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For my family

PRINCE HAL: And Crispin Crispian shall ne’er go by,
From this day to the ending of the world,
But we in it shall be remembered–
We few, we happy few, we band of brothers;
For he to-day that sheds his blood with me
Shall be my brother; be he ne’er so vile,
This day shall gentle his condition;
And gentlemen in England now-a-bed
Shall think themselves accurs’d they were not here,
And hold their manhoods cheap whiles any speaks
That fought with us upon Saint Crispin’s day.

— WILLIAM SHAKESPEARE (1599)



ii

ACKNOWLEDGMENTS

Sincere thanks to the community that got me through the long and arduous journey of this degree; I could never

have done this alone, nor would I have wanted to try. Thanks especially to my advisor Albrecht Karle for the chance

to study a subtle phenomenon at the edge of our detectable range, and for always encouraging me to pursue details.

Thanks to the local oscillations team! I was lucky to get extra feedback and advice from officemate-postdoc

Melanie Day, upcoming student Moriah Tobin, Chris Wendt, Dima Chirkin, and Justin Vandenbroucke. Thanks to the

whole group for countless suggestions, reality checks, practice talk comments, and making sure I didn’t flounder or

get sucked too far down any rabbit holes. Moriah, I hope I’m leaving this analysis in good enough shape that all your

puzzles have to do with real physics.

Thanks to the professors who wrote letters of recommendation on my behalf: Albrecht, Reina Maruyama, Fran-

cis Halzen, and Darren Grant; and to the wonderfully supportive WIPAC professors Stefan Westerhoff and Mike

Duvernois. Their regular advice, inspiration and leadership has guided me through the intricacies of working in a

large collaboration, and helped me find the emotional stamina to persevere through this process.

Thanks to fellow students and partners-in-crime Christine Lewis, Valerie Plaus, Eli Parke, Karen Andeen, Nathan

Whitehorn, Jakob van Santen, Marcos Santander, Antonia Hubbard, and Jake Feintzeig. You have made my time at

Wisconsin the crazy fun exploration it was.

Thanks for several chapters of editing and proofreading from the DM-Ice Dissertators Peer Editing Club: Anto-

nia Hubbard, Benedikt Riedel, Walter Pettus, and Zachary Pierpoint. Thanks to Jason Loch for final editing, plus

consistent writing advice and encouragement over the last year.

A postdoc with an open door and an interesting story to answer to any question, no matter how silly sounding, is

a lifeline for a graduate student. Thanks to David Boersma and Jason Koskinen for teaching me how to program, and

how to follow up on the “huh, that’s weird...” moments that so often herald discovery.

The “postdoc” lunch crowd (even though few of us were technically postdocs) was a wonderful professional

mentorship group in a casual setting: thanks to Paolo Desiati, Juan Carlos Dı́az Vélez, John Kelley, Segev BenZvi,
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interactions of cosmic rays. By observing a spectrum of atmospheric neutrinos and comparing it to independent pre-

dictions of atmospheric fluxes with and without oscillations, IceCube can test various values of oscillation parameters.

Neutrino oscillations have been observed experimentally for several decades; IceCube is the first experiment to

extend this measurement to the 10-20 GeV energy range. An initial analysis has established that IceCube can see
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DeepCore detector. As a follow-up, this analysis uses a less restrictive event selection and thus a higher total event

count, around 3,000 for one year of data. The fit is a Poisson likelihood fit of a two-dimensional rate histogram, using
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Chapter 1

The History and Theory of Neutrino Oscillations

When you have eliminated the impossible, whatever remains,
however improbable, must be the truth.

— SHERLOCK HOLMES, 1890 [1]

1.1 Discovery of Neutrinos

In 1930, the conservation of energy, one of the best-tested precepts of modern science, was facing the possibility

of defeat by counterexample. Observations of radioactive beta decay energy spectra did not seem to conserve energy

they way they should, and it was here that neutrinos first appeared on the scene: to save energy conservation. The

only remaining possibility was a new invisible particle, which seemed unlikely; thus began the the broad and active

research field of neutrino physics.

Nuclear beta decay occurs when a nucleus emits an electron (originally called a beta particle) while changing a

neutron to a proton:

n0 → p+ + e− + ν̄e

Charge is conserved in this reaction whether or not the neutrino is included: the original neutron is neutral, and the

final sum of proton-plus-electron is neutral. The question is whether energy conservation forces us to include the third

particle, the neutrino. The conservation of the sum of mass and energy can be similarly investigated by looking at

the sum of the final products: the rest mass plus kinetic energy of the proton and electron. Assume for a moment

that these are the only two product particles: this will lead to a problem that the neutrino can solve. The total mass

is a relativistically invariant quantity, so consider (for the sake of simplicity) the frame in which the neutron is at rest:

its total energy is just from its rest mass, a definite value, not a spectrum. The sum of the energy of the resulting

proton and electron should add up to this definite mass. But the observed energy of the outgoing proton and electron

was a spectrum between 0 and the neutron mass. The experiments of Lise Meitner and Otto Hahn in 1911 found this

spectrum instead of a line, which is illustrated in Fig. 1.1.

This contradiction can be explained by positing an extra particle in the interaction that can carry away a random

fraction of the energy but remain undetected. The upper limit of the curve is very close to the neutron mass, implying

that the new particle has at most a minuscule mass of its own. Such a particle explains the spectrum but seems
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Figure 1.1: A beta decay energy spectrum cartoon. The x-axis shows the measured energy of the emitted beta particle,

and the y-axis shows the frequency of that detected energy. The fact that this is a spectrum instead of a single line at

the transition energy implies a 3, rather than 2, body decay.
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Figure 1.2: A detailed beta decay energy spectrum prediction endpoint plot. The inset shows only the endpoint,

focusing on the difference between the zero-mass neutrino case (far right) and the the massive neutrino case, using

known limits on neutrino mass. [2]
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unattractive because of the requirement that it remain undetected. How could a particle change the energy of a reaction

so dramatically and yet avoid detection?

The first written record of someone proposing such a particle to explain the beta decay spectrum was a letter from

Wolfgang Pauli [3] to a conference, in lieu of speaking at the conference. He famously addressed the letter “Dear

Radioactive Ladies and Gentlemen,” and apologized for choosing a social engagement over the conference: “since I

am indispensable here in Zurich because of a ball on the night from December 6 to 7”. He recognizes the audacity of

proposing an invisible particle, but proposes it anyway.1 This idea was later formalized by Enrico Fermi, [5][6] but it

was considered too speculative for English-language journals for several years. The particle name that Pauli proposed

was “neutron”, which means “neutral one” in Italian. However, only a few years later a different nuclear particle was

discovered and named the “neutron” by James Chadwick [7] (who won the Nobel Prize in 1935 for the discovery), so

the name of the smaller particle was changed from “neutron” to “neutrino”, which means “little neutral one”.

Neutrinos were first observed in 1956 by Clyde L. Cowan and Frederick Reines [8]. They used a scintillator

detector next to a nuclear reactor to look for neutrinos inducing inverse beta decay in chlorine:

ν̄e + p→ n+ e+

They identified a neutrino interaction by looking for a two-part signal. First, a flash from the positron annihilating with

an electron to create two 511 keV gamma rays. Second, a gamma ray from the neutron being absorbed by cadmium.

The timing of the neutrino absorption could be confirmation of a neutrino event: 5µsec is the neutron lifetime in

cadmium.

Their experiment was originally located at Hanford, Washington, but later moved to Savannah River near Aiken,

South Carolina, because there was better shielding available from cosmic rays: this experimental hall was located 12 m

underground. The experiment included two tanks, with ∼ 200 L of water, and ∼ 40 kg of dissolved CdCl2. Each tank

was lined with 5 inch photomulitplier tubes.

They identified ∼ 3 neutrino events per hour. This was within their expectations: the predicted cross section was

6× 10−44cm2, and their measured rate translated to 6.3× 10−44cm2.

This experiment was accepted as conclusively observing, and thus discovering, the neutrino. Clyde Cowan died in

1974, but Frederick Reines received the Nobel Prize in 1995 “for the detection of the neutrino” [9].

1.2 The Solar Neutrino Problem

After the existence of neutrinos had been confirmed by experiment, measurements continued in increasing detail.

A discrepancy arose [10][11][12] between the number of neutrinos predicted to arrive from the Sun and the number

observed; this is known as the Solar Neutrino Problem.

1As an interesting historical note, the letter was addressed specifically to Lise Meitner and Hans Geiger [4] because of their beta decay expertise.
This beta decay work makes Lise Meitner (not only the first woman in Germany to be a full professor of physics, but also) the woman most closely
tied to the early history of neutrinos.
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A resolution was proposed: including neutrino oscillations in the predicted rates [13], which could then explain

the data. Another proposed solution (which has since been ruled out by more precise measurements of several solar

processes in favor of oscillations) was to change the model of solar interactions. However, any changes to this model

decreased the overall goodness of the fit to the data [14].

An early piece of evidence [15] for neutrino oscillations came from the Super-Kamiokande experiment looking at

atmospheric neutrinos. This showed that the number of neutrinos depended on the arrival direction, that is, the number

of neutrinos of a given energy changed depending on how far they had traveled. This was consistent with neutrino

oscillations, but did not directly prove that neutrinos from the Sun were oscillating.

The definitive evidence [16] came from the SNO experiment, which had fine enough resolution to distinguish

between neutral current events and charged current electron flavor events. SNO used heavy water: water with deu-

terium in the place of hydrogen. In neutral current interactions, deuterium atoms were disassociated. The resulting

free neutron captured onto a different nucleus, emitting a characteristic ∼ 6 MeV gamma ray. By contrast, a charged

current electron neutrino event produced an electron of ∼ 5 − 15 MeV. The charged current contributions from other

flavors were negligible because the energy of solar neutrinos is below the mass of the muon or tau charged leptons.

The neutral current even rate fit with the expected rate before oscillations, and the electron flavor charged current event

rate fit with the expected rate after oscillations. This evidence shifted the scientific consensus to favor oscillations.

Further evidence came from the KamLAND reactor experiment, first with a disappearance consistent with oscil-

lations [17]. This was followed by an analysis [18] precise enough that the oscillation effect is visible in a plot of the

reconstructed ratio of length the neutrino traveled to neutrino energy: L/E; see Fig. 1.3.

1.3 Neutrino Oscillations

Neutrino oscillations have been observed in several contexts, one of which was the Solar Neutrino Problem from

the last section. Several more are discussed in the next chapter. This section introduces the mathematical formalism

behind these observations, including the relevant parameters for measuring oscillations. It ends with setting up the

oscillation probability amplitude. Full oscillation probability formulas are discussed in the following sections of this

chapter.

Mathematically, neutrino oscillations can be understood as a result of the difference between the weak-interaction

flavor eigenstates and mass eigenstates. It follows that a flavor eigenstate (indexed by letter) can be written as a linear

superposition of mass eigenstates (indexed by number):

|να〉 =

3∑
i=1

U∗
αi|νi〉.
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Figure 1.3: The Kamland oscillation result, from [18]: Ratio of the observed νe spectrum to the expectation for

no-oscillation versus L0/E. The curves show the expectation for the best-fit oscillation, best-fit decay and best-fit

decoherence models taking into account the individual time-dependent flux variations of all reactors and detector

effects. The data points and models are plotted with L0 = 180km, as if all anti-neutrinos detected in KamLAND were

due to a single reactor at this distance.
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Expanding this notation, we can write the full matrix that transforms between the flavor basis and the mass basis:
νe

νµ

ντ

 =


Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3



ν1

ν2

ν3

 .

This was first proposed theoretically in the 1960s by Maki, Nakagawa, Sakata [19], and Pontecorvo [20], and thus the

key matrix (the Uαi matrix) in this theory is often called MNSP (or PMNS) matrix. This three-dimensional rotation

matrix can be factorized into three two-dimensional rotations. To fit this within the margins, we adopt the notational

condensations that sin(θ) ≡ sθ and cos(θ) ≡ cθ.
νe

νµ

ντ

=


1 0 0

0 cθ23 sθ23

0 −sθ23 cθ23




cθ13 0 sθ13e
iδ

0 1 0

−sθ13 0 cθ13




cθ12 sθ12 0

−sθ12 cθ12 0

0 0 1



ν1

ν2

ν3

 .

The three mixing angles θ23, θ13, and θ12, together with the CP-violating phase δ are the parameters of the theory

that can be experimentally constrained. This factorization corresponds conveniently to the various types of experiments

that have observed oscillations, and we name the angle of each of these rotations accordingly. The “atmospheric”

mixing angle θ23 is observed in atmospheric experiments like IceCube and SuperK, and long-baseline accelerator

experiments like MINOS; “reactor mixing” θ13 is observed in reactor experiments and short baseline accelerator

experiments; and “solar mixing” θ12 in solar neutrino experiments like SNO. The phase δ has not yet been constrained

but is a major upcoming question for the field. A summary of the current values of these parameters is shown in

Table 1.1.

Parameter Best Fit ±1σ

sin2(θ23) 0.386+0.024
−0.021

sin2(θ12) 0.307+0.018
−0.016

sin2(θ13) 0.0241± 0.0025

∆m2
23 2.43+0.06

−0.10 × 10−3eV2

∆m2
12 7.54+0.26

−0.22 × 10−5eV2

Table 1.1: Current world best fit values and constraints [21] on neutrino oscillation parameters: mixing angles and

mass differences. CP-violating phase, majorana mass, and all sterile neutrino parameters are neglected.

Oscillation experiments try to observe neutrinos that start in one flavor, να, and finish in flavor νβ , after traveling

some baseline distance L. We talk about this as the “oscillation probability” P (να → νβ); if the start and end flavors

are the same, this is a “survival probability”.
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The notation convention used here is that numbers refer to mass states (1,2,3, or generally i or j) and letters refer

to flavor states (e, ν, τ , or generally α or β).

The initial state of a neutrino is taken as the neutrino at time t = 0 with flavor transformation:

〈να| = 〈νi|U∗
αi (1.1)

|νβ〉 = Uβj |νj〉 (1.2)

This state evolves in time with the standard energy-dependent propagator:

|νβ(t)〉 = Uβj |νj(t)〉 (1.3)

= e−iEjtUβj |νj(t = 0)〉. (1.4)

To find the general time-dependent oscillation probability amplitude, we take the product of these two states:

A(να → νβ |t) = 〈να|νβ(t)〉 (1.5)

= 〈νi|U∗
αie

−iEjtUβj |νj〉 (1.6)

= U∗
αie

−iEjtUβj〈νi|νj〉 (1.7)

= U∗
αie

−iEjtUβjδij (1.8)

= U∗
αje

−iEjtUβj . (1.9)

The δij here is the Kronecker delta, which arises from the fact that the |νj〉s and 〈νi|s are both parts of an orthonormal

basis. Without loss of generality, we chose to keep the j index instead of the i index, to avoid confusion with the

imaginary integer i. We sum over the repeated j index.

Having found the probability amplitude, we get the probability by taking the square: amplitude times amplitude-

conjugate.

P (να → νβ |t) = |A(να → νβ |t)|2 (1.10)

= |U∗
αje

−iEjtUβj |2 (1.11)

Keeping track of all the entries of PMNS matrix, this expression quickly becomes cumbersome to calculate.

The probability of three neutrino mixing in a vacuum is given by the following expression, in which flavors are

indexed by Greek letters (α,β) and masses are indexed by Latin letters (i,j).

P (να → νβ) = δαβ − 4
∑
i>j

<(U∗
αiUβiUαjU

∗
βj) sin2(∆m2

ij

L

4E
) + 2

∑
i>j

=(U∗
αiUβiUαjU

∗
βj) sin2(∆m2

ij

L

2E
)

In this expression, the second term includes a sum over the real parts of the matrix product; selecting the real part is

denoted by <. Similarly, the third term includes a sum over the imaginary parts of the matrix product, denoted by =.

For the case of muon and tau neutrinos traveling the diameter of the Earth, this expression is plotted in Fig. 1.4.
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Figure 1.4: Oscillation Probabilities as a function of energy, with length fixed at the diameter of the Earth (12,742 km).

This probability includes contributions from all 3 neutrino flavors.

1.4 Approximations from Three to Two Flavor Oscillations

There are two approximations needed to simplify the math from the three neutrino case to the more tractable two

neutrino case. The first is that the oscillations are driven by a single mass splitting. This happens when the other mass

splitting is much smaller than the energies involved:

∆m2
12L

E
<< 1

(It should be clear at this point that L/E has dimensions of 1/mass2). We can then approximate ∆m2
12 ≈ 0.

The second approximation is that the other mixing angles are negligible: specifically, that

sin θ13 ≈ 0,

or equivalently that the matrix element |Ue3| ≈ 0. In the major neutrino result of 2012, reactor experiments [22][23]

showed that this approximation is not completely precisely true (as can be seen in Table 1.1), but θ13 is still small

enough that this approximation is within the precision of our experiment.

1.5 Two Flavor Oscillations

In many experimental cases, oscillation probabilities can be approximated with two flavors, neglecting the third.

This assumption simplifies calculation. This assumption is used for the analysis presented in this thesis, after con-

firming that the difference between two and three flavor oscillations was indeed negligible in this case. Within the

simplified 2 neutrino case, the calculation from probability amplitude to probability is concise enough to include here.
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This section culminates with the standard two-neutrino oscillation probability formula in the form most useful for

long-baseline experiments like IceCube.

If we consider only two mass states and two flavor states, we only have one mixing angle (θ23) and one mass

difference (∆m2
32) to deal with: νµ

ντ

 =

 cos θ23 sin θ23

− sin θ23 cos θ23

 ν2

ν3

 .

Through the remainder of this section, the subscript is dropped from the mixing angle.

Plugging this into the probability equation 1.10, we get a nice exercise in trigonometric identities:

P (νµ → ντ |t) =
∣∣∣U∗
µje

−iEjtUτj

∣∣∣2 (1.12)

=
∣∣∣− cos θ

(
e−iE2t

)
sin θ + sin θ

(
e−iE3t

)
cos θ

∣∣∣2 (1.13)

= cos2 θ sin2 θ
∣∣∣− e−iE2t + e−iE3t

∣∣∣2 (1.14)

Consider the factors outside the square: these can be simplified using the half-angle formula (2 sin(θ) cos(θ) =

sin(2θ)) :

cos2 θ sin2 θ =
1

4
sin2(2θ) (1.15)

Then, consider the bit inside the square: we are free to shift the phase by factoring out any imaginary exponent because

it cancels itself out with its complex conjugate when we square. If we choose carefully, we can find one that leaves a

trigonometric substitution remaining:∣∣∣e−iE3t − e−iE2t
∣∣∣2 =

∣∣∣ (e−it
2 (E2−E3)

)(
e

+it
2 (E2−E3))

) (
e−iE3t − e−iE2t

) ∣∣∣2 (1.16)

=
∣∣∣ (e−it

2 (E2−E3)
)(

e
it
2 (E2−E3) − e it

2 (E2−E3)
) ∣∣∣2 (1.17)

=
∣∣∣ (e 1

2 it(E2−E3) − e− 1
2 it(E2−E3)

) ∣∣∣2 (1.18)

=
∣∣∣2i sin

(
E3−E2

2 t
) ∣∣∣2 (1.19)

= 4 sin2
(
E3−E2

2 t
)

(1.20)
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The last ingredient of this calculation is to plug in an energy for each mass state. We will put this first in a

convenient format, starting from the familiar formula: E2
i = p2

i +m2
i .

Ei =
√
p2 +m2

i (1.21)

= p

(
1 +

m2
i

p2

)1/2

(1.22)

≈ p

(
1 +

1

2

m2
i

p2

)
(1.23)

=

(
p+

m2
i

2p

)
(1.24)

(1.25)

The approximation here is the binomial expansion (1 + x)n ≈ 1 + nx + n(n−1)
2! x2 + . . . , from which we keep the

first two terms. This is valid when x is small, or in our case when momentum is much larger than mass, i.e. when the

particle is relativistic. This assumption holds for any neutrino we know how to experiment with.

