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Abstract

The IceCube detector, planned to reach 1 km3 in the next 2 years, is now 68% complete with 59 strings deployed in
the ice and 59 IceTop stations installed on the surface. To realize the full potential of the detector the properties of light
propagation in the ice surrounding the detector must be known to the best achievable precision. While the model describing
ice built in [1] provided an adequate description of ice in the AMANDA detector, it does not seem to extrapolate well to
describe the photon propagation at larger distances withinthe IceCube detector. This report presents a new method of fitting
the fully heterogeneous ice model to a data set of flasher events collected with IC40 in 10/08.

1 Flasher dataset

IceCube runs 111738-111744 of ”request B” [2] contain data with each of DOMs 1-60 of string 63 of IC40 flashing in a
sequence. For each of the flashing DOMs250 flasher events were used. All 6 horizontal LEDs were switchedon with
maximum brightness and width, creating a pattern of light around string 63 that should be rather symmetric.
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Figure 1: Charges on the six nearest strings (left) and six next-to-nearest strings (right), observed when flashing
at the same position on string 63.

As seen in Figure 1 there is a substantial variation between the charges collected on the six surrounding strings. This
variation can be due to variations in relative orientation of the flasher LEDs with respect to the surrounding strings; due to
relative variation of light yield the between the differentflasher LEDs, and due to some difference in distance to and depth
of the six surrounding strings. The amount of variation due to these uncertainties can be quantified with an RMS of the
deviation from the mean between the six surrounding strings, shown on Figure 2.

A multi-pulse extraction was applied to the data, using waveforms recorded by both ATWD and FADC. The resulting
pulses were binned in 25 ns bins, from 0 to 5000 ns from the flasher pulse (extracted from ATWD channel 3 of the flasher
DOM). Due to high number of saturated DOMs (with a variety of problems due to high received charge) and to minimize
the effect of a particular selected angular sensitivity model (of a DOM) the photon data collected on string 63 was not used
in the fit.

2 Six-parameter ice model

This section overviews the so-called six-parameter ice model introduced in [1].

1



DOM number on string 63

re
la

tiv
e 

un
ce

rt
ai

nt
y 

in
 c

ha
rg

e 
es

tim
at

e 
on

 s
tr

in
gs

 6
4-

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60
DOM number on string 63

re
la

tiv
e 

un
ce

rt
ai

nt
y 

in
 c

ha
rg

e 
es

tim
at

e 
on

 s
tr

in
gs

 7
2-

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60

Figure 2: Relative uncertainty in the mean charge estimatedfrom measured charges on the six nearest strings
(left) and six next-to-nearest strings (right) observed when flashing at the same position on string 63.

The ice is described by a table of parametersbe(400), adust(400), related to scattering and absorption at 400 nm, and
temperatureδτ , given for each ice layer (assuming layers of 10-meter width), and by the six parameters (fitted previously
to AMANDA data): α, κ, A, B, D, and E.

The scattering and absorption coefficients within the six-parameter ice model are given (for wavelengthλ in nm) by the
following expressions:

be(λ) =
1

λe
= be(400) ·

(

λ

400

)

−α

a(λ) =
1

λa
= a∗(400) · λ−κ + Ae−B/λ · (1 + 0.01 · δτ), with a∗(400) = D · adust(400) + E.

This work fits only for the values ofbe(400) andadust(400) and relies on the six-parameter ice model to extrapolate
scattering and absorption for wavelengths other than 405 nm(of the flasher LED light).

3 Simulation

60 flasher configurations (one for each of the DOMs flashing on string 63) need to be simulated very quickly, so that
simulations based on many different sets of coefficientsbe(400) andadust(400) could be compared to the data.

A program called PPC (photon propagation code [3]) was written for this purpose. It propagates photons through
heterogeneous ice described by the six-parameter ice model(based on a selected set of parametersbe(400) andadust(400))
until they hit a DOM or get absorbed. No special weighting scheme was employed, except that the DOMs were scaled up
in size (a factor5 − 16, depending on the required timing precision1), and the number of emitted photons was scaled down
by a corresponding factor (52 − 162).

Several different versions of the program were written: initial c++ code, somewhat faster (accelerated) c++ code, a
complete program implementation in Assembly (for the 32-bit i686 with SSE2 architecture), and a version that employs the
NVidia’s GPUs (graphics processing units) via the CUDA interface. The relative performance of these different implemen-
tations (for simulating both flashers and Cerenkov light from muons) is compared in Table 1.

