ int __float2int_rd(float x); __host__ int __float2int_rd(float x){ return (int)floorf(x); } __host__ #endif __device__ float zshift(dats & d, float4 & r){ if(d.lnum==0) return 0; float z=(r.z-d.lmin)*d.lrdz; int k=min(max(__float2int_rd(z), 0), d.lpts-2); int l=k+1; float nr=d.lnx*r.x+d.lny*r.y-d.r50; for(int j=1; jhidx=0; ed->tn=-1U; ed->tx=0; ed->ab=0; ed->mp=0; __threadfence(); return; } if(threadIdx.x==0){ e=*ed; e.tn=clock(); e.blockIdx=smid()==e.blockIdx?-1:(int)atomicAdd(&ed->mp, 1); eidx=XIDX; } __syncthreads(); if(e.blockIdx==-1) return; #endif ices * w; const unsigned int idx=threadIdx.x*e.gridDim+e.blockIdx; { #ifndef XCPU const unsigned int & seed = idx; #endif s.w=seed%e.rsize; s.x=e.rs[s.w]; s.y=e.rs[s.w] >> 32; s.z=e.rm[s.w]; } bool next=true; float TOT=0; for(unsigned int i=idx; i0){ r.x=e.r[0]; r.y=e.r[1]; r.z=e.r[2]; r.w=0; float rms=0, up=0, hms=0; const float fcv=fpi/180.f, sq3=sqrtf(3.f); switch(e.type){ case 1: rms=9.2f; up=0.0f; hms=10.1f; break; case 2: rms=9.7f; up=48.f; hms=14.7f; break; // sin(hms/2)=sin(9.8/2)/cos(up) case 3: rms=0.0f; up=90.0f-41.13f; break; case 4: rms=0.0f; up=41.13f-90.0f; break; } float xi=xrnd(s); if(e.fldr<0) xi*=2*fpi; else{ int s=__float2int_rd(xi*=6); xi-=s; xi=(e.fldr+(2*xi-1)*hms*sq3+s*60)*fcv; } sincosf(xi, &n.y, &n.x); xi=(up+(2*xrnd(s)-1)*rms*sq3)*fcv; float np; sincosf(xi, &n.z, &np); n.x*=np; n.y*=np; } else{ photon p=e.pz[i/OVER]; niw=p.q, n=p.n, r=p.r; #ifdef LONG if(p.b>0) p.l=p.b*mrnd(p.a, s); #endif if(p.l>0){ p.l*=xrnd(s); r.w+=e.ocv*p.l; r.x+=n.x*p.l; r.y+=n.y*p.l; r.z+=n.z*p.l; } #ifdef ANGW if(p.fcoschr, w->sinchr, n, s); } TOT=-logf(xrnd(s)); next=false; } { float sca; { // get distance for overburden #ifdef TILT float z = r.z - zshift(e, r); #else float & z = r.z; #endif int i=__float2int_rn((z-e.hmin)*e.rdh); if(i<0) i=0; else if(i>=e.size) i=e.size-1; float h=e.hmin+i*e.dh; // middle of the layer float ahx=n.z<0?h-e.hdh:h+e.hdh; float SCA=-logf(xrnd(s)); float ais=(n.z*SCA-(ahx-z)*w->z[i].sca)*e.rdh; float aia=(n.z*TOT-(ahx-z)*w->z[i].abs)*e.rdh; int j=i; if(n.z<0) for(; j>0 && ais<0 && aia<0; ahx-=e.dh, ais+=w->z[j].sca, aia+=w->z[j].abs) --j; else for(; j0 && aia>0; ahx+=e.dh, ais-=w->z[j].sca, aia-=w->z[j].abs) ++j; float tot; if(i==j || fabsf(n.z)z[j].sca, tot=TOT/w->z[j].abs; else sca=(ais*e.dh/w->z[j].sca+ahx-z)/n.z, tot=(aia*e.dh/w->z[j].abs+ahx-z)/n.z; // get overburden for distance