Trivially, then, the difference between two energies is:

E3 − E2 =

(
p+

m2
3

2p

)
−
(
p+

m2
2

2p

)
(1.26)

=
∆m2

32

2p
(1.27)

Putting those three expressions (1.15, 1.20, and 1.27) back together into equation 1.14, we get a full probability:

P (νµ → ντ ) =
1

4
sin2(2θ)4 sin2

(
E3 − E2

2
t

)
(1.28)

= sin2(2θ) sin2

(
∆m2

23t

4p

)
(1.29)

= sin2(2θ) sin2

(
∆m2

23t

4E

)
(1.30)

The final substitution of E for p works because, again, the neutrino is relativistic. Using the units appropriate for

atmospheric oscillations, namely kilometers for length and GeV for energy, equation 1.30 simplifies to the following:

P (νµ → ντ |L(km), E(GeV)) = sin2 2θ23 sin2

(
1.27

∆m2
23L

E

)
(1.31)

This formula is central to all the work that follows, and should be memorized by any student working on oscil-

lations. More details about this calculation, or how to put in the neglected factors of c and ~, can be found in [24].

Further analysis of this formula from an experimental point of view can be found in Ch. 2.

1.6 Oscillations in Matter

The neutrino oscillations we have described up the this point are valid in a vacuum. When neutrinos travel through

matter, the oscillations are modified.
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Electron flavor neutrinos can undergo charged current interactions with electrons in the matter, described by an

effective potential:

VCC = ±
√

2GFNe

where Ne is the number density of electrons in the matter, GF is the Fermi constant, Nn is the number density of

neutrons in the matter, and the sign is for two cases: positive for neutrinos, negative for antineutrinos. The potential

does not apply to muon or tau flavor neutrinos because of the lack of muon and tau leptons in normal matter, but these

flavors are affected through three-flavor oscillations with electron flavor neutrinos.2

The familiar two-flavor oscillation formula, when this additional potential is included, is modified by introducing

two “effective oscillation parameters”. The modified oscillation probability is:

P (νe → νµ) = sin2 2θm sin2(
πL

lm
).

The two modified oscillation parameters in matter are an effective oscillation length, lm, and an effective mixing angle,

θm, which are defined in terms of the vacuum oscillation mixing angle θo:

lm =
2π

(∆m2

2E cos 2θo −
√

2GFNe)2 + (∆m2

2E )2 sin2 2θo

sin2 2θm =
(∆m2

2E )2 sin2 2θo

(∆m2

2E cos 2θo −
√

2GFNe)2 + (∆m2

2E )2 sin2 2θo

These matter-modified oscillation parameters both exhibit resonance behavior when the following condition is met:

∆m2

2E
cos 2θo =

√
2GFNe.

This resonance is called the “MSW effect” after Mikheev, Smirnov, and Wolfenstein, who proposed it [25][26]. When

this condition is met, mixing can be large or even maximal, even if the vacuum mixing angle θo is small. A method

for extending this correction to 3 flavor oscillations has been developed [27].

This resonance has been observed in νe states produced in the Sun [16]. Additionally, matter effects can be used

to determine the signs of the mass splittings because electrons always have the same charge (and we have no positrons

in normal matter). This approach has been used to measure the sign of ∆m2
12[28]. Currently, work is in progress to

see if IceCube or an IceCube extension such as PINGU [29] could observe matter effects in atmospheric oscillations,

which could constrain the sign of ∆m2
23.

2It should be clear that two-flavor oscillations between νµ and ντ are unaffected by normal matter.
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1.7 Summary of This Work

This dissertation uses the IceCube DeepCore detector to study atmospheric neutrino oscillations. The following

chapter discusses neutrino oscillation experiments, first in general terms and then discussing a few experiments other

than IceCube. Chapter 3 is a dedicated description of the IceCube detector. Chapters 4 discusses the testing process

of the detector modules. Chapter 5 is an overview of the many reconstruction methods used in the event selection, and

may be used as a reference for the discussions in later chapters. Chapter 6 provides documentation of the early phases

of the IceCube Moon shadow analysis in which I played a major role (the final appendix is the paper that resulted from

Chapter 6). Chapter 7 returns to the central topic of this thesis with an overview of the event selection, including a

discussion of how it was optimized. The analysis method is described in Chapter 8 and tested in Chapter 9. Finally,

Chapter 10 includes results of the analysis and discussion about its implications for further work.
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Chapter 2

Neutrino Detectors

Neutrinos, they are very small.
They have no charge and have no mass

And do not interact at all.
The earth is just a silly ball

To them, through which they simply pass,
Like dustmaids down a drafty hall

Or photons through a sheet of glass.

— JOHN UPDIKE, 1960 [30]

Neutrino oscillations have been observed in many different contexts, including stellar core processes driving our

Sun [16], hadronic decays in the Earth’s atmosphere [15], nuclear reactors [8], and particle accelerator laborato-

ries [31].

This chapter covers the neutrino oscillations material most relevant to an experimentalist. This includes a discus-

sion of interactions and cross sections (§2.1) and the implications of the two-neutrino approximation of the oscillation

probability formula (§2.2). The next three sections are more specifically tied to this IceCube analysis. Atmospheric

neutrinos (§2.3) produce the signal of this thesis; they can produce muons that interact in the glacial ice (§2.4), par-

ticularly through Cherenkov light (§2.5). Finally, brief sketches are included of two other experiments that probe the

atmospheric oscillation parameters: Super-Kamiokande (§2.6.1) and MINOS (§2.6.3).

2.1 Interactions and Cross Sections

Neutrinos interact with the ice by the weak force: by exchanging charged W± bosons or neutral Z0 bosons with

the quarks in the nuclei in the atoms in the molecules of ice. The weak mediating bosons were discovered in 1983 and

have relatively large masses: MW = 80.6GeV/c2, and MZ = 91.2GeV/c2. Because of these large masses, the weak

force has an extremely short range of ∼ 10−18 m. If a charged boson mediates the exchange, it is called “charged

current,” and in our case (when the progenitor lepton is a neutrino) a charged current interaction necessarily produces

a charged lepton in the final state. Feynman diagrams for these interactions are shown in Fig. 2.1. This is the only way

we can observe neutrinos; since they do not interact electromagnetically, we cannot see light from them directly, but

we can see the products of their interactions.
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Figure 4.1: Feynman diagrams for neutrino-quark Charged Current and Neutral Cur-
rent interactions

⌫l + q ! l + q0 (4.1)

where q is a valence or sea quark in the nucleus and q0 is a quark of a di↵erent

flavor. (The flavor of the quark is changed by the exchange of a W boson.) As an

example, a muon neutrino that undergoes a charged-current interaction with one of

the ice nuclei would result in a muon.

The deep-inelastic scattering cross sections are the most important for the energy

range relevant to an astrophysical neutrino observatory. The neutrino in the deep-

inelastic regime has enough energy to interact with the quarks or gluons as point

particles. The neutrino transfers enough energy to the parton (a quark or gluon

constituent of the nucleon) such that the interaction dissociates the parent nucleon.

The NC and CC neutrino-nucleon deep inelastic cross sections in ice are summarized

in fig. 4.2.

Figure 2.1: Feynman diagrams of the interactions through which we observe neutrinos. Interactions (a) and (b) are

called charged current because the mediating boson is charged; similarly, (c) and (d) are called neutral current. Note

that the charged current interactions each have a charged lepton output particle. Observing these charged leptons is

how IceCube tells a νµ event apart from a νe or neutral current event. However, the IceCube detector resolution is not

fine enough to distinguish between νe and neutral current events.

Neutrino cross sections are extremely energy dependent [32] with a rough direct proportionality to their energy.

This gives rise to the main shape visible in Fig. 2.2. The other main feature in Fig. 2.2 is the resonance from the W−

mass above 1 PeV, called the Glashow Resonance because in the 1960s, Glashow proposed [33] using this resonance

to directly observe the W−.

Cross sections have units of area, most often reported in cm2 or barns; one barn is 10−24cm2. The name “barn” as

a unit was first used to describe neutrons scattering on uranium, calling a uranium nucleus “as big as a barn.” [35].

A popular neutrino trivium is that a neutrino can pass through a light year of lead without interacting, or more

precisely, a sample of many neutrinos can travel through 22 light years of lead with only half of them interacting. This

is only true at energies around 1 MeV, the energy of neutrinos created by fusion within the Sun. For a typical DeepCore

50 GeV neutrino sample, it takes only 2 millilightyears of lead (140 astronomical units) to stop half the neutrinos. For

the most extreme IceCube events on the order of 1 PeV, the Earth itself is opaque [36].

Through different energy ranges, several different interaction mechanisms become dominant as the neutrino can

probe different size objects coherently (see Fig. 2.3), reaching the idealized simple quark picture presented in Fig. 2.1

only when the neutrino reaches the Deep Inelastic Scattering (DIS) regime above about 500 GeV. This is where neu-

trinos interact with nuclear partons as point particles, and the interaction dissociates the parton from the nucleus.

This is the energy range most relevant for IceCube. However, DeepCore operates at the edge of this assumption,

in the crossover between DIS and the more complex quasi-elastic scattering. At typical DeepCore energies of 20 GeV,
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Figure 2.2: Neutrino ν̄ee− → ν̄ee
− charged current scattering cross section as a function of energy, with representative

pictures of sources at several energies; this is the keystone figure from [32], modified for inclusion in [34]. The peak

at 1016 eV is due to the W− resonance.
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the charged current cross section is∼ 1.4×10−37cm2, i.e. one neutrino out of every 1010 interacts in a cubic kilometer

of ice. At much higher energies around 1 PeV, this cross section increases to ∼ 1 × 10−31, or 1 neutrino in 104. The

neutrino cross section is about a factor of 3 larger than the antineutrino cross section because the antineutrino cross

section is helicity suppressed [37]1.

This small probability of interacting is the major reason that neutrino experiments need detectors that are, as a rule,

larger than detectors for other types of physics: you need many nuclei to give the neutrinos many chances to interact,

if you want any hope of statistical significance for your experiment. As an example, consider the difference in physical

size between an optical telescope, around a meter or perhaps as much as tens of meters, and our neutrino telescope, at

a cubic kilometer.

Considering effective areas instead of physical areas makes it easier to compare neutrino telescopes to other types

of telescopes. A more useful way of looking at interaction cross sections and probability is to combine it with detector

efficiencies; that way, instead of answering the question “given N neutrinos passing through, how many interact?” we

can instead answer “how many should we see, assuming our estimate of neutrino flux is correct and we understand

our detector?” This is the motivation for reporting energy dependent effective areas and effective volumes. These

measures depend on the data selection, so they are typically reported with each analysis. As an example, a recent

IceCube search for neutrino sources [38] reported energy dependent effective areas as a function of arriving zenith

angle. For neutrinos at 10 TeV and within 30◦ of the zenith (i.e., downgoing), the effective area was 10 m2; this is

close to the physical size of an optical telescope.

2.2 A Good Oscillation Experiment

Recall the 2 neutrino approximation of the oscillation probability formula from Ch. 1:

P (νµ → ντ |L(km), E(GeV)) = sin2 2θ23 sin2

(
1.27

∆m2
23L

E

)
This function splits up neatly into two sine functions: one that depends only on the mixing angle, and one that depends

on the mass splitting and experimental parameters L and E.

The first sine is often called the “amplitude” of the oscillation, because it multiplies the rest. In experiments, when

we search for a deficit due to oscillations, the depth of this deficit is determined by the amplitude, and thus by the

mixing angle. The errors on these measurements are dominated either by statistics (typically, neutrino experiments

have some of the smallest number of observations in modern particle physics) or by the errors on flux predictions. An

experiment that can start from an accurate flux prediction, with small errors, and that can produce a large sample of

neutrinos could measure mixing angle particularly well.

1Specifically, §12.8 of [37].
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Figure 2.3: Total neutrino and antineutrino per nucleon CC cross sections (for an isoscalar target) divided by neutrino

energy and plotted as a function of energy, from [32]. Note that the y-axis is divided by neutrino energy, to focus more

on smaller structures; also note the different y-axis scales between the two plots. The predicted cross section (solid

black line) is the sum of three contributing processes: quasi-elastic scattering (QE), resonance production (RES), and

deep inelastic scattering (DIS).
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The second sine function depends on three parameters: the mass difference ∆m2 (set by nature) and the experi-

mental parameters L and E. To measure the mass difference, we look at the position of the flux deficit in our energy

spectrum; systematic shifts in reconstructed energy produce errors in our ∆m2 measurement. Thus, a good experiment

for measuring ∆m2 needs good energy resolution.

The energy distribution of atmospheric neutrinos (approximately describable as a power law) is very different from

the energy distribution of neutrinos created in an accelerator complex (approximately describable as a normal distribu-

tion around a single energy), even though both have uncertainties in both flux normalization and shape. Additionally,

the length the neutrinos travel while oscillating varies from negligible to the diameter of the Earth (≈12,000 km). This

is a direct function of the zenith angle between the point of production and the detector (at the South Pole), so the

oscillation probability can be plotted equivalently either as a function of zenith or as a function of cos(zenith angle) .

Both of these are plotted in Figure 2.4.

2.3 Atmospheric Neutrinos

This work focuses on the oscillations of atmospheric neutrinos, the main source of neutrinos seen by IceCube.

Atmospheric neutrinos are created when cosmic rays interact with the Earth’s atmosphere.

Cosmic rays were first observed in 1912 by Victor Hess[39]. They are (see Fig.2.5) predominantly high energy

protons. They strike the atmosphere nearly equally from all directions [40].

Through most of the observed energy range, cosmic rays follow (see Fig. 2.6) a power-law spectrum:

dN

dE
∝ E−γ with γ ≈ 2.7

Recent data [44] has shown that the spectral index is closer to 2.65, so that value is used as the default in this thesis.

At energies around 3 PeV, the spectrum steepens; this is known as the “knee.” Around 3 EeV, it flattens out again; this

is known as the “ankle.” There is considerable structure in between, which is a field of active research. The subject

of this thesis is restricted to lower energies, between 1 and 100 GeV; in this region, a power-law spectrum is a good

approximation.

The spectrum of atmospheric neutrinos is created from the spectrum of cosmic rays. Products of atmospheric

interactions fall into three broad categories based on their energy: high energy, low energy, and a transition. The

regions are defined by the relationship between interaction length and decay length for the outgoing particles. If the

particles are very high energy, they are most likely to interact before decaying; if they are very low energy, they are

most likely to decay before interacting.

Consider first the low-energy case: when particles have time to decay before reaching the ground or detector. This

case arises when consideringO(MeV) low energy atmospheric neutrinos or distant astrophysical sources of neutrinos.

Mesons are created in the resulting showers, especially pions (π) and kaons (K), which then quickly decay into
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(a) Oscillation probabilities as a function of zenith angle

and energy.

(b) Oscillation probabilities as a function of cos(zenith) and

log(energy). These are the variables used for the analysis

in following chapters.

Figure 2.4: Oscillation probabilities for atmospheric neutrinos visible to IceCube. Neutrinos are assumed to have

started in the Earth’s atmosphere, so the length traveled is a function of the arrival zenith angle and the diameter of the

Earth D: L = −D cos(zenith angle). Note that in IceCube the visible energy cuts off around 10 GeV; lower energies

are included in these plots only for illustration. These calculations assume two neutrinos and no matter effects.
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Figure 2.5: Fractional contributions to cosmic ray composition as a function of energy. Note that in the 10-50 GeV

region most important for oscillations, hydrogen contributes the vast majority. Figure from [41]. Efforts to extend

these measurements to higher energies are underway in IceCube; see for example [42].

neutrinos. A typical decay chain starting with a pion can take the form:

p+ +N → π+ +X

π+ → µ+ + νµ

µ+ → e+ + ν̄µ + νe

Notice that this decay chain produces twice as many electron neutrinos (taken together with antineutrinos) as muon

neutrinos. The decay chain of a π− produces the same flavor ratio, with opposite sign charge of each particle, and

kaons have a similar decay chain [45]. This produces a flavor e : µ : τ ratio of 1:2:0, which is often assumed for

low-energy or far astrophysical sources, although other flavor ratios are also supported by theoretical predictions [46].

Note that this decay chain does not produce any ντ , and thus any ντ appearing must be from neutrino oscillations2.

The signal for this analysis is νµ, and the contributions from νe and ντ are confounding backgrounds.

At the other end, in the high energy limit, no particle has time to decay before reaching the detector.

The crossover between the high and low energy regions depends on the interaction and decay properties of each

particle involved. The energy where the interaction length and the decay length are the same is called the “critical

energy.” For pions and kaons, the transition between these two extremes takes place at O(10− 100GeV), exactly the

target energy region for this analysis. For muons, the transition is even lower, at 1 GeV, so one may assume that all

2It is possible to create ντ from the “prompt” decay of hadrons containing charm quarks, e.g. D+ → τ+ντ , but since these interactions only
become a prominent part of the flux at much higher energies, they are neglected in this work.
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Figure 2.6: Observations of cosmic rays over many orders of magnitude in energy. From [43].
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muons reach the ground from the upper atmosphere without decaying. The energy-dependent fraction of pions and

kaons producing νµ is shown in Fig. 2.7.

Within this transition region, the spectrum of atmospheric neutrinos is generally one index steeper than the cosmic

ray spectrum, that is, it follows the following power law:

dN

dE
∝ E−3.7

where E is the energy of each neutrino.

Figure 2.7: The energy-dependent fraction of νµ produced in the atmospheric neutrino spectrum from pions and

kaons. The solid lines are from particles traveling vertically downward; the dashed lines are for a zenith angle of 60◦.

From [41].

These transitions and resulting spectra are discussed in detail in [48], and specific flux predictions are made in [49]

and [50]. However, these calculations still leave the flux normalization somewhat uncertain; the two models disagree

by 20%. Within these uncertainties, we must make assumptions to construct a simulation for analysis. Details of

this simulation are discussed later in 7.2; the assumptions relevant to this section are the following. The total flux

normalization is left to float (with a Gaussian penalty to the likelihood for wandering too far) within a restricted range

of±50% around the central value. The central value of the flux model is from Honda [49], but as a test the Bartol [50]

model is also considered. The differences were found to be smaller than other systematic effects (e.g. the noise model).

2.4 Muon Energy Losses in Matter

IceCube detects neutrinos indirectly by observing the charged particles they produce. Describing the energy loss

mechanisms of these charged particles is thus central to understanding the IceCube detector response to neutrinos over
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Figure 2.8: Predicted and measured atmospheric neutrino fluxes as a function of energy [47].
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a wide range in energies. Muons are particularly central for understanding IceCube because their long penetration

lengths match the detector’s sparse inter-string spacing, making IceCube particularly good at observing muons.

As shown in Fig. 2.9, muons lose energy through different mechanisms at different energies. The analysis of this

thesis is focused on the 10-50 GeV region, where muons lose energy predominantly through ionization. At higher

energies (which encompass most IceCube analysis), stochastic energy loss mechanisms like bremsstrahlung dominate

over ionization. This gives rise to various reconstruction methods relevant for different energy ranges (discussed in

more detail in Ch. 5).

2.5 Cherenkov Light

Cherenkov light is the signal in IceCube. It is emitted by relativistic charged particles produced in neutrino inter-

actions. Cherenkov light is a shock wave of light3. As a charged particle moves, it disturbs the electromagnetic field

in its vicinity. The signal of this disturbance travels out at the speed of light in the current medium, which is ice in

our case. Light travels slower in a medium than in a vacuum by a factor called the index of refraction, n.4 In ice, the

index of refraction is about 1.33. When a charged particle travels faster than c/n, the disturbances in the field interfere

constructively to create a shock wave, which is observable as light.