The writing of the GPU version of PPC was prompted by a similarproject [4], which showed that acceleration factors
∼ 100 compared to the CPU-only version were possible. After demonstrating the impeccable agreement between test

1A factor of 5 introduces the maximum error of (5-1)· 17.8 cm / 22 cm/ns=3.2 ns in the arrival time (for an OM with radius 17.8 cm and for speed of
light in ice of 22 cm/ns). Assuming a flat distribution the rmsis 3.2 ns/

√

3=1.9 ns. Respectively, a factor of 16 introduces an error with rms of no more
than 7.0 ns. An additional consideration is a small loss of OMhit occupancy, which may occur for larger factors.
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test c++ fast c++ Assembly GTX 295 GPU
flasher 1.00 1.33 2.39 142.
muon 1.00 1.87 3.43 263.

Table 1: Comparison in speed of different versions of PPC, astested on the i7 920 (2.67 GHz) CPU

simulation sets made with the c++, Assembly, and GPU implementations of PPC, the GPU version was chosen for the
following analysis on a GPU-enabled computer [5].
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Figure 3: Angular sensitivity of an IceCube optical module,normalized to 1.0 atcos θ = 1 (left). Optical
module acceptance: fraction of photons arriving along the PMT axis (atcos θ = 1) that are recorded (center).
Number of Cerenkov photons (in 10 nm bins) emitted by one meter of bare muon track, convolved with the
optical module acceptance (right). The integral count under this curve is 2107.84 photons.

The angular sensitivity of the IceCube optical module was modeled according to the “hole ice” description of [6], which
is shown in Figure 3. The OM acceptance (including the glass and gel transmission, and PMT efficiency) was calculated
according to [6] for an OM of radius 17.8 cm. At 405 nm (flasher center wavelength) the OM acceptance is 11.3% (reading
off of Figure 3). The Cerenkov photons were sampled from the distribution shown in the right plot of Figure 3, which is a
convolution of the OM acceptance curve with the Cerenkov photon spectrum given by the Frank-Tamm formula:

2πα

λ2
sin2 θcdλdl.

The “dressed” muon light production is treated via the use ofthe “effective length”dl, as described in the appendix A. The
phase refractive indexnp used in the formula above (defining the Cerenkov anglecos θc = 1/np) and the group refractive
indexng (used in calculation of the speed of light in medium) were estimated according to formulae from [7]:

np = 1.55749− 1.57988 · λ + 3.99993 · λ2 − 4.68271 · λ3 + 2.09354 · λ4

ng = np · (1 + 0.227106− 0.954648 · λ + 1.42568 · λ2 − 0.711832 · λ3).

The angular distribution of photon scattering was modeled according to the Henyey-Greenstein function:

p(cos θ) =
1

2

1 − g2

[1 + g2 − 2g · cos θ]3/2
,

which can be analytically integrated and inverted to yield acos θ as a function of a random numbers = 2 ·P − 1 ∈ [−1; 1]:

cos θ =
1

2g

(

1 + g2 −
(

1 − g2

1 + gs

)2
)

.

The value ofg =< cos θ >= 0.8 was used as in [1]. Higher values (as high as∼ 0.94 [8]) are predicted by the Mie scattering
theory, however, these result in slower simulation, while yielding almost unchanged values of the effective scattering λe =
λ/(1 − g) and absorptionλa.
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4 Likelihood description

Consider a single charge value (received by DOMi in time binn when flashing DOMk) that is measured by taking data
(with a total photon count ofd in nd flasher events and a per-event expectation ofλd), and predicted by the simulation
(again, with a total photon count ofs in ns simulated events and a per-event expectation ofλs). Naively one expects the
best approximations toλd andλs from data and simulated events to beλd = d/nd, andλs = s/ns.

Suppose the systematic error in describing data with simulation (i.e., describingλd with λs) is of the order ofσ ≈
10 − 20%. One quantifies the amount of disagreement between data and simulation in the presence of such an error with a
χ2

i,n,k (omitting the indicesi, n, andk):

χ2 =
(log λd − log λs)

2

σ2
.

This systematic error uncertainty can be modeled with a probability distribution function

1√
2πσ

exp
−(log λd − log λs)

2

2σ2
.