if(totz[j].abs; } int om=0; { // sphere float2 ri, rf, pi, pf; ri.x=r.x; rf.x=r.x+sca*n.x; ri.y=r.y; rf.y=r.y+sca*n.y; ctr(e, ri, pi); ctr(e, rf, pf); ri.x=min(pi.x, pf.x)-e.rx; rf.x=max(pi.x, pf.x)+e.rx; ri.y=min(pi.y, pf.y)-e.rx; rf.y=max(pi.y, pf.y)+e.rx; int2 xl, xh; xl.x=min(max(__float2int_rn((ri.x-e.cl[0])*e.crst[0]), 0), e.cn[0]); xh.x=max(min(__float2int_rn((rf.x-e.cl[0])*e.crst[0]), e.cn[0]-1), -1); xl.y=min(max(__float2int_rn((ri.y-e.cl[1])*e.crst[1]), 0), e.cn[1]); xh.y=max(min(__float2int_rn((rf.y-e.cl[1])*e.crst[1]), e.cn[1]-1), -1); for(int i=xl.x, j=xl.y; i<=xh.x && j<=xh.y; ++j<=xh.y?:(j=xl.y,i++)) for(unsigned char k=e.is[i][j]; k!=0x80; ){ unsigned char m=e.ls[k]; line & s = e.sc[m&0x7f]; k=m&0x80?0x80:++k; float b=0, c=0, dr; dr=s.x-r.x; b+=n.x*dr; c+=dr*dr; dr=s.y-r.y; b+=n.y*dr; c+=dr*dr; float np=1-n.z*n.z; float D=b*b-(c-s.r*s.r)*np; if(D>=0){ D=sqrtf(D); float h1=b-D, h2=b+D; if(h2>=0 && h1<=sca*np){ if(np>xx){ h1/=np, h2/=np; if(h1<0) h1=0; if(h2>sca) h2=sca; } else h1=0, h2=sca; h1=r.z+n.z*h1, h2=r.z+n.z*h2; float zl, zh; if(n.z>0) zl=h1, zh=h2; else zl=h2, zh=h1; int omin=0, omax=s.max; int n1=s.n-omin+min(omax+1, max(omin, __float2int_ru(omin-(zh-s.dl-s.h)*s.d))); int n2=s.n-omin+max(omin-1, min(omax, __float2int_rd(omin-(zl-s.dh-s.h)*s.d))); for(int l=n1; l<=n2; l++){ const DOM & dom=oms[l]; #ifdef OFLA if(l==e.fla) continue; #endif float b=0, c=0, dr; dr=dom.r[0]-r.x; b+=n.x*dr; c+=dr*dr; dr=dom.r[1]-r.y; b+=n.y*dr; c+=dr*dr; dr=dom.r[2]-r.z; b+=n.z*dr; c+=dr*dr; float D=b*b-c+e.R*e.R; if(D>=0){ float h=b-sqrtf(D); if(h>0 && h<=sca){ om=l; sca=h; } } } } } } } { // advance r.x+=sca*n.x; r.y+=sca*n.y; r.z+=sca*n.z; r.w+=sca*w->ocm; } float xi=xrnd(s); if(om!=0){ bool flag=true; hit h; h.i=om; h.t=r.w; h.n=niw; h.z=n.z; #ifdef ASENS float sum; { float & x = n.z; float y=1; sum=e.s[0]; for(int i=1; ihidx, 1); if(jbmp[atomicAdd(&ed->ab, 1)%4]=smid(); #endif if(!isfinite(TOT) || TOTe.sf){ xi=(1-xi)/(1-e.sf); xi=2*xi-1; if(e.g!=0){ float g2=e.g*e.g; float ga=(1-g2)/(1+e.g*xi); xi=(1+g2-ga*ga)/(2*e.g); } } else{ xi/=e.sf; xi=2*powf(xi, (1-e.g)/(1+e.g))-1; } if(xi>1) xi=1; else if(xi<-1) xi=-1; float si=sqrtf(1-xi*xi); rotate(xi, si, n, s); } } } { e.rs[s.w]=s.x | (unsigned long long) s.y << 32; #ifndef XCPU __syncthreads(); if(threadIdx.x==0){ e.tx=clock(); atomicMin(&ed->tn, e.tx-e.tn); atomicMax(&ed->tx, e.tx-e.tn); } __threadfence(); #endif } }