Because of the geometry of shocks, Cherenkov light travels out from a particle track at a specific angle given by

the index of refraction n and the speed of the particle β = v/c:

cos(θc) =
1

nβ

This angle is illustrated in Fig. 2.10.

The number of Cherenkov photons emitted per unit track length is given by the Frank-Tamm formula [21]:

d2N

dxdλ
=

2πα

λ2

(
1− 1

β2n2

)
≈ 370 sin2(θc)

(
E

eV

)(
d

cm

)
where α is the fine structure constant, λ is the wavelength of the light, E is the energy of the emitting particle, and d

is the unit track length. The 1/λ2 dependence here means that the spectrum is mostly at shorter wavelengths, towards

blue and ultraviolet. The range visible to IceCube is cut off on the ultraviolet end by the absorption by the glass in

the DOM housing and PMTs at around 300 nm [51]. The DOM light acceptance as a function of light wavelength is

shown in Fig. 2.11.

3 Examples of shock waves in other media include: sonic booms, when jets or whips travel faster than the speed of sound in air; and bow shocks
and wakes, when boats or ducks travel faster the speed of waves across water.

4It is possible, then, for a particle to travel faster than light in ice but still slower than light in a vacuum, and thus still preserve the well-known
speed limit of causality.
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Figure 2.9: Muon energy losses as a function of energy. Although this plot illustrates muons striking copper, a similar

shape arises for ice. The vertical shading represents the approximate transition energy between dominant energy loss

mechanisms. From [21]



27

Figure 2.10: The Cherenkov angle and wavefront relative to the particle track. Note that this diagram is independent

of wavelength-dependent dispersion. Each black circle represents the disturbance emitted while the particle was at a

single blue point. The blue wavy arrows represent the path of the resulting shock wave as it travels forward, slightly

behind the particle.
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Figure 2.11: DOM light acceptance as a function of light wavelength. This shows the values used in direct photon

propagation simulation. The y-axis shows the fraction of simulated photons detected by the DOM relative to total

simulated photons striking the DOM.

2.6 Current Neutrino Detectors for Measuring Atmospheric Mixing

There are many experiments currently working on measuring atmospheric neutrino oscillations. Three in particular

are able to measure the neutrino oscillation parameters θ23 and ∆m2
23 with precision similar to the projected IceCube

DeepCore sensitivity. They are the Super-Kamiokande experiment in Japan studying atmospheric neutrinos, the Tokai

to Kamioka, or “T2K,” experiment also in Japan studying accelerator neutrinos (using some of the same detectors as

Super-Kamiokande), and the MINOS experiment starting from Fermilab in Illinois and studying the same L/E region

but using long-baseline accelerator neutrinos. These are discussed in more detail in the following sections. Finally, the

results of this thesis can be compared to a previous IceCube analysis based on the data from IC79 [52]; this detector

configuration is described in Ch. 3. All of these results are compared to one another and this analysis in the concluding

Ch. 10.

2.6.1 The Super-Kamiokande Experiment

The Super-Kamiokande experiment [53], or Super-K for short, was originally built to study proton decay; it is

a relatively densely instrumented tank of water that was huge by the standards of neutrino experiments when it was

built. Famous photos show a person or two people, in a small inflatable boat, looking tiny compared to the 39.3 m

diameter and 41.4 m height of this cylindrical tank. The total fiducial volume is 22.5 kton. Super-K has been taking

data since 1996, with an interruption in 2001 following a phototube implosion shock wave accident, and in 2011

following an earthquake and tsunami. They have analyzed 3903 days of atmospheric data to study oscillations [54].
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The approximate energy above which the Super-K detector cannot distinguish between energies is 5 GeV; this is lower

than the IceCube minimum energy threshold of 10 Gev. It has has over 11,129 phototubes (comparable to IceCube’s

5484, in a much smaller volume). Additionally, each Super-K phototube is larger: 50 cm to IceCube’s 25 cm. This

very high photocathode coverage (∼ 40%) allows Super-K to perform detailed reconstructions of Cherenkov rings.

Despite the excellent energy reconstruction that comes from such detailed coverage, the atmospheric analysis is less

sensitive in measuring the mass-squared difference because of statistical errors. Results from 2012 [54] are shown in

Fig. 2.12

Figure 2.12: Atmospheric oscillation limits from Super-K [54].

2.6.2 The Tokai to Kamioka Experiment

The Tokai to Kamioka Experiment, typically called “T2K,” in a long-baseline accelerator neutrino oscillation

experiment. Neutrinos are produced at the Japan Proton Accelerator Research Complex (J-PARC) and aimed towards

the Super-K detector, 293 km away. The beam central energy is chosen at 0.6 GeV to focus on the first oscillation

maximum. Detectors within J-PARC near the origin of the beam constrain systematic errors. The beamline is produced

slightly off-axis (2.5◦), which reduces the total flux of neutrinos but narrows the energy range of the neutrinos that

reach the detectors. T2K has published a wide variety of results including cross section measurements, flux predictions,

and oscillation results. In March 2014, using data collected from 6.57 × 1020 protons on target, they published [55]

the most precise measurement to date of θ23, including the figure included here as Fig. 2.13. The precise knowledge

of the neutrino flux from the accelerator beamline allows T2K to study the oscillation mixing angle more precisely

than Super-K.
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Figure 2.13: Oscillation limits from T2K [55].

2.6.3 The MINOS Experiment

The MINOS experiment was designed specifically to study neutrino oscillations. MINOS is an acronym for Main

Injector Neutrino Oscillations Search. It uses a 120 GeV proton beamline from the Main Injector ring at Fermilab in

Batavia, Illinois to create a neutrino beam at 3 GeV. The neutrinos are nearly all muon flavor when they are created.

MINOS uses two similar detectors: one near the start of the neutrino beam, at Fermilab, and one 735 km away in

Soudan, Minnesota. Both detectors use alternating plates of magnetized steel and plastic scintillator. The magnetiza-

tion allows MINOS to distinguish particles from antiparticles in searches for CP violation. This has also been useful

in their investigations of the Moon Shadow (see Ch. 6). MINOS published constraints on θ23 and ∆m2
32 in May 2013,

which are shown in Fig. 2.14.

MINOS is in the process of upgrading the detector; the new configuration is called MINOS+. It will have upgraded

electronics relative to MINOS, and take advantage of the neutrino beamline passing through the MINOS detector en

route to the NOvA experiment. The physics analysis will focus on precision and non-standard neutrino interaction

measurements. An early oscillation result from MINOS+ is show in Fig. 2.15.
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Figure 2.14: MINOS νµ disappearance oscillation measurement using beam and atmospheric data [56].

Figure 2.15: First MINOS+ results: νµ survival probability curve, from June 2014 [57].
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Chapter 3

The IceCube DeepCore Detector

The IceCube Neutrino Observatory is designed to observe particles traveling relativistically through the Antarc-

tic ice at the South Pole. IceCube is a cubic kilometer of ice instrumented with 5160 photomultiplier tubes. The

observatory is comprised of several subdetectors. DeepCore is the low-energy infill array, which is the main sub-

detector used in this analysis.

When a neutrino interacts with the ice and produces secondary particles (see §2.1) which may include charged

leptons, hadronic showers, electromagnetic showers, or a combination of those with variations in relative energy.

Those secondary particles can create Cherenkov light (see §2.5), which IceCube observes. The light is detected by

photomultiplier tubes (PMTs); each PMT together with its electronics and housing is called a Digital Optical Module,

or DOM. A set of 60 DOMs is deployed together into the ice along a single readout cable; this entire assembly is

called a string. The timing and position of observed Cherenkov light is used to reconstruct the direction of the original

neutrino, which can then be used as part of a sample for studying the astrophysical sources of neutrinos. The direction

and energy measurements from neutrinos with the lowest energies visible to IceCube, especially those made visible

by the DeepCore [58] infill array, are the topic of this thesis.

This chapter covers aspects of neutrino detection specific to IceCube but common across many analyses. §3.1

summarizes the subdetectors that together make up the observatory. §3.2 describes the geometric arrangement of the

DOMs and strings making up the in-ice array and DeepCore subdetector. §3.3 discusses our knowledge and modeling

of how light travels through the Antarctic glacial ice. §3.4 describes the DOMs (DOM testing is discussed in the next

chapter). Finally, §3.5 outlines the first level of event selections, called “filters.”

3.1 IceCube Subdetectors

The observatory as a whole is made up of several subdetectors, each of which is designed to observe a specific

energy range of particle interactions. They each complement one another.

• IceCube in-ice array [51]: the main subdetector of the IceCube Observatory. The in-ice array consists of

5160 DOMs, as described in the following section. This subdetector is designed to observe ∼TeV to ∼>EeV

neutrinos interacting in the ice.
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• DeepCore [58]: the low-energy infill array, also described in detail in the following section. DeepCore is

designed to extend the energy range visible to IceCube as low as ∼10 GeV.

• IceTop [59]: a cosmic ray detector on the surface of the ice sheet. IceTop is composed of ice tanks observed

by DOMs, and can observe cosmic ray showers with ∼100 TeV to ∼>1 EeV energies. Using IceTop as an

additional veto for in-ice neutrino analyses helps guarantee their astrophysical purity [60], and using the in-ice

array helps IceTop measure the energy and composition of the showers it observes.

• DM-Ice [61]: a dark matter experiment deployed within the in-ice array, using NaI crystals to confirm or refute

controversial claims [62]. DM-Ice shares some electronics with IceCube, including readout cables and circuit

mainboard design, and uses all of IceCube as an active veto.

• PINGU [29]: the Precision IceCube Next Generation Upgrade. PINGU is a proposed infill array that would

extend the energy range as low as 1 GeV. This would open the possibilities of further indirect dark matter and

neutrino oscillation studies, including determining the mass hierarchy of neutrinos.

• AMANDA: the Antarctic Muon And Neutrino Detector Array. This was the prototype detector for IceCube,

and proved that neutrinos were observable in the antarctic ice [63], and that reconstructing their directions was

possible [64]. AMANDA stopped running in 2009.

• ARA [65]: the Askarian Radio Array, a proposed high-energy radio extension. ARA could observe ∼100 PeV

to ∼>100 EeV energy neutrino events.

3.2 IceCube and DeepCore Geometry

The main in-ice array (including DeepCore) consists of 86 strings, each containing 60 DOMs. In total there are

5160 in-ice DOMs, as shown in the drawing in Fig. 3.1. The strings are spaced in a triangular grid with ∼125 m

between strings, as shown in the reference graph Fig. 3.2.

DeepCore [58], a subarray of the IceCube detector [51], was designed to provide sensitivity to neutrinos at energies

more than an order of magnitude lower than initially envisioned for the original IceCube array. This improvement is

achieved through a combination of smaller DOM spacing in the clearest ice, higher quantum efficiency PMTs, and

using the rest of IceCube as an active veto.

The DOMs in IceCube are deployed between a depth of 1450 m and 2820 m1 in the Antarctic ice sheet. The ice in

these regions is extremely clear to 400 nm light: in the clearest ice, around 2400 m depth, the effective scattering length

is close to 50 m, and the effective absorption length is close to 190 m (see §3.3). The quantum efficiency of the PMTs

1This 2820 m depth is comparable to the 2037 m height above sea level of Mount Mitchell, the highest peak of the Appalachian Mountains [66].
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Figure 3.1: The detector layout, from the side as if through the ice sheet. The black dots each represent a DOM, which

start at a deployed depth of 1.45 km and extend for an additional kilometer. The dots on the surface represent the

locations of the drill holes where each string was deployed; the color of the dot corresponds to the year of deployment.

The shaded blue cylinder in two parts at the center of the detector is the DeepCore infill array. The cluster of very

small blue dots on the surface (in the same region as the green dots) is the deployment locations of the Amanda strings,

now disconnected. The Eiffel Tower is shown on the right for a sense of scale. The IceCube lab (ICL) is a two-story

building with a tower on each side to direct cables to the upper story; the ICL image has been enlarged to show some

detail.
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Figure 3.2: The detector layout, with distances labeled between strings, as laid out on the ice. This shows the 79 string

layout: the detector configuration from which data was used for this analysis. The title “73+6” refers to the number

of strings with regular quantum efficiency DOMS versus high quantum efficiency, used in DeepCore. The red dots

denote these DeepCore strings.
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Figure 3.3: The detector layout, with distances labeled between strings, as laid out on the ice. This shows all 86

strings as contained in the full IceCube, even though the analysis in this work uses only data from the 79-string

detector (before the last year of construction). The title “78+8” refers to the number of strings with regular quantum

efficiency DOMS versus high quantum efficiency, used in DeepCore. The red dots denote these DeepCore strings.
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Figure 3.4: A diagram of the layout of the DeepCore detector. The upper part shows a top view, while the lower

part shows a side view. The DeepCore fiducial region is highlighted in yellow. Strings consisting mostly of DOMs

with high quantum efficiency PMTs are shown in red; strings with mainly regular quantum efficiency DOMs are

shown in black. Some parts of the central string (string 36) are also high quantum efficiency. The shaded “dust layer”

corresponds to the peak in Fig. 3.5.
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was tested in labs before the DOMs were deployed, and was found to be about 20%. For the DOMs in theDeepCore

subarray [67], the quantum efficiency of the PMTs was found to be about 27% (about 35% higher [67]). The PMT

model used in DeepCore is the same as in the larger detector, but with a modified bialkali photocathode material. The

noise rates of the PMTs vary from around 1.7 to 3.5 kHz, peaking at 2.2 kHz for regular PMTs and 2.9 kHz for high

quantum efficiency PMTs. This noise rate is reduced by deadtime in the DOM electronics to 500-600 Hz, assuming

normal operating temperatures of -50 to -20 ◦C.

The geometric parameters of the DeepCore detector that impact the reconstruction of neutrinos and vetoing of

cosmic ray muons are the horizontal inter-string spacing and the vertical DOM-to-DOM spacing. At low energies

(∼1 TeV or lower), energy losses from the muon are most likely to be through ionization (see §2.4). In this energy

range, a muon travels ∼5 m in ice per 1 GeV. Considering that, the 125 m spacing in most2 of the IceCube array is

suitable for a minimum neutrino energy of ∼50-100 GeV, and an optimal response above 1 TeV. The DeepCore array

decreases this spacing by filling in between strings, so the inter-string spacing is reduced from 125 m to 72 m (or, in the

full detector with two additional infill strings, which is not used in this analysis, 42 m), extending the visible energies

lower into the 10-100 GeV region.

The DeepCore DOMs are centered lower than the IceCube DOMs (with the same lower limit), clustering in the

clearest ice at the bottom of the detector. There is a gap on each DeepCore string through the depths of 2000 to

2100 m, where the scattering and absorption lengths substantially decrease compared to deeper and shallower depths

(see §3.3). The DOMs from those depths are instead used to create a “veto cap” above the central DeepCore region;

this cap increases the veto efficiency against downgoing cosmic ray muons.

IceCube and DeepCore were constructed over the course of several austral summers, stopping construction each

winter. This introduces a natural discreteness to datasets: the size of the detector increases in steps at the end of each

year’s construction. Each year of partial-detector data is denoted by the number of strings present in the detector

during that year, using the format “ICxx” to denote “xx” strings. These values are shown in Table 3.1. This analysis

uses IC79 data, which was the last year of partial-detector data. IC79 was also the first year that included DeepCore

strings, but it did not yet include all DeepCore strings. The first 6 strings of the DeepCore detector started acquiring

physics data in April 2010; that data is the subject of this analysis. The final 2 strings 3 were deployed the following

season.

2 String 47 was nicknamed “pork chop string” during its deployment. At the original planned location, the drill stuck on a crate of supplies that
had been flown in during the annual supply air-drop. The parachute of this particular crate had not opened, so it had lodged itself many meters into
the snow. The crate contained, among other things, pork chops. That explains why string 47 is off-grid compared to the rest of the detector.

3Originally, strings 79 and 80 were going to complete the corner of the highest-numbered strings. They were moved to the center of the detector
to increase the string density, which extends the visible range to lower energies. This was close to the time that DeepCore was funded, so strings 79
and 80 were made with high quantum efficiency PMTs to match.
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Data Configuration IceTop Number of Number of New Number of

Start Date Name Stations New Strings DeepCore Strings Total DOMs

27 Jan 2005 [68] IC1 4 1 0 76

14 March 2006 [69] IC9 16 8 0 604

22 May 2007 [70] IC22 26 11 0 1424

5 April 2008 [70] IC40 40 18 0 2560

20 May 2009 [70] IC59 59 19 0 3776

31 May 2010 [70] IC79 73 20 6 5032

13 May 2011 [70] IC86 81 7 2 5484

Table 3.1: Comparison of the various configurations of IceCube detector, including the number of IceCube strings

deployed each construction year. Each string contains 60 DOMs. Each IceTop station contains 4 DOMs.

3.3 Modeling the Ice Properties

Accurately modeling and reconstructing the propagation of light through the ice sheet is vital to the accuracy of

IceCube [71][72]. Information about how light travels is gathered in several ways, and the process of unifying that

information into a coherent model has been an ongoing process.

3.3.1 Gathering Ice Data

Laboratory investigation of the ice is obviated by the knowledge that deep South Pole ice is clearer than any

laboratory ice [73][74]. Thus, all ice modeling is based on in-situ measurements.

The current ice model is based on calibration data using Light Emitting Diodes (LEDs) within each DOM. Each

DOM has 12 LEDs on a dedicated flasher board. During dedicated runs (to ensure that light does not interfere with

other data taking) LEDs within specific DOMs are flashed at a wavelength of 400 nm, which closely mimics the 300-

600 nm wavelength of Cherenkov light. The light arrival time and amplitude are recorded from all other DOMs. These

data are collected at all depths within IceCube.

Data about the ice was also gathered during the deployment process [75]. Laser “dust loggers” were used to

measure the scattering of the ice with a depth resolution ∼2 mm. These logs were taken during the deployment of 6

strings. These data make it possible to construct a map of the ice that includes tilt across the detector. For the depths

within the detector, where both flasher and dust logger data are available, the two datasets agree well.

The dust logger data were additionally checked against data from an outside source: the East Dronning Maud Land

ice core data [76], taken from latitude 75◦S in East Antarctica. The ice core data extends deeper than IceCube. For the

depths where both datasets have data, they agree with each other.
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3.3.2 Creating an Ice Model

An ice model has three important parameters which vary as a function of depth: the average distance before

photons absorb into the ice, the average distance a photon travels before scattering to a direction orthogonal to its

original direction, and the angular probability distribution of the photon direction after scattering. These three outputs

and one input (absorption length, scattering length, and scattering function, as a function of depth) form a single ice

model.

The ice model used in this analysis, called “SpiceMie,” is based on data from flashers within each DOM. This

model assumes that the ice properties are a function only of depth and not direction; that is, we assume that the ice

is azimuthally symmetric and that the layers of variation have no tilt. This assumption simplifies the data collection

process: we can use data from a single string. The SpiceMie model uses data from string 63 (see geometry layout in

Fig. 3.2). Furthermore, this ice model assumes a scattering function based on two common functions for modeling

scattering with impurities: Henyey-Greenstein [77] and simplified Liu [78]4.

To make a fit describing this flasher data, we use simulation. A full simulation of the IceCube detector (see §7.2)

has LED flashes introduced into it. A specific hypothesis model is used to simulate flasher data, and predict how

that data would look in each non-flashing DOM within the detector. The difference between the simulation and the

data, combined across all DOMs observing all flashers, describes the quality of the hypothesis fit. The comparison of

data and simulation (with these thousands of data points) is calculated with a likelihood function5, described in detail

in [71]. Notably, this likelihood function includes a consideration of the statistical errors of the input simulation. The

simulation model is then varied until ice model parameters are found that best describe the data. The output absorption

and scattering lengths are shown in Fig. 3.5.