Given thatλd andλs are not known, and the measured values ared ands, one formulates the likelihood function that
describes counts measured in both data and simulation as

(λsns)
s

s!
e−λsns ·

(λdnd)
d

d!
e−λdnd ·

1√
2πσ

exp
−(log λd − log λs)

2

2σ2
.

Taking the log with a minus sign, this becomes:

F = ln s! + λsns − s log(λsns) + ln d! + λdnd − d log(λdnd) +
1

2σ2
log2 λd

λs
+ log(

√
2πσ).

The functionF (λs, λd) can be easily minimized againstλs andλd, yielding estimates of these quantities. To demon-
strate this, first the derivatives ofF are calculated and set to 0:

λs
∂F

∂λs
= λsns − s −

1

σ2
log

λd

λs
= 0,

λd
∂F

∂λd
= λdnd − d +

1

σ2
log

λd

λs
= 0.

The sum of these (λsns + λdnd = s + d) yields an expression ofλd as a function ofλs. Plugging it into the first of the
above two equations one gets

f = λs
∂F

∂λs
(λs, λd(λs)) = λsns − s −

1

σ2
log

λd(λs)

λs
= 0.

This equation can be solved with a few iterations of the Newton-Raphson method starting with a solution to

λs = λd(λs): λs = λd =
s + d

ns + nd
.

At each iteration the value ofλs is adjusted by−f/f ′, where the derivative is easily evaluated as

f ′ = ns

(

1 +
1

σ2
(

1

λsns
+

1

λdnd
)

)

.

Once the likelihood function is solved for the best values ofλs andλd, these can be plugged into theχ2

i,n,k above. One
can now write the completeχ2 function (adding the regularization termsRj described in the next section) as a sum over all
DOMs i and time binsn, when flashing DOMsk:

χ2 =
∑

i,n,k

(log λd − log λs)
2

σ2
+
∑

1,2

αjRj .
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5 Regularization terms

Two regularization terms are added to the likelihood function described in the previous section. The first one intends to
minimize the unwanted fluctuations of scattering and absorption coefficients with depth and is formed of second derivative
terms:

Rr =

N−1
∑

i=2

[

(log be[i − 1] − 2 · log be[i] + log be[i + 1])2 + (log a∗[i − 1] − 2 · log a∗[i] + log a∗[i + 1])2
]

.

HereN is the number of ice layers in whichbe anda∗ are defined.
The second term intends to minimize the unwanted fluctuations in the diagram ofa∗ vs.be. It is constructed as an excess

of the sum of distances between the consecutive points(log be, log a∗) over the shortest distance connecting the end points:

Ru = −D(1, N) +

N−1
∑

j=1

D(j, j + 1), where D(j1, j2) =
√

(log be[j1] − log be[j2])2 + (log a∗[j1] − log a∗[j2])2.

The points(log be, log a∗) are sorted by the value oflog be + log a∗ and shown in the above sum with the indexj[i].

6 Fitting the data

The six horizontal flashers on a single board flashing at maximum brightness and width emit∼ 4.5 · 1010 photons [9] (at
room temperature in the lab, without the surrounding DOM glass sphere). Only 11.3% of these, or5.085 · 109, remain after
accounting for the OM acceptance (as explained in section 3). Using a DOM size scaling factor of 16 only1.986 · 107

photons need to be simulated.
A base number 9765625 of simulated photons with a scaling factor of 16 corresponds to2.5 · 109 photons without

scaling (i.e., OM size scaling factor of 1.0), or2.212 · 1010 real photons leaving the flasher DOM (after accounting for the
receiving OM acceptance). This is a “unit bunch” of photons,which is simulated in∼ 1 second on a single GPU of [5].

In the following a “photon yield factor”py is the number of unit bunches that correspond to a given number of photons.
E.g.,4.5 · 1010 photons emitted by a flasher board correspond to a photon yield factor ofpy = 2.034. This represents the
upper limit on the photon yield factor since a fraction of photons is likely absorbed by the DOM glass sphere or reflected
back when escaping the flasher DOM.

For a givenpy, starting with the bulk values ofbe(400) = 0.046 andadust(400) = 0.044 the minimizer converges in∼
20 steps. At each iteration step the values ofbe anda∗ are varied in consecutive ice layers. Five flashing DOMs closest to
the layer, which properties are varied, are used to estimatethe variation of theχ2 whenbe anda∗ are changed 4 times (4
combinations ofbe ± δbe anda∗ ± δa∗). Figure 4 shows ice properties after each of 20 steps of the minimizer.