To facilitate quick changes to the ice model in this study, photons were directly propagated through the simulated

detector, leaving out the lookup tables described in §5.8.

Next-generation ice models consider the possibility of anisotropic ice and tilts in the ice layers. Producing these

models can be done with methods similar to producing simpler models. When using these models, however, the

complexity of additional dimensions makes reconstruction computations difficult (see §5.8). This is an area of active

work within the collaboration.

4Liu scattering is a modification of Mie scattering, from which the model “SpiceMie” gets its name
5 This paper [71] describes the mathematical method of using a likelihood function to compare experimental data to simulation, vary the

simulation, and find model values to best describe the data. Identical math can be used for two different goals: varying an ice model to describe
flasher data (as described in this section) or varying oscillation parameters to describe observed neutrino rates as a function of zenith angle and
energy, as described in Ch. 8. Because of this similarity, the corresponding author of [71] was on the review committee for this thesis.
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Figure 3.5: Scattering and absorption lengths in the ice as a function of depth. This figure shows the SpiceMie ice

model [71], which was the most accurate azimuthally-symmetric ice model at the time of this thesis. The “dust layer”

around 2000 m was caused by increased particulate matter in the atmosphere during an ice age ∼60-70 kyears ago.
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3.4 Digital Optical Modules

IceCube is an array of Digital Optical Modules (DOMs) [67], each of which contains a photomultiplier tube (PMT)

and associated electronics within a glass pressure housing. The PMTs are 10 inches in diameter (Hamamatsu model

R7081). A completed DOM is 13 inches in diameter and weighs ∼ 40 pounds.

A schematic diagram and a photo of a DOM are shown in Fig. 3.6. When light strikes a DOM, the metal of the

PMT photocathode undergoes the photoelectric effect and emits an electrical charge; that electrical charge signal is

then digitized within the DOM before being sent to the surface of the ice.

3.4.1 Digitizing the Signal: ATWD and fADC

IceCube DOMs digitize the PMT waveforms immediately after the PMT produces the waveform.6 The DOMs

each contain two kinds of digitizer chips [79]: Analog Transient Waveform Digitizer (ATWD) and fast Analog-to-

Digital Converter (fADC). The ATWD chips record shorter waveforms with more frequent sampling; the fADC chips

record longer with less frequent sampling (see Table 3.2). Including chips with both time scales increases the range of

times that each DOM records: we record the first most interesting signals with great detail, with additional signal for

a longer time but with less detail.

Table 3.2: Digitizer readout description

Chip Type # per Traces # samples Sampling Bin Recording

DOM per chip per trace Rate Width Length

ATWD 2 3 128 300 MHz 3.3 ns 427 ns

fADC 1 1 256 40 MHz 25 ns 6.4µs

Each ATWD chips runs in 3 channels, each running at a different gain level: 16, 2, and 1
4 . This increases the

functional range of signal amplitudes visible to the DOMs, which is limited by PMT saturation rather than digitization.

There are two kinds of signal saturation: PMT saturation and digitizer clipping. When the PMT saturates, the

voltage emitted is no longer linear with the input signal. An IceCube PMT saturates at ∼300 photoelectrons of charge

within 25 ns, but this process turns on gradually with increasing observed charge, and is thus difficult to describe with

a single turn-on point. The digitizer clipping is much easier to describe: the high-gain settings return their maximum

values for several bins. The gain settings for the ATWD chips are chosen such that the minimum gain channel cannot

be clipped before the PMT saturates. To illustrate how rare saturation is, consider the example of a ∼1 PeV cascade

6 This in-situ digitization is one of the major differences between IceCube and AMANDA. Any loss in signal fidelity from the digitization step
is negligible compared to the signal degradation that would have occurred from sending an analog signal 1 to 2 km over twisted cable with other
signals nearby. Because of the experience trying to untangle such signals in AMANDA, IceCube was designed with in-situ digitization.
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Figure 3.6: A Digital Optical Module (DOM) shown in both a schematic and photographic view. The harness assem-

bly, including the metal waistband, is included in the bottom figure but not the top. The thickness of the glass pressure

housing is more easily visible in the top than bottom, because of clear gel between the glass and PMT, designed to

minimize refraction. The cable penetrator assembly (above: pink; below: black) carries the signals from the mainboard

to the cable outside the DOM. There are four processing boards, shown above as green lines and below with more

extent and visible attached components. The top board controls the PMT high voltage; the second board contains

LED flashers and their controls for calibration; the third board contains the main digitizing electronics; the bottom

board contains one long wire that preserves the analog signal while a decision is made about the Local Coincidence

condition.

(a) A diagram of a DOM. The colors are purposely exaggerated to make components more easily distinguishable.

(b) A photograph of a DOM with its harness for attaching to the main cable.
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reconstructed in the upper part of the detector7. When IceCube observed such an event, signals were observed in

500 DOMs, of which only 5 displayed PMT saturation. At the energies relevant for oscillation analysis, saturation is

negligible.

Combining the signals from the fADC and ATWD chips is performed offline using a non-negative least squares fit

with the known shape of single-photo-electron peaks as the basis functions. The quality of this fit relies on accurate

calibrations for each DOM. The precision is limited by the PMTs rather than the readout electronics.

Deadtime on each DOM occurs while the analog signals are being digitized. The plurality of ATWD chips used in

ping-pong operation reduces deadtime: one chip can record signal while the other chip is being read out. The deadtime

is also reduced by requiring a coincident signal in an adjacent DOM before digitizing. The deadtime fraction for each

DOM is at most ∼ 1× 10−4 [79].

With these precise electronics and calibrations between DOMs and across strings, IceCube has a timing resolution

of less than 3 nsec. With light traveling around 1 foot/nanoseond within the ice, this means that positional recon-

struction could theoretically be accurate to within about 1 m, assuming timing resolution is the limiting factor. The

uncertainty due to this is small compared to, for example, uncertainties due to light scattering and absorption.

3.5 Triggers and Filters

There are limited options for getting data from the South Pole to anywhere else on the planet. We could put data

onto discs and physically carry it away, but this limits the time when we can get data to the times when travel is possible

to and from the Pole. We use this method for large sets of data that we do not expect to be particularly interesting,

and it has a surprisingly high bandwidth (container ships are big, even if you can only take one trip per year). A better

alternative is to send data over a series of satellites: these have minimal lag-time but much more limited capacity.

The first step of this process is the decision whether to write the event to disk and consider it for further processing;

this decision is called “triggering”. The second step is to decide if the event is interesting enough to send North; that

decision is called “filtering”, and it is based on several different types of data that IceCube participants have proposed

analyses around. A specific analysis typically only uses data from a single, or a handful of, filters. The trigger, called

“SMT3,” and filter, called “DeepCore Filter,” used for this analysis and many DeepCore analyses is discussed more in

§7.3. Any changes to triggers and filters are considered by a collaboration board that weighs the required data transfer

rate against the scientific opportunity and merit of the proposal. This is the last stage of processing common to all

analysis; further processing is analysis-specific.

IceCube is allocated about 95 GB/day of data transfer to the North (that is, anywhere on Earth except the South

Pole). We can send up 105 GB/day at the height of the summer season, when some of the variable rates are at their

7 Specifically, this refers to “Bert,” which was event number 14 in [36]
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highest, but the average must be lower. Of that 95 average, 5 GB/day are dedicated to operations data, and another

5 GB/day to non-filter data, like supernova scaler reports.
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Chapter 4

DOM Testing

All DOMs were tested in three stages: during assembly, at the production site after assembly (§ 4.1), and (for the

DOMs that passed those tests) at the South Pole just prior to deployment (§ 4.2). A final stage of “specialty tests” was

performed on only a few DOMs after construction was completed (§ 4.3). The specialty tests examined the noise rates

and various changes that could effect the noise rates.

The tests during assembly were performed by the technicians who assembled the DOMs. For information about

those tests, see [67]; those tests will not be discussed here.

4.1 Production Tests

DOMs deployed in the ice can never be retrieved for repairs, so pre-deployment quality assurance is essential.

The purpose of DOM production testing was to determine whether each DOM was suitable for deployment into the

IceCube array. When possible, failing DOMs were repaired and re-tested. These production tests were called “Final

Acceptance Tests” or “FATs.”

There were three production and testing sites: one in Sweden with contributions from the Uppsala and Stockholm

groups, one in Berlin at DESY-Zeuthen, and one at the Physical Sciences Laboratory (PSL) in Stoughton, Wisconsin.1

The testing procedures were standardized across production sites. The total average production rate was more than 50

DOMs per week (stopping for each polar construction season) between June 2004 and September 2009. In total, 5801

DOMs were produced.

Tests were performed at several temperatures in special dark walk-in industrial freezers, of which the Madison

group had three; each freezer holds up to 60 DOMs. DOMs were tested in batches of 60, paralleling the number of

DOMs on a string, but test batches were purposely mixed onto several strings during the pre-deployment process to

mitigate any systematic effects common to testing batches.

1 In Wisconsin, between June 2004 and August 2009, 3570 DOMs were produced, of which 3422 shipped to the Pole. In Germany, between
September 2004 and September 2008, 1190 DOMs were produced, of which 1168 shipped to the Pole. In Sweden, between September 2004 and
September 2009, 1041 DOMs were produced, of which 979 shipped to the Pole.
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During production, each DOM was labeled in three ways: by a production number (2 letters and 4 digits), a

hexadecimal code mainboard ID number, and a nickname.2 As a guideline to limit biased attachment, we avoided

naming DOMs after people.

The DOMs within the freezer were set up on individual stands. Each stand consisted mainly of a black PVC pipe

with diameter slightly smaller than the DOM diameter, and the freezer held two shelves of stands on each side of a

central aisle (see Fig. 4.1). At the bottom of each stand was an optical fiber pointing up towards the DOM. The fibers

in each freezer were bundled into a small circular region and all the illumination choices (including laser) were made

to create a diffuse spot centered on that circle. Therefore the light getting to each fiber was similar and stable, but not

identical. All the optical fibers connected to a single laser that could be pulsed quickly to provide light response tests.

When the laser pulsed, it illuminated all DOMs, from which individual responses were read. During testing, each

DOM and its stand was covered by a black plastic bag to further protect against light contamination. The electronics

in this configuration mimicked the electronics for a single full deployed string in the ice.

Figure 4.1: Photos of DOMs set up for production tests. Each DOM is seated on a black stand and connected to the

other DOMs.

(a) The entire inside of the DOM testing freezer in

Madison. Two wooden shelves on each side of the

central aisle each contain 15 DOMs on stands, for a

total of 60 DOMs.

(b) Three DOMs set up for testing. The wooden sup-

ports of the upper shelf can be seen at the edges of

the photo.

The many temperatures at which the DOMs were tested mirror the many situations in which the DOMs are ex-

pected to work well in the field. Tests at room temperature looked for initial operation or connection problems. Tests

at −45◦ C and −20◦ C mimicked the temperatures at the top and bottom, respectively, of a deployed string. Tests at

2 The nicknames had a theme for each testing set, which was chosen by people involved in DOM testing. The themes of the DOM names were
varied and often silly. The purpose of this silliness was error prevention: if a particular DOM encountered problems during the testing process, and
we discussed it in terms of a silly name, we were more likely to remember the particular name later on the ice if we encountered the DOM again.
Some of the themes were Wisconsin breweries, phobias, Berlin S-Bahn stations, species from the cartoon series “Futurama,” places invented in the
novel series Harry Potter, words and expressions describing rain used in Oregon, and megafauna from the Pleistocene era; this last theme included
the nickname “DemonDuckOfDoom”.
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−55◦ mimicked the winter surface temperatures at the Pole, where exposed IceTop DOMs operate. Each temperature

was tested twice, once with temperatures ascending and once with temperatures ascending. The only hysteresis no-

ticed was in the freezer temperature, not in any temperature-dependent DOM process. The whole cycle (before data

analysis) took 2-3 weeks. 3

At each temperature, several tests were performed:

• Each DOM was pinged to make sure it was still connected and the operating system was awake and responding.

• The cable connectors and local coincidence (LC) (see §7.3) circuits were tested in chain through the freezer:

light was pulsed onto each DOM, and the LC circuit on the nearest- and next-to-nearest neighbors were tested.

This took about 10 minutes.

• A further suite of tests of the mainboard, called STF for Simple Testing Framework, was performed. This tests

individual components like the digitizer baselines, amplitudes, and pedestals; the pressure gauge; the voltages

around the flasher LEDs; clock stability and sampling speed; and cross-talk between communications and PMT

signals. STF took about an hour.

• The gain on each PMT was calibrated to ensure linearity with the input voltage. This took about two hours.

• The data acquisition system was tested by looking at pulses due to cosmic ray interactions, especially their

shapes and the time differences between them. This took between 6 and 20 hours.

• The PMT optics were tested by flashing the laser, at a single photoelectron amplitude level, through the optical

fibers to each DOM. This was the primary way of measuring the 2-3 ns resolution described in §3.4.1 and [79],

and of measuring PMT afterpulsing. This took about two hours.

• Finally, the noise rates on each DOM were monitored for at least 24 hours with readout every second to test for

any unexpected drift or unexplainable spikes in rate. 4

The results of these tests were then compiled and analyzed by the tester, and an action was recommended for each

DOM: ship to the Pole, repair and retest, or fail. These recommendations were reviewed and discussed among all

DOM testers in weekly meetings. The measured performance characteristics were also stored in a DOM database.

3This process was greatly simplified by internet access to the freezer controls and DOM mainboards, allowing testing to continue while testers
remained outside the lab, e.g. on campus.

4Some noise rate spikes were found to correlate with operation of a nearby synchrotron source [80].
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4.2 South Pole Testing

The testing apparatus at the South Pole was in a tent at surface temperature (see Fig 4.2). DOMs were stacked

on wooden palettes. The tent provided some light protection. The DOM tests were operated from within an adjacent

heated shipping container. Many challenges of testing were products of South Pole conditions (e.g., cables becoming

stiff from the cold temperatures) rather than unexpected results from tests.

The tests performed at the South Pole were very similar to the tests during production, but with a shorter time scale,

especially during the noise monitoring. Specifically, the data acquisition system checks were skipped, the light-based

PMT tests were skipped, and the noise monitoring time was reduced by at least a factor of 2.

In total, there were 5484 DOMs deployed. Of those, 5404 DOMs are still operational (98.5%). Specifically, 5081

of 5160 In-ice DOMs, and 323 of 324 IceTop DOMs are still operational. Of the DOM failures, 49 were during

deployment or freeze-in (61%), and the rest failed during ongoing operation.

DOM testers were also responsible for helping with the deployment process as needed.

4.3 Specialty Testing

The purposes of these tests were very different from the purpose of the production testing. Whereas the production

testing decided, for each DOM, whether the DOM should be deployed, the specialty tests used DOMs to measure a

wider variety of quantities. One set of tests measured the dark noise rates of DOMs and PMTs at various temperatures

(Sec. 4.3.1), and the other measured internal temperature variations within a DOM (Sec. 4.3.3).

Some of these DOMs will never be deployed. Specialty test DOMs did not have to pass all production tests; for

example, a DOM that failed because of a bad flasher board could still be used for noise tests.

4.3.1 Dependence of Noise Rates on Temperature and Glass Presence

In the first set of specialty tests, the noise rates of the DOMS with high quantum efficiency PMTs were compared

to the noise rates of the DOMs with standard quantum efficiency PMTs. These rates were measured at many more

temperature points than the production tests to test the unexpected effect of higher noise rates at lower temperatures.

One set of tests investigated whether the new model of high quantum efficiency PMTs would be suitable for a large

water Cherenkov experiment like LBNE [81]5. Specifically, we charted the noise rate as a function of temperature,

paying close attention to the region close to and above freezing, where LBNE would operate. These tests used Hama-

matsu model R7081-02, the PMTs in the DeepCore high quantum efficiency DOMs. This test was run on 57 DOMs

immediately following production tests on the same DOMs.

The procedure for this round of tests was similar to the “monitoring” step of the production tests, with frequent

temperature changes. At each temperature, noise rates were measured. Each temperature was measured twice: once

5At the time of these tests the project was called LBNE; it has since been renamed LBNF.
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Figure 4.2: Photo of the South Pole DOM testing site. DOMs are contained one each in the cardboard boxes. Eight

boxes sit on a wooden palette. Eight palettes sit on a sled that can be towed out to the drill site. Cables, looped around

the tent supports, connect each DOM to the testing computers housed in the shipping container, seen to the left in red.

For scale (1.6 m) the author of this thesis is shown to the left.
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Figure 4.3: Average noise rates as a function of temperature for high quantum efficiency PMTs within DOMs

as part of a descending series and again as part of an ascending series. The results are averaged across DOMs and

shown in the left plot of Fig. 4.3.

These results showed a rise is noise rates at low temperatures (below freezing). This rise had been observed also

in the production tests, but not specifically studied. It was hypothesized that this effect was primarily a function of the

glass pressure housing of the DOMs, and thus would not appear in LBNE-like situations where only PMTs were used.

The right plot of Fig. 4.3 shows the observed noise rates with the low-energy noise (a linear fit to the low-temperature

region) subtracted off.

We recommended to LBNE that the high quantum efficiency PMTs have 35% higher efficiency, with a manageable

increase in noise rate. Balancing the higher efficiency with higher cost was left as a question for the larger community.

These results were presented at Fermilab in July 2009.

A further set of tests investigated the low-temperature noise increase. We measured noise rates with varying

deadtime after each initial noise pulse. For each temperature, noise rates were measured in 1 second samples for

5 minutes at each deadtime setting. With higher deadtimes, the low-temperature noise increase went away (see any

subplot of Fig. 4.4). This indicates that the low-temperature noise comes in bursts, correlated with itself. The noise

can thus be separated into above-freezing “thermionic” noise and below-freezing “correlated noise.”

The physical process underlying this correlated noise remains unknown. It is possible to speculate that the noise

rates below freezing temperatures are caused by a single, temperature-independent process such as radioactivity in the

glass, which is then observed at temperature-dependent rates because of variations in the transmission properties of

the glass with temperature. Such speculations were not specifically addressed during the study.

The noise rates were compared between DOMs versus bare PMTs and high quantum efficiency versus normal

PMTs (both contained in and outside of DOMs). For these tests, at least one of each type was used: a regular quantum
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Figure 4.4: Dark noise rates as a function of temperature comparing standard versus high quantum efficiency PMTs

and DOMs versus bare PMTs. The colors represent different deadtime settings; lower deadtime allows more clustering

in noise pulses.
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Figure 4.5: Dark noise rate tests on non-IceCube PMTs. The same temperature-dependent noise rate is seen below

freezing here and in IceCube PMTs and DOMs. To quote the caption directly from [82]: “Dark rate for two tubes of

the same model (R7725). Tube 1 was cooled to 4 K (triangles). Tube 2 was cooled to 80 K (squares) and then warmed

back up to room temperature (diamonds). The solid line corresponds to [an exponential fit found in [82]]. The dashed

curves indicate the temperature dependence expected for thermionic emission.”
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efficiency PMT, a high quantum efficiency PMT, a DOM containing a regular quantum efficiency PMT, and a DOM

containing a high quantum efficiency PMT. These tests confirmed that the increasing noise effect is stronger both with

high quantum efficiency and with the full DOM housing, and the results are plotted in Fig. 4.4.

A similar effect was documented with much smaller PMTs and a larger energy range in [82], the main figure of

which is reproduced here in Fig. 4.5. This paper found that the effect correlated with PMT photocathode area, similar

to the IceCube finding that the effect correlated with the amount of glass close to the PMT.

4.3.2 The Vuvuzela Noise Model

Based on the tests in the previous section and other investigations of detector noise, a new software package for

modeling noise was developed. The new package was called “vuvuzela;” the old package was called “noise-generator.”

The name “vuvuzela” refers to the plastic trumpet-like noisemakers made famous during the 2010 World Cup in South

Africa. The major improvement was that vuvuzela includes better modeling of hits correlated with each other in time,

i.e., noise that is not purely Poisson distributed in time. While the specific parameters of the vuvuzela model are still

undergoing precise calibration at the time of this thesis, the overall improvement is clear: the vuvuzela model matches

the experimental data better than the noise-generator model.

Vuvuzela development is documented in [83]. Whenever possible, simulated data sets used for the analysis pre-

sented in subsequent chapters use vuvuzela noise.

4.3.3 Internal DOM Temperature Tests

The second set of specialty tests considered whether the noise increase in DOMS could be from differences

between the reported temperature in the freezer, the reported temperature on the DOM mainboards, and the real

temperature at various points in the DOM. This was investigated by measuring the temperature at various points within

a single DOM. The DOM mainboards typically reported temperatures ∼10 ◦C warmer than the freezer settings. This

study was performed as a cross-check of the study in the previous subsection. Both addressed the question of whether

high quantum efficiency PMTs would be useful for LBNE, specifically considering noise rates close to the expected

operating temperatures of LBNE. While the study in the previous subsection addressed the temperature dependence

of the noise, this study looked for any global shift in the temperature on the PMT that might have been related to the

elevated temperatures observed on the mainboards.

The method for the main study was to place 5 temperature probes within a DOM, then wire the signals through

the standard DOM communications channels to a circuit board outside the freezer. The voltages could then be read

externally, giving a temperature reading for each probe. These readings were then compared to the temperature setting

of the freezer, and the results are plotted in Fig. 4.7.

The new equipment for this study was a set of 5 temperature probes. The probes used were model AD590

2-Terminal IC Temperature Transducer from Analog Devices. These probes are manufactured to have a linear current
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output of 1µA/K. The current was measured with a standard voltmeter reading across resistors on a small circuit

board.

These probes were calibrated in a series of measurements before the freezer tests began. They were used to

measure a wide range of temperatures, in parallel with measurements from a mercury thermometer and an alcohol

thermometer. The two thermometers agreed with each other to within their readout errors, ∼0.5 ◦C. The temperatures

tested are shown in Table 4.1. The resulting measured voltages were fit with a linear function of temperature. The

results found were that after calibration the temperature probe reports agreed with the thermometers and each other

to within 1%. This best fit linear calibration function was used to run the main freezer tests. The fit we found was

consistent to within half a percent with the predicted linear temperature dependence specified by the manufacturer.

Temp ◦C Circumstance

-31 small DOM freezer in Chamberlin Hall

-19 food freezer

23 room temperature in the hallway

25 room temperature in the office

30 room temperature in the lab with servers

40 beaker of sand heated in a microwave then stirred

93 beaker of sand sitting on a hotplate

Table 4.1: Temperatures at which temperature probes were tested, with the circumstances used to create those temper-

atures.

The probes were installed in 3 locations within the DOM (see Fig. 4.6): next to the temperature probe on the DOM

mainboard, touching the PMT, and touching the glass housing within the potting gel. Additionally, one probe was

fastened to the outside of the glass housing, and one probe was allowed to hang free within the freezer. These 5 probes

were wired to the standard DOM communications channels.

The freezer temperature was varied and measured. The results are shown in Fig. 4.7. As expected, the probe on

the mainboard read consistently higher temperatures than the probes in other locations. The differences between the

measurements on the DOMs and free-hanging measurements were larger at lower temperatures. The expected result

was that the temperature would vary monotonically from the mainboard out to the free-hanging probe. An unexpected

result was found: the probe touching the PMT was the closest in temperature to the free-hanging probe. The other

three probes (on the mainboard and either side of the DOM glass) followed the expected trend.
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Figure 4.6: A photograph of the temperature probe locations within the DOM. The locations of the three internal

probes are marked with red circles: (1) on the DOM mainboard, (2) on the PMT and (3) within the potting gel

touching the glass housing.

Conveniently, this means that the PMT temperature is closer to the temperature of the freezer than to any other

temperature within the DOM, and so measurements taken at various freezer settings on many DOMs are directly

applicable to other experiments (e.g., LBNE) that use PMTs but not DOMs.
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Figure 4.7: Temperature dependence of the temperature measurement deviations between various points on a DOM

compared to the ambient freezer temperature.
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Chapter 5

Reconstruction Terminology and Methods

This chapter describes all the reconstruction algorithms used in this thesis. They are organized roughly by how

long it takes to run each algorithm, with the fastest first. This is also the order in which the reconstructions are often

run, with quality cuts to reject some events in between each reconstruction algorithm. Thus, each cut level (running

a reconstruction and then cutting on the results) takes a similar order-of-magnitude amount of processing time and/or

disk space. This reference of some common reconstructions may be useful to future IceCube scientists; reconstruction

or veto algorithms specific only to this analysis are discussed in Ch. 7. For brevity, reconstructions not used in this

thesis analysis have been omitted, without intending any offense to their authors and maintainers.

Software to run all of these reconstructions can be found within the IceCube software repository1, along with code

for fitting the resulting sample for neutrino oscillations searches. These work within the IceTray software system [84].

Large simulated data sets are generated with the IceProd [85] software system.

5.1 Basic Terminology

This section explains some common basic variables used to describe IceCube events. As a charged particle moves

through the ice relativistically, it emits Cherenkov light. This light is detected by PMTs which output “waveforms”,

which are then digitized on DOMs to make the signal into “pulses,” each of which has an integral measured in “charge”.

The signal is fit using a least-squares fit, using a template of a single photoelectron pulse as the basis function. The

number of basis functions needed to fit the waveform has only a tenuous relationship with the amplitude of the original

waveform, and so while “NPulses” is a commonly used variable [86], it is not in general physical useful. Total

reconstructed charge or “QTot” is both more accurately correlated with the waveform integral and the total energy of

the event.

Information from many DOMs is combined into an “event” which typically lasts several microseconds, determined

by the time window in which several DOMs have signals. Each event is saved as a discrete set of data called a “frame,”

which incorporates the event-specific detector responses with detector geometry, calibration, and status information.

1http://code.icecube.wisc.edu/svn/sandbox/gladstone/OscillationFitter. The reconstructions described in this chapter were developed through
broad collaboration effort; even though the software cited here calls many reconstructions, the author does not claim credit for having developed
them. However, the author does claim credit for modularizing and commenting the scripts, with the hope that others will not have to reproduce the
effort of researching reconstruction settings.
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The true interaction is the event, and the digital datum is the frame. Part of IceCube software development is confirming

that each frame contains one event, and describing how often and what ways a frame contains multiple events or no

events.

The number of DOMs that have signal over threshold in an event is called “NCh.” The same term can be used to

describe only the DOMs with local coincident (see §7.3) hits (most common at high energies) or all DOMs, including

isolated hits (most common at lower energies). It is usually preferred that one specify which hit cleaning, if any, was

used when reporting an NCh value.

The word “hits” is often used in an ambiguous way, and is best understood as a casual term. It can sometimes refer

to the number of hit DOMs (NCh), sometimes the number of pulses , sometimes the sum of charge on each DOM

rounded to the nearest integer and added up across the detector. It’s best to specify with each usage which meaning is

intended, or interpret it as a non-specific term related to NCh.

5.2 “I3Particle” Definition

A common datatype within the IceCube software is the “I3Particle”, which is composed of several fields. Because

these fields are commonly used together, the I3Particle is used for many different things: usually to represent particles

within the simulation, or to represent the outputs of various reconstruction algorithms. Different applications may

use the fields with different meanings. For example, “Time” may mean the neutrino interaction time in the ice for a

reconstruction, or the interaction time of the parent cosmic ray shower in parts of the simulation. This definition is

provided here as a template for the output of the various reconstructions that follow in this section.

For reference, the data fields of an I3Particle are:

• Position: (x, y, z) measured in meters from roughly the center of the detector.

• Direction: (zenith, azimuth) measured in radians.

• Time: usually measured in nanoseconds, with varying zero-point.

• Energy: measured in GeV.

• Length: measured in meters, but not always filled out.

• Speed: canonically measured in meters per nanosecond, but not always filled out.

• Shape: This is used to tell some reconstructions how to treat different classes of events differently. Examples

include Cascade, Track, and Contained Track.
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• particleType and pdgEncoding: these are used to described particle classes within the simulation. Examples

include muon, positron, helium nucleus, and electron anti-neutrino. The “pdg” part refers to the Particle Data

Group list of particle types [87].

• locationType: Examples include InIce, IceTop, and Anywhere.

• Major and Minor ID: these numbers are used to track individual particles within the simulation.

5.3 Hit Cleaning: SRT and TW

Hit cleaning algorithms are included before or within many reconstructions. The idea of hit cleaning is to make a

guess about which hits were created by the same particle interaction, and are thus interesting to analyze together. Hit

cleaning can be run extremely quickly.

There are two kinds of hit cleaning used in the event selection of this analysis. The first is “time window” cleaning,

abbreviated as TW. This cleaning, as the name suggests, selects hits within a specified time window before and after

the trigger condition is met. For example, a low-energy event might have many microseconds before and after the

SMT3 trigger condition is met, but that time is mostly filled with noise. To improve the signal to noise ratio, TW

cleaning cuts down on the time before and after the trigger.

The second common kind of hit cleaning is called “RT” cleaning. The “R” stands for “radius;” the “T” stands

for “time.” This cleaning uses the idea that hits clustered closely together in time and space were probably created

by the same process (in that sense, RT cleaning offline is similar to the LC condition used in online triggering). The

algorithm works by searching for any pairs of hits that occur both within time T of each other and radius R. Depending

on the configuration values of R and T, this usually lets in more hits than local coincidence (see §7.3) cleaning.

The results of two hit cleaning algorithms are shown in Fig. 5.1.

The danger of hit cleaning, especially RT cleaning, is that it can never be perfect. It is often useful, but it can

never be perfect. Consider the case of a high-level reconstruction that has noise built into its likelihood function. The

input to a fit is a “hit series”, a collection of pulses at specific times on specific DOMs. The analyzer has the choice

to feed a hit series to the reconstruction either before or after hit cleaning. If the choice is to use hit cleaning, the

assumption is that there is no noise remaining in the hit series, and the likelihood should reflect that. If there is no hit

cleaning, or only some hit cleaning that is easy to build into the likelihood function (like TW cleaning), then noise can

be built explicitly into the likelihood, as it is in Millipede-based reconstructions (for a full discussion of Millipede,

see the following §5.11). If noise is cleaned out imperfectly and the likelihood has no knowlege of that noise, it will

interpret those extra hits as signal, and return misreconstructed energies. Having fewer total hits also contributes to

a less smooth likelihood space, making minimization more difficult. Any of these outcomes is less precise and more

error-prone than giving the likelihood a hit series with some noise intact.
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Despite that caveat, many simple reconstructions are greatly improved by including some hit cleaning; see for

example Improved Line Fit, §5.6.

5.4 Topological Trigger

The Topological Trigger splitter algorithm [89][90][91], or “TTrigger,” is a next-generation form of hit cleaning.

It attempts to split every event into sub-events. This is an attempt to eliminate a particular class of mis-reconstructed

events: those which are composed of multiple downgoing events, precisely timed in a way that confounds directional

fits.

The TTrigger algorithm works as follows. Each hit within an event is considered in relation to all other hits. Two

hits are considered “topologically connected” if the pair meets several criteria:

• both hits are in the in-ice portion of the detector

• if the hits are on the same string, they are within 30 DOMs of each other

• if they are on separate strings, those strings are within 500 m of each other

• the residual time between them (δt− δr/c) must be less than 1000 ns

Topological connection is considered transitive. Topologically separate groups of at least 4 hits each are considered

“split” by TTrigger into separate events, and each is passed to the regular trigger system. This splitting system is an

effective, fast way to search for and split coincident events.

5.5 Noise Engine

Noise Engine [83] is an algorithm designed to identify and throw out events that probably include DOM noise

only, and not any signal hits. It was one of the first projects developed using the “vuvuzela” noise model (see §4.3.2).

The algorithm is based on the older “track engine” software. Both are based on the idea that hits from a traveling

particle should have net direction between them, but random combinations of noise should not. The algorithm con-

structs a vector from each pair of hits, adds all the vectors together, and then examines the magnitude of the resulting

sum. If the result is close to zero, it is more likely the event was pure noise, and Noise Engine cuts that event. Noise

Engine also includes several checks to avoid throwing out large or otherwise interesting events, and many of the pa-

rameters are configurable. This means that even though it was originally optimized to be run as a very low-level cut

for noise-only triggers, it may also be useful in some analyses at higher levels.
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Figure 5.1: The rates of reconstructed pulses, with various cleanings applied, versus the time residual. The data sample

used here contains charged current νµ events generated with Genie Monte Carlo generator ([88], see §7.2) and then

processed to the L7 set of cuts defined in Ch.7.

To calculate the residual, consider the Monte Carlo true position of the muon emitting light. We can calculate the

minimum time for light to travel along the path of the muon (starting at the true Monte Carlo interaction time), depart

at the Cherenkov angle, and arrive at the position of the DOM where the pulse was observed. The difference between

that minimum arrival time and the time the pulse was observed is called the time residual, and is assumed to arise from

scattering in the ice. For pulses that are truly emitted by the muon, the time residual must be positive, unless the muon

position is incorrect, which we ignore here because this plot uses Monte Carlo truth. Pulses from random noise have

uniformly distributed residuals.

The three series shown here in different colors represent the results of different hit cleaning algorithms:

• The red curve, with the highest rates, shows the results with no hit cleaning; as expected, this has broad shoulders

showing a significant contribution from random noise.

• The middle curve, in blue, shows the results of applying a time window cleaning, which cuts away all pulses

outside of a specific time window relative to the trigger time. The time window was the one used in this analysis

(for the pulse series used in the “monopod” reconstruction algorithm): 4 µsec before the trigger until 6 µsec

after the trigger.

• The lowest, black curve additionally uses an “RT” cleaning, which keeps only pulses within a certain radius

and time of another pulse. The radius and time settings were the ones used in this analysis for cuts requiring a

minimum number of hits: R = 150m and t = 1µsec.
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5.6 Linefit and Improved Linefit

This is one of the simplest fitting algorithms used in IceCube. Linefit is often used as a seed for more computa-

tionally intensive fits, and works best for extended tracks.

Linefit uses a least squares minimization to find the track that minimizes the sum of the squares of the distances

between the track and the hits. This is also the best time, position, and direction for a plane wave passing through

the hits in the detector. Considering the 4 dimensions of x, y, z, and time, this uses the same math as fitting a line

to points on the 2D graph, except that the 2D graph is 4D, and the line is a plane wave. This has the downside

of being fairly inaccurate except in the very simplest of cases, and the upside of being extremely fast and easy to

understand. Making a new software implementation of Linefit has become a classic end-of-bootcamp software exercise

for incoming students, generally with great success.

Linefit has a well-defined meaning of speed: the speed at which the plane wave moves through the detector. This

speed has proved a useful cut variable: muons travel on average close to the speed of light, while contained or starting

events average lower speeds (because their light travels outward in many directions).

For many online applications, we use a modification called “Improved Line Fit” which includes rigorously studied

hit-cleaning and other optimizations [89].

5.7 CLast

The CLast algorithm was originally designed as a fast seed for cascade-type fits. It combines several quick esti-

mates, providing an estimate for each field of the software type “I3Particle”. The name refers to the fact that it is an

improvement over the CFirst cascade seed algorithm, specifically changing the method for estimating the time. The

name “CFirst” was chosen as a shorthand for a first-guess cascade reconstruction.

CLast returns an I3Particle with the following fields:

• Position (x, y, z): the charge-weighted average of all observed pulse positions. This kind of charge-weighted

average is often called the Center of Gravity, or “CoG”.

• Direction (zenith, azimuth): the major axis of a tensor of inertia (ToI) of the input pulses.

• Time: the most interesting field in CLast, as described in the remainder of this section.

• Energy: a polynomial function of the total charge, with coefficients optimized at some point (and configurable).

• Shape: always set to Cascade.

• particleType: always set to Unknown.

• FitStatus: always set to OK.
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• Length: not set.

• Speed: not set.

The method for determining an interaction time is as follows. Three time calculations are attempted. If the first

succeeds, it is returned as the result; if not, the algorithm looks for the second. The third and last method always

succeeds, even if the first two do not. All of them start with the hypothesis that the CoG position was the interaction

vertex.

The third choice, called the “Earliest Vertex Time” is the simplest. It always exists, so it is the last backup. For a

hit DOM (then looping over all of them), the earliest pulse time is taken. Based on the distance between that DOM

and the CoG, that time is moved back to what time the light would have left the CoG to arrive at the DOM: that is the

“vertex time” for that DOM. Having looped over all DOMs, take the earliest vertex time.

The first choice is called “Earliest Threshold Time”. Similar to Earliest Vertex Time, it finds a vertex time for each

DOM that had hits. The variation is that, out of those various times, it only considers times from DOMs that met a

certain threshold condition. That condition is a minimum number of direct hits. The specific number is configurable

by the user (the default is 3). This ensures that the candidate vertex times meet a certain minimum fit quality before

they are considered, and is also the earliest time that meets that threshold quality.

The second choice is called the “Time of Max Direct”, which is also an extremum of the set of vertex times based

on the first time measured in each DOM. In this case, it selects the vertex time with the most direct hits.

5.8 Describing Ice with Photonics Tables

The most advanced reconstructions incorporate detailed knowledge of the properties of the ice and how light

travels through the ice. More discussion about how we measured the ice properties can be found in §3.3 and [71][72];

this section describes how we use that description in software. This software, which creates, describes, and accesses

“photonics tables,” is the interface between ice measurements and event reconstructions. Given a point in the detector

where we hypothesize the light came from, and a DOM we hypothesize the light arrived at, we can read the probability

of that hypothesis from the photonics tables. These tables translate the ice property models described in §3.3 into a

format we can use for simulation and reconstruction.

Tables are generated by simulating many photons and tracking them individually until they either are detected,

absorb into the ice, or leave an extended volume around the detector. We run enough photons to populate even the far

bins of the tables, typically 7.7 × 1010. This process takes about 35,000 CPU-hours, and we try to run it on a cluster

with several hundred cores. The NPX4 cluster that IceCube runs in Madison has about 2400 cores, of which any one

user can expect a consistent few hundred, so generating tables takes at least a week. Using the standard Hofstadter’s

law [92] expansion, this is more accurately predicted, with debugging, as a month.
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These tables are set up with 6 dimensions, describing the position of the emitting particle and the detecting DOM.

Those dimensions are:

• depth of the emitting particle

• zenith angle direction at which the particle emits

• polar angle between the emitting direction and the detecting DOM

• azimuth angle, relative to the emitting direction, of the detecting DOM

• distance from the emitter to the detecting DOM

• time between emission and detection

This makes the tables quite large: up to 4 TB for a full set, including cascade and muon light-emission models and

fine binning. To run a fit (historically) one needed to load the full tables into the computer’s RAM, and few computers

exist with that much RAM. We have one in Madison, and used it to execute the fit described in the subsequent

paragraphs. Additionally, as a historical note, these tables also had interpolation problems between bins in each of the

six dimensions: any binning or linear interpolation between bins causes systematic errors. A more coarsely binned

set might be only 20-50 GB, but these were typically crippled by interpolation errors. So, two problems need to be

solved: the size of the tables in RAM needs to be reduced, and the interpolation between bins needs to be improved.