This minimization procedure is run for different values ofpy, and the averageχ2 of the final few steps of the minimizer
is shown in Figure 5. The best fit is achieved forpy = 1.9 ± 0.2, which is just below thepy value of the average photon
yield measured in the lab. Since the best value ofpy is calculated by the method itself, the resulting table ofbe(400) and
a∗(400) is independent of a possible constant scaling factor in the charge estimate.

Further constraint can be placed on the best value ofpy if one considers DOMs on string 63, which recorded charge
substantially exceeds the simulated charge (see Figure 5).The DOMs that received high charge should show saturation or
loss of recorded charge due to inability of the system to copewith large stream of data from string 63. Either way their
charge should not exceed that estimated in the simulation (which did not account for saturation). As explained in section
1 string 63 DOMs were not used in the fit, so using them in this manner provides a rather independent confirmation of the
found value ofpy.

The difference between the (shades of) green curves of Figure 5, showing the ice properties forpy = 1.7 − 2.1,
corresponds to±1σ uncertainty in the measured ice properties. This uncertainty grows in the dust layer (this might be
improved with more simulation), and, quite naturally, at depths above and below the detector. It is possible to bias the fit at
these depths towards the values previously measured or extrapolated in [1] by seeding the minimizer with values ofbe(400)
anda∗(400) from [10].

Data from all pairs of emitter-receiver DOMs (located in thesame or different ice layers) contributed to the fit, unlike
in the approach of [1], where only emitters and receivers at similar depths were used in the fits. Two fit strategies were tried
in fitting the data: (a) theχ2 was constructed with one term from each emitter-receiver pair (using the full received charge),
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the expected value of this fraction for purely statistical errors.

and (b) theχ2 was constructed using recorded charge binned in 25 ns steps.Although (b) used the available information
more fully, (a) turned out to be less susceptible to various problems in recorded waveforms, described in [11] and more
robust with respect to fluctuations in the constructedχ2 (between the simulated sets). Therefore, (a) was used for the final
fit.

7 Comparison of the new fitted ice with nominal AHA [10]

Figure 6 demonstrates the improvement in description of theflasher data with the new model. Figure 7 shows data and
simulation of the tilted flashers (which were not used in the fit of this work). Figure 8 shows that the agreement of the
background muon simulation with data is much improved as well. Finally, Figure 9 shows a comparison of recorded charge
for the standard candle [12], and a comparison inNch for all IceCube light sources. Many more plots are availableat [13].
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Figure 6: Top plots: ice model of this work, bottom plots: nominal AHA. Charges received on 6 nearest strings
when DOM 63-27 was flashing (left), timing distributions on 4DOMs closest in depth to the flashing DOM
63-27 on 6 nearest strings (center) and 6 next-to-nearest strings (right). The dip in the timing distributions
is visible at high received charges and corresponds to the transition region between the part of the waveform
captured with ATWD (first∼ 450 ns) and FADC.
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Figure 7: Charges received on 6 nearest strings when tilted LEDs on DOM 63-27 were flashing (left) and timing
distributions on 4 DOMs closest in depth to the flashing DOM 63-27 on 6 next-to-nearest strings (center), both
compared with the ice model of this work, and a comparison of the latter with AHA (right).
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Figure 8: Top plots: ice model of this work, bottom plots: nominal AHA. OM hit and channel occupancies
(left), COGz (center) and Nch distribution (right). The Nch distribution is softer in the simulation due to lack
of muon bundles (only single muons were simulated for this test).

A Muon and cascade light production

The light yield of the muon and all of its secondaries (ionization and delta electrons, bremsstrahlung, electron pair pro-
duction, and photonuclear interaction) with energies below 500 MeV (theecut of MMC [14] in the detector region) is
parametrized by substituting the length of the Cerenkov light-emitting segment of a “bare” muondl with [15]

dl · (1.172 + 0.0324 · loge(E [GeV])) .

The light yield of cascades is also parametrized via the use of the “effective length” [15]:

dl = 0.894 · 4.889 m/GeV· E [GeV] for electromagnetic cascades

dl = 0.860 · 4.076 m/GeV· E [GeV] for hadronic cascades.

Newer parametrization exists [16], but was not used in this work.
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