These can both be addressed by using a fit to these tables instead of the tables themselves, and this fit was developed

by Madison grad students during the time of this thesis. An operational overview of this fitting process is presented in

the subsequent couple of paragraphs; a more complete and mathematical discussion can be found at [93][94].

The fitting process that was settled on is called “spline fit”, or “splining” for short. This process uses a series of

quadratic functions to fit the tables, with certain set points being fixed to the table values. The fixed points are called

“knots”. The etymology around splines derives from their original usage in engineering and navigation. “Spline” was

originally a thin strip of flexible wood, and it was literally laid out of a physical plan or map, and pinned at specific

points; the form it assumed was the form with least stress throughout the rest of the curve, because the wood would

naturally minimize points of stress. The engineer could then simply trace the resulting curve. The numerical fitting

algorithm is a digital version of this process.

The spline fit runs on a non-negative linear least squares fit, a common theme of the last few years at IceCube.

The basis functions of the fit are the spline shapes, which vary to minimize the distance to the histogram data. The

fit runs by loading a full set of photonics tables (which, as discussed earlier, could be multi-tera-byte, so fitting a

single section requires 48 GB of RAM) and fitting using well-established algorithms that other people have optimized.

When the fitting run is done, a graduate student, by hand, looks through several projections of the fit onto a single
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dimension, ensuring the quality of the fit. The tools for these cross-checks were designed and first used by Jakob van

Santen. In DeepCore and PINGU, where low energies are more important, the regions of the fit close to the DOM are

more important, and more fitting knots were added by hand to improve the fits in those regions. These low-energy

cross checks were recently performed by Moriah Tobin. The splining process, if there are no errors and no rerunning

required, takes 4-6 hours per file, and runs on 1540 files, for a total of 7.7 kCPU-hours, or a couple of days on our

cluster.

Making lookup calls to these tables is often the time-limiting step of a reconstruction algorithm, so a common

method for optimizing the speed of a particular reconstruction is to strategically reduce the number of photonics

lookups. For example, if we are reconstructing events that only occur within the DeepCore region, and they are known

to have energies below around 100 GeV, we could use a reduced geometry to reduce the number of lookups. If we can

assume there were no hits in the outer regions of the detector that were related to the event in question, we can ignore

those regions, and avoid looking up those DOMs.

5.9 The Gulliver Software Suite

Gulliver is the framework in IceCube for running likelihood fits. It divides the algorithm of running a likelihood

fit into several independently defined parts. By keeping these parts independent with well-defined interfaces between

them, changing one part at a time is made easier. Thus, for example, a minimizer algorithm can be swapped out

without fear of introducing typos into the likelihood function.

Many of the energy reconstructions described in this chapter use methods described in [95].

Gulliver gets its name from the literary character Gulliver the traveler, because it wanders around in the parameter

space, minimizing things from – not kidding – the Lilliput library. The names, original code, and many years of

maintenance are from IceCuber David Boersma.

A Gulliver fit has 5 parts:

• Fitter Module: this is the only one that is a module (the rest are services). The purpose is to tell the services

about each other, and tell IceTray where to run the fit. Since this does not have much specific content, we can all

use the same ones. I3SimpleFitter is the almost-exclusive standard; I3IterativeFitter and Paraboloid are common

exceptions.

• Minimizer Service: the machinery that you probably do not want to mess with. The minimizer takes a series of

input parameters and varies them until the output is maximized; the Simplex minimizer in Minuit2 [96] is what

we usually use.
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• Seed Service: provides a start to the minimization process. It starts with a name, and then uses the dictionary

within each frame to translate between that name and a frame object. Types of frame objects include I3Particles,

I3ParticleVectors, and I3Doubles. This process is quite simple.

• Likelihood Service: this is the first on the list that physicists could spend time developing. It translates an

I3Particle-based configuration to a “goodness” number, e.g. a chi2. Examples all have “likelihood” in their

names. This could use light propagation information, spline tables, or Pandel (see §5.10 or [97]) functions.

Most of the physics that goes into describing a fit goes into the likelihood function.

• Parameterization Service: two functions to translate (a) back and (b) forth between an I3Particle-based con-

figuration that the likelihood understands and a set of doubles that the minimizer can deal with. Minimizers

only understand vectors of parameters, not I3 types. Examples: I3Simple parameterization (which only uses

one particle), and MuMillipede (which uses a vector of particles; see §5.11.2).

The “parameters” which the minimizer sees can just be the reconstruction variables, e.g. par1=x, par2=y, par3=z,

par4=zenith, par5=azimuth. However, it can be good to define the parameters with some transformation of the

physics variables, such that -log(L) behaves more smoothly as function of the parameters, and/or the full range

of the parameters can be used (no bounds). Examples: a conversion between E and log(E), projecting a

hemisphere onto a flat map (for direction).

This could be useful if, for instance, the I3Particle-based configuration space has some poles you want to avoid.

The method “hypothesis” translates from the seed (an I3Particle-based configuration) to the new variables, and

the method “update physics variables” translates the other way: from the physics variables to the I3Particle-

based configuration.

The process of iteratively minimizing can be abstracted to the process of Minuit2 iterating between the Likelihood

and the Minimizer, with the Parameterization to translate between them. Maintaining the modularity of these fits

makes it much easier for code maintainers to compare and debug code. Any hassle or additional debugging that a

reconstruction author may be required to do while integrating a new reconstruction into Gulliver should be considered

an investment towards future ease of maintenance and debugging.

5.10 SPE and MPE

SPE and MPE are two kinds of Gulliver-based likelihood fits that do not use the ice model directly. “SPE32”

stands for Single Photo Electron reconstruction iterated 32 times. “MPE” is a modification of SPE; it stands for Multi

Photo Electron.

Both use the Pandel function to describe light propagation probabilities. This uses a parameterization [97] from the

Baikal neutrino observatory [98]; the author of the parameterization lends his name to the function. Pandel functions
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do not include a depth dependence or detailed information about the ice. This makes it unnecessary to repeatedly look

up information in photonics tables, so Pandel-based fits run faster than the reconstructions described later. Knowledge

of the ice is included in a general sense: the specific values of the Pandel functions used in IceCube [99][100] are fit

to photonics tables, creating a depth-independent “bulk” ice model.

SPE considers the first observed photon from each DOM that had a signal. For each of these hits, it calculates

the probability of a photon traveling from the hypothesis muon track at the Cherenkov angle and arriving at the DOM

at that time, according to a Pandel likelihood function for a single photon. The product of all these probabilities

is the likelihood of that hypothesis track. A minimizer is used to vary the track and find the most likely direction,

interaction time, and interaction position. This process is repeated 32 times to avoid getting caught in local minima of

the likelihood space. The seed directions for the 32 iterations are selected via a 2-dimensional Sobol sequence.

MPE is a modification of SPE. Specifically, it uses a modified Pandel likelihood function for a single photoelectron

(PE). It first counts the total number of PEs that arrived on the DOM, and modifies the Pandel function to include that

many PEs, still basing the start time of the function on the arrival time of the first hit. This modification shifts the most

likely value of the Pandel function to later times. The rest of the reconstruction procedure continues similarly to SPE,

except that a single iteration of the minimizer is used.

The “paraboloid errors” are a description of the likelihood space near the best-fit value of either fit. We used the

paraboloid errors around MPE. The paraboloid algorithm uses a minimizer to map out the region around the best fit

where the significance drops off by 1 sigma. This is based on the assumption that a region of the likelihood space with

a sharper peak gives a higher confidence in the best fit within that peak. Once that region is obtained, the directional

components (zenith and azimuth angles) of that region of likelihood space is described with an ellipse. That ellipse is

the result. The magnitudes of the major axes of that ellipse can be used as a proxy for reconstruction quality.

There are two common misconceptions about SPE and MPE. One is that they depend on a depth-dependent ice

model. They do not; the “bulk ice” model used in Pandel functions is an average over measured IceCube ice properties.

The Pandel likelihood function is based on light propagation in Lake Baikal, and re-scaled to fit AMANDA scattering

data, but it does not vary with the depth in the ice. The second misconception is that MPE considers the times of

multiple hits from each DOM. Instead, it considers the total number of hits and time of the first hit. This is an

improvement over SPE, but it still does not include all the data available to us. This conscious dismissal of available

data marks the SPE and MPE algorithms as intermediate-level reconstructions, not to be considered final results.

5.11 The Millipede Software Library

Millipede is a software package for doing likelihood based reconstruction that tries to incorporate as much infor-

mation as possible about light travel through the South Pole Ice. It is designed to be used in conjunction with the

Gulliver suite, to facilitate swapping out different parts.
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The central portion is a method for calculating likelihoods of observed charge given hypothesis source cascades.

The configuration of the cascades that emit the light is left in a different part, which makes it more configurable;

specific configurations are described in the following subsections.

The likelihood calculation works as follows. The charge on each DOM is split up into time bins based on the

amount of charge, so that each bin contains a certain (configurable) amount of charge, and more bins are created on

each DOM until no bin has more than that amount of charge. The first of the two main functions is “Get Response

Matrix.” When this function is called, it constructs a matrix with the hypothesis sources as columns and the observed

charge (split up by DOMs and DOM-time-bins) as rows. The problem of observed charge amplitude is thus reduced

to a linear algebra problem: we know the observed charge ~q and the matrix of energy losses M , and we want to find

the energy loss at the sources ~ε:

~q = M~ε

Solving for the energy losses is thus reduced to a simple matrix inversion, which is performed in the second of the

two main functions, “SolveEnergyLosses.” The reader should note that the matrix involved is quite large, especially

because DOMs are included in the calculation whether or not they have observed charge. For a large event, the matrix

would include 5,000 DOMs, perhaps half of which have 3-5 time bins, so we can approximate that as 10,000 rows in

the matrix. A typical Millipede source configuration is one source every 10 meters along a track, so the matrix could

easily have 100 columns. Externally optimized sparse matrix linear algebra libraries have been essential to making

this fit work well.

A convenient coincidence of the Millipede physics configuration is that it is very similar to the configuration for

reconstructing the results of Positron emission tomography (PET) medical scans, and thus has a vast literature ad-

dressing reconstruction techniques. PET scans detect pairs of gamma rays emitted by a positron-emitting radionuclide

(tracer) within a biologically active molecule. The positions of the detecting machines are known, and precisely timed

knowledge of the detected gamma rays allows the scanner to reconstruct the position of the emitting particle. This is

algorithmically similar to Millipede, where we reconstruct the position of particles emitting light detected by DOMs

of known position.

Specifically, PET scan literature has addressed the effect of the choice of minimizer used in reconstructions. By

default, the minimizer Millipede uses is a preconditioned conjugate gradient (PCG) minimizer [101], which works

faster and more reliably than the standard non-monotonic maximum likelihood minimizer. Specifically, PCG avoids

spikiness in the likelihood search as a function of the number of iterations, so the circumstance of early minimizer

truncation does not introduce unnecessary complications.

At the time of this thesis, Millipede is the best tested, most maintainable, and most accurate reconstruction suite

available in IceCube.
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5.11.1 Monopod

Monopod is a specific physics hypothesis used within the Millipede Software Library. The configuration is the

simplest possible: a single point source of light, a good approximation of a cascade interaction. For tracks shorter than

the vertex resolution, this can also be a fairly good fit. It is the only physics configuration within Millipede from which

the energy can be read directly without further translation, although some scaling may be necessary depending on the

kind of interaction.

This is the fit used to obtain the observed energy variable in this thesis. In this configuration, the CLast (see §5.7)

algorithm was used as a seed for Monopod. Monopod is particularly good at reconstructing the energy of events which

are fully contained within the detector, as is the case for nearly all oscillation-energy events.

5.11.2 MuMillipede Fit

MuMillipede is the muon reconstruction within the Millipede library, and the fit for which Millipede gets its name.

The image to which the name refers is the arthropod millipede, which has a segmented body with legs extending from

each segment; this looks similar to a chain of cascades within the detector, each with a Cherenkov cone extending

from it.

The physics hypothesis in MuMillipede is a series of cascades spaced along a track. Specifically, given a track

direction and cascade spacing parameter n, MuMillipede places a cascade every n meters along the track. For the

energy range relevant to IceCube, many energy losses from muons are stochastic (e.g. bremsstrahlung), so a fit with

independent energy losses along a track is often more accurate than a continuous loss “light saber” type model that

IceCube has sometimes used in the past.

A modification of MuMillipede was used for the high energy starting events (HESE) analysis [36][102]. The same

cascade configuration hypothesis was used. The change was that instead of letting a minimizer vary the direction to

find the best fit, all directions were specified one at a time in a scan across the whole sky. The result of this was a

likelihood map for all directions, rather than a single best-fit direction. One advantage of such a fit is full confidence

that the reported maximum likelihood is indeed the true global maximum; another advantage is knowledge without

further calculation of the angular confidence contours of the directional fit. The disadvantage is that this approach is

CPU intensive: each event takes 3 to 10 CPU years to reconstruct.

5.11.3 Igelfit

Igelfit is an extension of MuMillipede. It runs MuMillipede several times with fixed directions, then compares the

likelihood of each direction and returns the one with the best reduced likelihood. It automates and somewhat simplifies

the search process undertaken by the HESE analysis. In particular, it has a configurable number of search directions:
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Figure 5.2: A multi-panel plot showing how we combine information from many PMT waveforms to reconstruct the

direction of cascade-type events. The central panel shows a dot for each DOM that registered a signal for this event.

The size of the dot is proportional to the amount of charge the DOM registered; the color shows the time that the signal

started, with blue being early and red being late. For some DOMs, a line connects the DOM dot to a plot on the outer

edges, showing the waveform from that DOM. Within those plots, the black crosses show the observed data. The red

and blue curves show two different predictions for the light arriving at the DOM. Blue shows the best-fit direction; red

shows the exact opposite direction. Notice that the blue fits the black better than the red does, when considering all

DOMs together (even though some DOM signals are not perfectly predicted by either direction). This figure is meant

to demonstrate that it is possible to find a direction of travel from a cascade-type event, even though it is not as easy

as for a track-type event.
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128, 512, or 1024. The interaction vertex position and time are given by the seed vertex position and time, and not

allowed to vary.

In studying the various input parameters for Igelfit, each number of trial directions was tested, and no improvement

was found by adding more test points. This indicated some deeper pathology, and was one of the factors that led to

the project of hand-tuning the spline fits of photonics tables for low energies and small distances (the region which is

of particular interest for low-energy fits).

Whereas Igelfit does not let the direction of the hypothesis track vary, a test was performed using Igelfit as a seed

for MuMillipede, which does allow the track direction to vary. No improvement was observed; this was an unexpected

result.

Igelfit is named for the german word “igel,” which means “hedgehog.” The many test directions radiating from a

single point looks like a hedgehog (see Fig. 5.3) instead of a millipede.

Figure 5.3: A hedgehog, or “igel”, as rendered by the artist Abigail Rindo in a drawing depicting the croquet scene

from Lewis Carol’s “Alice in Wonderland.” [103]

5.11.4 Other Millipede Configurations

The modular design of the Millipede software library makes it easy to create fits around new physics hypotheses.

Some other fits that are in creation or testing include a fit for tau events and a fit for low energy cascades combined

with tracks.

The tau fit is called “Taupede,” in keeping with the “-pede” theme. The physics hypothesis it uses is two cascades

connected by a track whose length is related to the total observed energy. This fits the hypothesis of a tau neutrino

interacting in the ice, creating an initial hadronic cascade and a tau charged lepton, and then the tau decaying in a

second cascade a short distance later.

The low energy fit is called “Biped” because it includes two particles: a cascade and a track, with the same starting

vertex and position but independent directions and energies. This fit is currently under development.
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Chapter 6

The Shadow of the Moon in Cosmic Ray Muons

Finally, the sun and the moon must cast a “shadow”
in the flux of high-energy primary cosmic rays
and observations of this shadow effect might give new
information about the magnetic fields of these bodies.

— GEORGE W. CLARK, 1957 [104]

The Moon blocks a fraction of cosmic rays from reaching the Earth, and this deficit is useful for calibrating any

detector sensititve to cosmic rays. This chapter describes some of the IceCube Moon shadow searches. Observing

the Moon shadow validates IceCube pointing capabilities. It validates that there are no large shifts in the coordinate

transform systems, and that the timing is accurate on a large scale.

The Shadow of the Moon has been used as a calibration analysis in many gamma-ray telescopes, for example

HAWC [105], ARGO-YBJ [106][107], MAGIC [108], Milagro [109], and TIBET-III [110]. Other Moon shadow-

observing particle physics experiments include: MINOS [111], Antares [112], and MACRO [113]. It was first pro-

posed in 1957 [114] as an offhanded comment.

This analysis has been tried several times in IceCube as the detector improved. The analyses presented here (based

on the IC22 (§6.2) and IC40 (§6.3) detector years) show the transition from the years of unsuccessful searches to the

current era of increasing precision and significance, plus the transition from binned to unbinned searches (§6.4). The

final IceCube Moon shadow paper [115] is included in its entirety as Appendix D.

6.1 The Moon Filter

As described in §3.5, IceCube can only transfer a limited amount of data to the North, and thus uses a system of

filters to define which events will most likely be interesting in physics analysis. There is a specific filter dedicated to

the Moon shadow analysis. This filter reconstructs event directions, then compares the direction to the current position

of the Moon in the sky. If the event is close to the Moon, or within a defined off-Moon control region, it passes the

filter. The exact meaning of “close” changes from year to year, as the filters are reviewed and sometimes redefined.

For IC22, we used a rectangular window of 90◦ in azimuth and 10◦ in zenith, in both directions away from the

Moon. For IC40, we used a rectangular window of 40◦/ cos(δ) in azimuth and 10◦ in zenith, in both directions away

from the Moon.



74

(a) The Moon filter rates from July 2007, a cycle from the

IC22 detector year.

(b) The Moon filter rates from July 2008, a cycle from the

IC40 detector year. The feature around 107 is missing data

from a dropped detector run.

Figure 6.1: MoonShadow filter rates as a function of time, over two one-month cycles. The filter turns on when the

Moon reaches 15◦ above the horizon at the Pole. Higher rates from the filter correlate with higher zenith angles of the

Moon.

For both IC22 and IC40, the reconstruction algorithm used was a single (i.e. not iterated) SPE fit (see §5.10).

Additionally, during both years small events were discarded: events with hits on fewer than 12 DOMs or 3 strings.

The window is so much larger in azimuth because, for several reasons, we wanted the off-source region to be at the

same zenith angle as the Moon, so we needed more sample space in azimuth than zenith. There is a strong zenith angle

dependence of the events in IceCube: around 106 more down-going events than upgoing events trigger the detector.

The Moon filter rate is so dramatically dependent on the declination angle of the Moon position because the cosmic

ray muon flux has a strong zenith angle dependence: a higher event rate is observed from directions close to the zenith

than close to horizon. As the Moon rises and sets relative to the South Pole, this means that the filter stream varies

drastically. The highest rates come from the times when the Moon is highest in the sky (viewed from the ice), and the

filter shuts off by design if the Moon is less than 15◦ above the horizon. Below that, the data rate is so much lower that

it was not worth the computing time, for a first analysis, to save the data.

An additional effect causing expected variations in the filter rate comes from the azimuthal angle between the

detector and the Moon. Events traveling close to several strings of the detector are more likely to be detected and

reconstructed, so when the aligned strings point to the Moon, the event rate increases. This can be seen in the peaked

structure of Fig. 6.2, which carries over into peaks in the rates from typical months, shown in Fig. 6.1. The peaked

structure is much stronger in Fig. 6.2 than Fig. 6.1. because the azimuthal structure averages out as the detector rotates

relative to the Moon. The livetime of each Moon cycle is not long enough for the peaks to completely average out, so

peaks are still present in Fig. 6.1.
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Figure 6.2: Moon filter rates versus reconstructed azimuth, showing a peaked structure. This peaked structure causes

the 12-hour peaks in Fig. 6.1. These data were taken using the IC22 detector configuration.

Consider the various peaks of Fig. 6.2, which represents the data from a single 8-day Moon cycle (the 8 days

within a single lunar month when the Moon was high enough above the horizon that the Moon filter took data). There

are two sizes of structure: the narrow peaks ∼ 20◦ wide and the wider peaks, of which there are two. The wide peaks

correspond to the times when the direction of the Moon aligned with the long axis of the asymmetrical IC22 detector

configuration; the corresponding two wide troughs likewise correspond to the times when the direction of the Moon

aligned with the short axis of the detector. The narrower peaks arise from alignments of specific strings. Because of

the extreme discreteness of the IC22 detector setup relative to the total detector size, azimuth plots from IC22 (e.g.

Fig. 6.2) have larger variations in rate than similar plots from later and larger detector configurations.

6.2 The IC22 Binned Analysis

The main new idea of the IC22 Moon shadow analysis was an attempt to use off-source regions from different

zenith angle bands relative to the Moon position.

Events were selected to improve the median angular resolution while still preserving adequate statistics. An

approximation argument was used to find a significance indicator function, as follows. In this discussion, “signal” is

understood to mean “deficit,” since the signal of interest is a lack of events from the direction of the Moon.

The final search bin contains events from both signal and background; the significance will scale roughly as signal

over square-root of background:

significance ∝ signal√
background

The search bin size should be proportional to the median angular resolution ∆Ψ of the sample:

r ∝ ∆Ψ
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The number of background events will scale directly with the area of the search bin and the total efficiency of the cuts:

background ∝ efficiency ∗ (∆Ψ)2

The number of signal events, assuming that the Moon is a point-like source relative to the angular resolution of this

sample, scales only with the efficiency of the cuts:

signal ∝ efficiency

Putting those together, we see:

significance ∝ signal√
background

∝ efficiency√
efficiency ∗ (∆Ψ)2

∝
√

efficiency
∆Ψ

Cuts were designed to maximize this function.

The following event selection cuts were used. Events with hits on fewer than 12 DOMs or 3 strings were discarded;

these cuts were applied at filter level. Using the reconstruction algorithm SPE8 (see §5.10), events with a direct length

of less than 340 m or fewer than 6 direct hits were discarded. These cuts produced a sample which, in cosmic ray

muon simulation samples, had a median angular resolution of 1.80 ◦ with a passing rate of 50.6%. Using a similar

argument, the bin size was optimized to 1.56◦. A search bin of this size should contain ∼ 45% of the signal (in this

case, the deficit).

Figure 6.3: The total IC22 Moon shadow filter sample, after analysis cuts. The color indicates event rate. The y-axis

shows the declination (similar to zenith, for IceCube) difference between each reconstructed event direction and the

position of the Moon at the time the event was recorded. The x-axis shows the right ascension (similar to azimuth,

for IceCube) difference, with the scaling factor to account for geometrical differences in height. The central bins have

been excluded in this figure to preserve a blind analysis during the early stages of analysis development.
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To search for the deficit at the Moon’s position, the reconstructed directions of all events were plotted relative to

the position of the Moon at the time each event was recorded. A trigonometric scaling function of the Moon’s current

declination cos(δ) is added to account for the spherical geometry. The total rates are shown in Fig. 6.3, with the central

Moon position blanked out. The zenith angle dependence of the flux is strongly visible.

This phase space relative to the Moon was split up into bins. Rates from bins in the same declination band were

similar, with some remaining structure in azimuth. This structure can be seen in Fig. 6.4.

To account for this structure, an assumption was made that the right ascension structure was the same in adjacent

declination bands. A normalization function was formed based on the rates of the two declination bands immediately

adjacent to the central, Moon band. Applying this normalization, the corrected Moon band is shown in Fig. 6.5. The

Moon is in a bin with a 1.7σ downward fluctuation from the average. This 1.7σ is considered the final significance of

the IC22 Moon shadow search, and is not publicly documented elsewhere.

6.3 The IC40 Binned Analysis

The IC40 binned analysis used similar techniques to the IC22 analysis, with some notable differences highlighted

here, including a more significant result, and abandoning the declination-band normalization procedure. A fuller

documentation can be found in [116], which discusses an analysis of 8 of the 14 lunar months of IC40.

The reconstruction algorithm on which the analysis is based changed from SPE8 to SPE32 (see §5.10). This, in

addition to improvements in the detector itself, improved the angular resolution of the data sample.

The event selection cuts were re-optimized, using the same significance estimator function. Events were discarded

if they had an estimated reconstruction error more than 1.6 ◦. No cuts were made on the direct length or number of

direct hits. The resulting median angular resolution was 1.27 ◦, and the search bin size used was 1.25 ◦ square, which

was found from a radial search bin size of 0.8 ◦

The significance for each bin was calculated using [117], which takes into account the size of the background

sample:

significance =
Non − αNoff√
α(Non + αNoff)

where

α =
Non
Noff

This significance was calculated for each bin of Fig. 6.7 in the following way. The data are plotted relative to the Moon,

correcting for projection effects. The bin size is the optimized 1.25◦ × 1.25◦1. Each bin successively is considered

an on-source region, and 20 off-source regions are taken from the same declination band, starting 3 bins away (i.e.,

skipping two bins). Ten of the off-source regions are are right ascension angles larger than the Moon position; ten

1Recall that the filter window extends for 40◦ on both sides of the Moon position, and that the search bins are 1.25◦ wide. That leaves 32 bins
on each side of of the Moon available for analysis.
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are are at angles less than the Moon position. To test the hypothesis that the background fluctuates randomly, these

significances are plotted in Fig. 6.8, and are found to be Gaussian distributed around 0 with a width of 1, which

confirms the hypothesis and validates the analysis method.

The final significance found for the Moon shadow in IC40 with a binned method was 7.56σ.

A second, similar search was performed with a different arrangement of on-source and off-source regions. This is

shown in Fig. 6.9. The significance of the result from this search was similar: 7.9σ.

6.4 The IC40 and IC59 Unbinned Analyses

An independent analysis was performed on the IC40 data sample and continued with IC59 sample using an un-

binned likelihood technique similar to IceCube point source searches [118](but without an energy-dependent term).

A summary of the IC40 analysis can be found in [119], and more extensive treatments of both can be found in [120]

and [121]. This section briefly describes the differences between binned and unbinned searches as they relate to the

Moon shadow search.

A binned search is inherently limited by a balanced choice of bin size: if the bins are large, statistical errors in

each bin are small but angular sensitivity is lacking. If the bins are small, statistical errors dominate. An unbinned

technique lessens the impact of this choice.

A binned search, also sometimes called a “cut and count” analysis, defines hard edges of an on-source bin. A

single event is either counted as in or out, regardless of how close to the edge of the bin it is. By contrast, an unbinned

search considers the probability that any event was pointing in a given direction, based on the reconstruction error

estimate of each event. This way, no information is thrown out; the reconstructed position and error from each event

is included in the final analysis, without averaging together the errors of the whole dataset.

This is implemented through a likelihood function:

L(~xs, ns) =

N∑
i

log
(ns
N
Si + (1− ns

N
Bi)
)

where ~xs is a directional position (in this case, relative to the Moon’s position), ns is the number of signal events, N

is the total number of events, and Si and Bi are the expected shapes of the signal and background, respectively.

The shapes of Si and Bi were obtained by constructing a position distribution of all events: each event contributed

a Gaussian centered at its reconstructed position, with a width of its reconstruction error estimate. This provides

a smooth function that can be evaluated on an arbitrarily fine grid; in particular, the distribution can be evaluated

on a grid much finer than the angular reconstruction error of the sample, so the measurement is not limited by the

granularity of the grid.

The signal region is centered, as always, on the Moon. The background shape Bi was obtained similarly to the

binned searches: by looking at regions of the sky adjacent to but not containing the Moon.
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At each point on the grid, using these Si and Bi, the likelihood function is optimized by varying ns. Because the

Moon produces a deficit, negative values of ns were expected in the region of the Moon.

For IC40, the best fit value of ns for the deepest deficit was 5326. To calculate the significance of this, the

fluctuations of the two background regions were measured. These were fit with to a Gaussian distribution, which

was found to have widths of 544 and 498 events, both centered at 0. Taking this width as a standard deviation, the

deficit has a significance of 10 − 11σ. The similar analysis of the IC59 dataset found a deficit of 8660 events, for a

significance of 13− 15σ. Both of these results are described in detail in Appendix D.

6.5 Future Studies

In the future, it could be possible to observe the Moon shadow every month, and use it as a form of monitoring.

It could be possible to automate certain elements of this analysis to the extent that the angular size of the shadow, the

depth relative to the surrounding rate, and the shift from magnetic fields could all be used to monitor changes in the

detector. Currently, we still take data with a Moon filter, and scientists from the IceCube cosmic-ray group continue

to study the output.
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(a) Rate versus right ascension relative to the Moon, for 5

declination bands relative to the Moon.

(b) The same bands as (a), normalized to equal area. Even before

correcting for the global structure, the central Moon bin can been

seen as a slight outlier.

Figure 6.4: The IC22 declination bands relative to the Moon. The band centered on the Moon is shown in black.

Bands above the Moon are shown in red and magenta; bands below the Moon are shown in blue and cyan. A similar

structure can be seen in all bands.

Figure 6.5: The IC22 Moon shadow final histogram. The central bin, containing the Moon, shows a 1.7σ deficit.
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Figure 6.6: A histogram showing the rate of events in a declination band around the Moon, using IC40 data. A clear

deficit can be seen in the direction of the Moon, at 0 on the x-axis. The errors shown here are
√
N . This figure is the

IC40 version of Fig. 6.5.

Figure 6.7: A histogram showing the significance of deviations in rates in the region around the Moon, using IC40

data. See text for significance calculation.
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Figure 6.8: Gaussian fit to the significances of deviations in the region around the IC40 Moon. The 9 bins at and

adjacent to the Moon are shown in red; all show deficits. The remaining bins make up the larger, black histogram. A

Gaussian distribution is fit to those, and its width is found to be consistent with 1.00. This indicates that the non-Moon

fluctuations are properly random. Caveat: this figure was made based on 8, not the full 14, lunar months of IC40.
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Figure 6.9: An alternate Moon shadow search using annular bins around the Moon position. Instead of binning events

rectangularly, this search uses the angular distance between the Moon and the reconstructed event direction. The bin

size decreases for larger distances so that each bin represents the same solid area. There is an overall increase at

larger radii because of the strong zenith angle dependence of the cosmic ray flux; if this flux were linear or quadratic

with zenith, this method would have smoothed it away. The top-left plot shows a basic histogram of number of

events relative to the Moon. The top-right plot shows a compiled histogram, averaging over 8 constructed off-source

histograms. Each off-source histogram, or “dummy Moon”, was constructed by considering a point away from the

actual Moon but in the same declination band. The various off-source histograms are spaced far enough apart that

they do not overlap. The bottom-left plot shows the difference between the two top plots. The deficit from the Moon

shows as the first bin of the bottom-left plot. Various statistics about the plots are shown in the bottom-right. The final

significance, using Li and Ma [117] statistics on the central bins, is 7.9σ.
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Chapter 7

Event Selection

Hofstadter’s Law: It always takes longer than you expect, even
when you take into account Hofstadter’s Law.

— DOUGLAS HOFSTADTER [92]

This chapter describes the event selection algorithm used to isolate a sample of upgoing neutrinos for oscillation

analysis. The specific cuts are described here; for a more general introduction to the algorithms, see Ch.5. The

cuts fall broadly into three categories: cuts performed online for all DeepCore analyses (§7.3), cuts designed by

previous oscillation analyses (§7.4), and cuts designed specifically for this analysis (§7.5). Additional introduction to

the simulation specific to this analysis is in §7.2, and comparisons between cut levels in both data and simulation are

in §7.6.

This analysis focuses on atmospheric neutrino events that have traveled up through the Earth. Atmospheric neutri-

nos are created isotropically around the Earth (specifically, at all zenith angles relative to IceCube), and we focus on

the upgoing neutrinos for two reasons.

First, we know most accurately that they are neutrinos and not other cosmic-ray induced air shower products, since

neutrinos are the only particles that travel through the Earth without decaying or interacting.

Second, the most upgoing neutrinos give us the best view of oscillations because of the length over which they

travel. The IceCube detector is most suited to o(1) TeV or higher energy interactions, but with DeepCore some events

are reconstructable as low as 10 GeV, with limited resolution. Given the limitations of IceCube, oscillation effects are

most easily observed at the highest energies they are known to exist.

To determine the most relevant energies, consider the two-neutrino approximation of the oscillation formula:

P (νµ → ντ |L(km), E(GeV)) = sin2 2θ23 sin2

(
1.27

∆m2
23L

E

)
(7.1)

Note especially that the oscillation period varies with L/E. To see a given peak with the highest possible energy

events, we need to give them the longest possible length over which to oscillate. For atmospheric neutrinos, that

means looking directly to the other side of the Earth, which means the events arrive in our detector going directly

upwards. Assuming an oscillation length of the diameter of the Earth (∼12000 km), the oscillation maximum at the

highest energy occurs between 20 and 30 GeV; this approaches the energy range visible to Super-Kamiokande.
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A further aim of the event selection presented here is to isolate muon neutrino charged current interactions from

electron and tau neutrino charged current interactions and any neutral current interactions. It would be particularly

helpful to distinguish charged current νµ from ντ , because the oscillation effect in question produces a disappearance

in the νµ rate and an appearance in the ντ rate at the same energy and oscillation length. However, no part of this

analysis was specifically designed to distinguish charged current muon neutrino events, because they already dominate

the sample of well-reconstructed contained upgoing events, and no method known within IceCube can separate the

various flavors of events in the 10 GeV region accurately enough to further improve the purity of the data sample while

preserving an adequately large sample.

The goal of this event selection is to identify a sample, as large and pure as possible, of upward traveling events in

this 20-30 GeV energy range.

7.1 Limiting Bias Using Blind Analysis

Blind analysis is a techinique for limiting unconscious bias, commonly used within particle physics [122]. In

IceCube, the specific method of blind analysis we use restricts the experimental data sample to only 10% of the total

data while developing an analysis. The complete dataset is then used after an “unblinding review”, during which the

collaboration approves a defined post-unblinding procedure. The unblinding review incorporates an analysis approval

process from the IceCube collaboration.

Within this analysis, the event selection was designed using a reduced sample of data. The sample was defined by

selecting runs with run identification numbers ending in “0”; this approximates 10% of the total sample. The livetime

of this reduced sample, called the “burnsample,” was 781.19 hours. The livetime of the full sample was 7500.71 hours;

the burnsample represented 10.4% of the full sample. Both parts of the event selection (both the selection presented in

§7.4 and §7.5) were designed this way. However, only the analysis in §7.4 and [123] defined an unblinding procedure;

after unblinding the data once, a second unblinding was considered redundant. The fact that the limiting factor of this

analysis was not the statistical size of the sample (see §10) further reduced the importance of blind analysis in this

context.

7.2 Monte Carlo Simulation

The IceCube simulation uses several different Monte Carlo generators to produce different kinds of simulated data.

Cosmic ray air showers, a main background to this analysis, are generated with the CORSIKA software package (COs-

mic Ray SImulation KAscade) [124]. High energy neutrinos (and originally, all signal neutrinos) are generated with

a software package called NuGen, based on ANIS (All Neutrino Interaction Generator) [125]1. The third generator is

Genie (Generates Events for Neutrino Interaction Experiments) [88], which is used for sub-TeV energy neutrinos.

1This citation [126] brings this thesis to an above-average number of citations for a PhD thesis in engineering and technology.
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NuGen and Genie each have advantages and disadvantages for this analysis. While NuGen generates neutrinos

in the wide energy range from 10 GeV to 1 ZeV, it is most useful in a narrower range. NuGen does not include

interaction processes other than deep inelastic scattering, and so it is best suited to energies above several TeV. NuGen

does have the advantage of including information about propagation through the Earth based on the Preliminary

Reference Earth Model [127], which is particularly important for oscillation analyses. Genie includes more detailed

interaction information and cross sections at energies relevant to oscillations, and is reviewed, maintained, and verified

by the wider oscillation community, especially accelerator neutrino experiments. The disadvantage of Genie is that it

is currently tested only at the lower end of the IceCube energy range. The process of integrating these two generators

is underway.

This analysis uses an energy-dependent mix of NuGen and Genie neutrinos as a signal sample. The method for

mixing these two sets was developed for a previous IceCube oscillation analysis [123]. At low energies, only Genie is

used. At high energies, only NuGen is used. In a transition region, both are used, with a linear transition from one to

the other. The transition energy range is from 50 GeV to 190 GeV. The weighting modification is displayed in Fig. 7.1.

An example of a distribution split up into all types of simulation is shown in Fig. 7.2.

7.3 The Online Filter

IceCube uses a system of triggers and filters (see §3.5) to perform the earliest stages of all event selections. This

analysis starts with a filter stream designed to select events starting in DeepCore. Events passing at least one filter

are saved in files which, for historical reasons, are called “Level 2” files; this is the start of the numbering scheme for

labeling higher cut levels.

The trigger [58] works in the following way. IceCube uses a system of “hard local coincidences” (HLC) over a

pre-defined trigger time window to decide when to read out the DOMs. The HLC condition is satisfied for a single

DOM if it crosses a voltage threshold and then, within ±1µsec, another DOM out of its nearest or next-to-nearest

neighbors on the same string also crosses the voltage threshold (then both pass HLC). The DeepCore filter uses data

from two simple majority triggers: the first requires 8 HLC DOMs within 5µsec anywhere in the detector, and is called

SMT8. The second, called SMT3, requires 3 HLC DOMs within 2.5µsec, and those DOMs must be from within the

DeepCore fiducial region. That region is defined as the high quantum efficiency strings and their neighbors, using only

the DOMs below 2100 m depth. The SMT3 trigger adds less than 10 Hz to the total trigger rate.

In addition to the HLC hits used for triggering, information is recorded about all hits within±10µsec of the trigger

time, but if an event did not pass HLC we don’t save as much detailed information about its PMT response; we save

only the time and amplitude of the first pulse, on the assumption that there was only one pulse in the PMT waveform.

These hits are called “soft local coincidence” because they coincide with triggering DOMs that may be relatively far

away within the detector, but are still “local” in time. Soft local coincidence hits can be useful for further vetoing and

event reconstruction.
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(a) Genie before weighting modifications (b) NuGen before weighting modifications

(c) Genie after weighting modifications (d) NuGen after weighting modifications

Figure 7.1: The Genie-NuGen cross-weighting method. The weights shown include oscillation effects, assuming

maximal oscillations. The y-axis (weight of each event in the simulation) is different between Genie and NuGen

because of different numbers of files generated: when more files are generated to represent the same livetime, each

event has a smaller weight. The z-axis, shown as color, shows the number of generated events with a specific weight

and true energy. This figure is meant to illustrate the effect of the cross-weighting method, which is seen in the

difference between the upper panels and the lower panels. In the upper panels, the cutoff of the colored region reflects

the full energy spectrum of simulated events. In the lower panel, the weights have been reduced in select energy

regions: high energies for Genie, low energies for NuGen. In all plots, the clustering of events creating the streak-like

structure is caused by pileup of similar interaction types: charged and neutral current interactions.
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Figure 7.2: NCh versus rate at cut level 10, showing all simulation components. The neutrino simulations are split up

by flavor. Notice that NuGen dominates at higher energies, and Genie at lower energies.The flavors are listed in the

plot legend in the same order in which they appear in the plot: mu on top, then e, then tau. NuGen neglects tau flavor

neutrinos. The sum of all simulation components is shown in red, with data in black for comparison.

The lower plot shows the ratio of data to total simulation; in terms of the upper plot, this would be the ratio of black to

red.
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The main purpose of the DeepCore filter is to distinguish interactions that started within the detector from particles

arriving from outside, which were most likely created in cosmic ray showers unrelated to the neutrino physics in

question. The assumption here is that if an event started outside the detector, it probably deposited some light on the

way in. At DeepCore energies, an algorithm based on this assumption reduces the cosmic ray background by a factor

of 3 to 4 orders of magnitude, but since there are 106 times more background than signal to start out with, further event

selection is still needed. 2

The DeepCore filter is based on the following specific algorithm. It starts with events that pass the aforementioned

SMT3 trigger. Hits within an event are split into those in the fiducial region (DeepCore and the center of the IceCube

strings) and in the veto region. Considering hits in the fiducial region, an approximate time and position of the

interaction is estimated by taking the amplitude-weighted average of all the hits. Because of the weighting involved,

this is often referred to internally as the center of gravity or CoG, even though the weighting is by charge amplitude

and not by any mass. This CoG time and position can then be compared to the time and position of each pulse within

the veto region (considering one pulse at a time) to check for causality. The speed between these two space-time points

is calculated: the spatial distance divided by the time difference. If the speed looks like it is close to the speed of light,

the interaction was probably from a cosmic ray muon starting outside the detector. The speeds, calculated in this way,

are plotted in Fig. 7.3 for a sample of atmospheric neutrinos and a sample of cosmic ray muon background.

Specifically, after calculating the speeds between the CoG of the fiducial hits and each of the veto hits, the event

passes the DeepCore filter if 0 or 13 of the veto hits falls within the speed window 0.25 to 0.4 m/nsec. This cuts down

the rates about 15 times relative to the SMT3 trigger, to ∼16 Hz.

7.4 Preliminary Cut Levels

This section describes the cuts designed for a previous oscillation analysis [123], which (for the levels described

here) were also used for this analysis.

7.4.1 Cut Level 3: First Fits

Level 3 is the first cut level specifically designed for oscillation analyses. It includes cuts on 4 quantities, each of

which can be calculated quickly.

2Selecting contained events in an effort to reduce background is a technique common to many IceCube analyses. In this analysis, containment
eliminates most throughgoing cosmic ray muons. At higher energies, where muons deposit more light in the detector, a larger fraction of the
throughgoing cosmic ray muons can be eliminated. At the highest energies (100 TeV to PeV and above), effectively all muons from cosmic ray
interactions are eliminated, as well as neutrinos from cosmic ray interactions in the atmosphere [128], leaving astrophysical neutrinos as the only
remaining source. This was the basis for the High Energy Starting Event [36] or “muppet”[102] analysis designed in 2012.

3In some previous IceCube works, this was set to 0, 1, or 2; for this analysis, the cut value was consciously lowered to help reduce cosmic ray
muon background.
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Figure 7.3: Particle speed probabilities per event for simulated muons from cosmic-ray interactions (black dashed line)

and simulated muons from atmospheric neutrinos inside DeepCore (red solid line). The speed is defined to be positive

if the hit occurred before the COG time (see text) and negative if it appeared after. Hits in the veto region are generally

expected to have a speed close to c ' +0.3m/ns. Smaller speeds occur for light delayed by scattering. Larger speeds

are in principle acausal, but since the COG time represents the start of a DeepCore event, whereas the COG position

defines its center, the particle speeds for early hits are slightly overestimated. Events with a hit within a particle speed

window between +0.25 and +0.4 m/ns are rejected. This is Figure 11 from [58].
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A cut is applied on the number of DOMs that register a signal, after applying hit cleanings (see §5.3). The time

window for cleaning is [-4000,+6000 ]nsec relative to the trigger time. The time and radius values for Seeded RT

cleaning are R=150 m, T=1000 nsec. After these hit cleanings, a minimum of 6 hits is required.

A cut is applied on a Linefit reconstruction (see §5.6) performed on only hits within the DeepCore fiducial region.

The zenith angle of the resulting fit must be roughly upgoing or close to the horizon. The cut value is at 0.2 in

cos(zenith angle), which cuts out the most downgoing events.

Similarly, a cut is applied on an SPE reconstruction (see §5.10) performed on only hits within the DeepCore

fiducial region. The cut value is also 0.2 in cos(zenith angle), cutting out the most downgoing events.

Finally a cut is applied on the output of NoiseEngine (see §5.5), which eliminates noise-only triggered events. The

output of NoiseEngine is a binary pass-fail, with parameters having been optimized during the algorithm’s develop-

ment.

7.4.2 Cut Level 4: NCh NVeto

The Level 4 cuts are based on two ways of counting the number of DOMs that register signals. The first cut

requires 6 or more DOMs with hits in the DeepCore fiducial region, without any other hit cleaning. The second cut

requires no more than 1 DOM hit in the veto region, that is, any of IceCube outside of the DeepCore fiducial region.

The veto count only includes DOMs hit before the initial trigger (3 DOMs hit in rough coincidence with each other).

The veto count also has hit cleaning applied to it: both Time Window cleaning and SeededRT cleaning (see §5.3).

7.4.3 Cut Level 5: TTrigger Splitter

The Level 5 cuts are designed to eliminated a particular class of mis-reconstructed events: pairs of downgoing

cosmic rays that can confuse the timing of basic reconstructions, which return an upgoing fit based on a single particle

hypothesis. This is accomplished using the TTrigger splitting algorithm (see §5.4).

Most of the specific settings for running TTrigger were optimized for astrophysical point source searches at higher

(e.g., 10-100 TeV) energies. The exceptions were optimized for a DeepCore oscillation search [123]; those exceptions

were the XY distance, the Z distance, and the Time Cone.

Using the output of TTrigger, the analysis further required at least one set of topologically connected hits. If

a second set was found, i.e., if the event could be split successfully into two sub-events, the second sub-event was

required to have zero hits. This is equivalent to requiring one and only one sub-event.

The resulting sample has ∼544k events predicted from simulation scaled to the total livetime of IC79, with a

neutrino to cosmic ray muon ratio of 41 to 503.
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7.4.4 Cut Level 6: Improved Linefit and SPE32

The Level 6 cuts use more sophisticated directional fits to further reduce the background of downgoing cosmic ray

muons by cutting out all events reconstructed as downgoing. The fits used are Improved Linefit (§5.6 and [89]) and

SPE32 (§5.10). The cut values are at the horizon (cos(zenith angle) = 0). Both of these fits are run only on the hits

after event splitting, that is, only on one of the sub-events.

The resulting sample has ∼133k events predicted from simulation scaled to the total livetime of IC79, with a

neutrino to cosmic ray muon ratio of 27 to 106.

7.4.5 Cut Level 7: Causality-based veto

The Level 7 cut looks for causal relationships between hits in the veto region and the triggering fiducial hits. This

cut was designed specifically for DeepCore oscillation analyses [123], and may be of interest to the wider DeepCore

group.

The algorithm compares the time and position of the pulses which first trigger the detector: at least 3 DOMs hit

within the DeepCore region and within 2 DOMs of each other. A hypothesis is tested that a throughgoing muon created

hits in the outer region of the detector as well at the inner region. This is tested by looking at the speed between the

outer hits and the inner hits. A speed consistent with the speed of light indicates the possibility of a sub-threshold

muon. This algorithm is discussed in more detail in [123].

The resulting sample has ∼15.3k events predicted from simulation scaled to the total livetime of IC79, with a

neutrino to cosmic ray muon ratio of 8.6 to 6.7.

7.5 Newly Optimized Cuts

The cuts at Level 8 and higher were optimized specifically for this thesis (in contrast to the previous section, which

was optimized for [123]).

7.5.1 Cut Levels 8: Monopod

The Level 8 processing centers around the particle reconstruction algorithm Monopod, described in more detail in

§5.11.1. The Level 8 cuts are all cuts on Monopod output and quality. As this reconstruction includes many technical

improvements on previous reconstructions, it was expected to have greatly increased energy resolution, and the cuts

were designed to optimize this resolution.

One cut required a minimum reconstructed energy of 10 GeV. At energies lower than this, there was no simulation

available to evaluate the quality of the sample. Additionally, a non-linearity was observed in the rate at these energies,

and without simulation this was difficult to investigate, so the region was excluded.
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Another cut restricted the sample based on the reconstructed interaction vertex: it was restricted to the DeepCore

fiducial region below the dust layer, specifically to -500 to -200 m in IceCube coordinates. The vertex also had to be

within 150 m of the central string, String 36. Well outside of this region, the event rate was already low because of cuts

at previous levels designed to veto events starting in the outer regions of the detector. Close to these cuts, a distortion in

the reconstructed energy was observed (see Fig. 7.4). This distortion can be understood by a decreased light detection

in those regions: if a particle is mistakenly placed in those regions by a reconstruction, the reconstruction will assume

that the same amount of observed light was created by a brighter particle, thus misreconstructing the energy as too

high. To maintain reconstructed energy accuracy, these regions were cut.

Figure 7.4: Monopod reconstructed depth versus energy resolution. The lowest DOMs in the detector are at -500 m;

the highest are at +500 m. The dust layer (see Fig. 3.5) is at -100 to 0 m in these coordinates. The cuts for this analysis,

as described in the text, cut out the regions in the dust layer and below the detector where the reconstructed energy is

distorted.

The last Level 8 cut required a minimum of 5 direct hits. A direct hit is defined in terms of the “time residual:” the

difference between the actual light arrival time and the expected light arrival time according to a particular emission

position hypothesis. A hit is considered “direct” if it has a residual between -15 nsec and +75 nsec. A larger number

of direct hits within an event indicates a high quality reconstruction, so requiring many direct hits cuts out events with

bad energy and zenith angle resolution. On the other hand, it also simply indicates an event with a lot of hits, so cutting

out events with few direct hits cuts the oscillation signal, which is at low energies. A balance was achieved by cutting

the region dominated by cosmic ray muons.

The resulting sample has ∼6.2k events predicted from simulation scaled to the total livetime of IC79, with a

neutrino to cosmic ray muon ratio of 4.9 to 1.3.
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7.5.2 Cut Level 9: Igelfit

The final level of processing was Level 9, which centered on the Igelfit reconstruction (see §5.11.3). Igelfit was

chosen for its accurate zenith angle resolution. No additional cuts were performed at Level 9.

7.5.3 Cut Level 10:

The final selection level includes cuts on reconstructed energy and zenith; this cut level places the events in a 2-

dimensional histogram for analysis. The overflow and underflow bins are not included in the analysis, thus defining the

edges of the histogram amounts to defining a cut. The placement of these cuts was studied with round trip trials (Ch.9),

considering the full analysis chain and optimized for significance and limiting the influence of systematics-dominated

regions at the lowest energies and most downgoing angles. Further discussion of this optimization is deferred to Ch. 9.

The allowed events were between 10 GeV and 1 TeV, and had upgoing reconstructed zenith angles cutting out the

horizon: cos(zenith) <-0.2.

The resulting sample has ∼3.9k events predicted from simulation scaled to the total livetime of IC79, with a

neutrino to cosmic ray muon ratio of 3638 to 296.

As Level 10 is the final cut level, this is the point to include information about the final resolution of the energy

and zenith angle reconstructions. These are included as Fig. 7.6 and Fig. 7.5. The energy resolution was measured at

35%, which is 0.15 when measured in the logarithm. The median zenith angle resolution was measured at 11.8◦.

Figure 7.5: Event rate versus zenith angle reconstruction error for Igelfit and Monopod. The median of each sample is

included in the legend: 11.8◦ for Igelfit, and 14.3◦ for Monopod. As expected, Igelfit performs better than Monopod.
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7.6 Event Selection Summary

The remainder of this chapter contains summary views of several variables plotted at all available cut levels.

The true and reconstructed zenith angle and neutrino energy are particularly relevant because they are the closest

to the physics being probed; recall that oscillation probability is a function of neutrino energy and length traveled. In

our case, the length traveled through the Earth from atmospheric production is a direct function (cosine) of the arrival

angle of the neutrino. The neutrino energy is analyzed within a histogram with a logarithmic x-axis to emphasize

the low energy (20-30 GeV) region where the oscillation signal is the strongest, while still including data from higher

energies more accessible to IceCube.

The variable NCh (the number of DOMs with hits) is shown because it correlates with energy, and is available in

both the simulated and experimental sample at all cut levels. It shows basic agreement between the experimental and

simulated data, with better agreement in the signal region at higher cut levels.

More variables from each cut level are available in Appendices A-C.

Finally, the predicted rates for each type of simulated data are shown at each cut level. While the final cuts

(especially the choice of where to place the final zenith angle cut) are tested with Round Trip Trials (Ch 9) and not

through methods described here, the results are included here for completeness.
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Figure 7.6: Event rate versus energy reconstruction error for Monopod. The y-axis on all the sub-plots shows the

fractional energy error, i.e. (reconstructed - true)/true. The left and right upper plots show the reconstructed and true

energies, respectively. Each of these is worth considering, for different reasons. The plot of fractional energy error

versus true energy tells us if there are any problems in isolated energy regions of the simulation. The plot of fractional

error versus reconstructed energy tells us how much to trust the values returned from the reconstruction, which is of

paramount importance to later analysis. The two lower plots are profiles of the two upper plots; the size of their error

bars is the RMS of each column of the upper plots. The error bars in the lower-left plot give us the resolution of the

sample as a whole: they are all between 0.32 and 0.37, centered on 0.35. We report 0.35 as the fractional energy error,

and use this (35%) later as the energy bin size.
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Figure 7.7: NCh at all cut levels. The cut levels are defined throughout the preceding chapter. Hits are only considered

within the DeepCore fiducial region, but no other hit cleaning is applied.
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Figure 7.8: Monte Carlo true energy at all cut levels. The cut levels are defined throughout the preceding chapter.
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Figure 7.9: Monte Carlo true zenith angle at all cut levels. The cut levels are defined throughout the preceding chapter.
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Figure 7.10: Reconstructed energy at all available cut levels. The cut levels are defined throughout the preceding

chapter. The reconstruction used here is Monopod.
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Figure 7.11: Reconstructed true zenith angle at all available cut levels. The cut levels are defined throughout the

preceding chapter. The reconstruction used here is Igelfit.
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Table 7.1: Event rates passing each cut level for each type of data. For simulation, the rates are weighted to an

atmospheric energy spectrum, and total weights are scaled to the livetime of the data: 7500.71 hours.

Cut Genie NuGen Sum Genie NuGen Sum Genie CORSIKA Exp

Level νµ νµ νµ νe νe νe ντ µ

L5 14897 13452 28348 11214 958 12172 900 501899 603218

L6 8773 9901 18674 6602 636 7237 592 105578 118830

L7 2096 2389 4485 2269 198 2467 159 6673 14140

L8 1175 1267 2442 1299 74 1374 71 1264 5247

L9 1175 1267 2442 1299 74 1374 71 1264 4227

L10 688 800 1488 647 30 677 58 242 2085

Table 7.2: Number of events passing each cut level for each type of data. These are listed to give the reader an

approximate sense of the statistical errors in the simulation. For example: the cosmic ray muon background sample

(CORSIKA) has much greater generated livetime than the signal, but still has the largest statistical error at the higher

cut levels. To translate these values into precise statistical errors, one would also need the energy-dependent relative

weighting of each event.

Cut Level Genie νµ NuGen νµ Genie νe NuGen νe Genie ντ CORSIKA µ Exp

L5 570937 491160 260552 260552 107478 18654 603218

L6 360276 324155 162593 162593 64422 3924 118830

L7 86866 99814 53857 53857 16737 248 14140

L8 43617 58125 31607 31607 8780 47 5247

L9 43617 58125 31607 31607 8780 47 4227

L10 30270 39894 18497 18497 5387 9 2085
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Chapter 8

Analysis Method

This chapter describes the process of using a sample of events collected by IceCube to study neutrino oscillation

parameters. The rough outline of this analysis is that we compare the experimental data to simulated data, and by

varying the simulation input of the oscillation parameters, we find which values produce the model that most closely

matches the data.

The comparison between each model and the data is performed using a maximum likelihood technique (§8.1).

This likelihood fit includes nuisance parameters specific to this analysis (§8.2). Once a likelihood is computed for

each hypothesis test point of the oscillation parameters, a significance is found for the likelihood at each point: the

process of figuring out the size of the error bars. This is discussed first in the general context of Frequentist confidence

regions (§8.3), and then in the more specific case of Feldman-Cousins statistics (§8.4), which treats the statistical

errors of a signal with low statistics and physical bounds on the allowed region more formally. Finally, some specifics

are discussed (§8.5) about the software used to perform this analysis and how it has improved on previous analysis

software.

8.1 Maximum Likelihood Technique

The technique of maximizing a likelihood function to find the best-fit simulation for a given experimental dataset is

ubiquitous in modern experimental physics. A general likelihood function combines observed data with a hypothesis

fit that could explain the data: in IceCube, one example is explaining the rate of data in each bin of a histogram with

predictions for that rate from a simulation-generated histogram.1 The likelihood is extremized for the best possible

fit. In general, the value of a single likelihood does not mean much (it depends a lot on your binning choice), but

comparing (by ratio) two different likelihoods tells you if your hypothesis changes are improving or degrading the

quality of the fit.

More specifically, the usual situation for Poisson likelihood functions is the following: take two histograms, one

for data and one for Monte Carlo (one may imagine this in a single dimension for simplicity, but the main analysis

of this thesis uses two). For each bin, take the bin value in the MC histogram as the center of a Poisson distribution.

1Another common example of likelihood fitting within Icecube is in particle reconstruction: a hypothesis particle could explain the observed
light. See more on reconstruction in Ch. 5
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The probability for that bin is the probability of getting the data value as a Poisson fluctuation around the Monte Carlo

value. Do that for every bin, and then multiply the probabilities together. If you like, you can do that all in log space

to make the computations easier. That’s your likelihood function. If you evaluate that with two different Monte Carlo

hypotheses, you can take a ratio to see which hypothesis describes the data better.

The analysis in this thesis uses a Poisson likelihood comparison of a two-dimensional histogram in data and sim-

ulation. The two dimensions are reconstructed zenith angle and reconstructed energy (more specifically, cos(zenith)

and log10(E)). The comparison uses the Poisson probability mass function:

P (exp|sim) ≡ P (k|λ) =
λk

k!
· e−λ

where, for each bin, the expected mean λ is given by the Monte Carlo number of expected events. The probability

is evaluated at k, the experimentally observed number of events. This method noticeably does not include a term for

the statistics on the Monte Carlo: if we generate double the Monte Carlo statistics, we get a better description of the

physics input to the simulation, but that improvement is not reflected in the likelihood function. Some discussion of a

method to include such statistics can be found at [129] or [130], but my analysis uses the standard Poisson likelihood.

Evaluating this probability at each bin of the zenith-energy histogram, the likelihood function is the product of

all these probabilities. For ease of computation, we work with the log10 of the likelihood function, so instead of

multiplying the probabilities together we can add them.2

LLH = k ln(λ)− λ− ln(k!)

The prediction for the Monte Carlo rates histogram is constructed as a sum of several components, representing

our best estimate of the true rates. This includes (as described in §7.2) contributions from νµ, νe, ντ , and cosmic

ray induced µ. Each of these contributions is plotted in Fig. 8.1. Note that to make these histograms, we must

choose appropriate limits in zenith angle and energy; the choice of where to put these limits includes the full analysis

chain described in this chapter, and is discussed in more detail in Ch. 9. The histograms as shown in Fig. 8.1 also

include an implicit choice of oscillation parameters. Generally, events weights are calculated assuming maximal

oscillations, then the weights are reduced to reflect various hypotheses of oscillation parameters. The oscillation

survival probability formula used in this analysis assumes two-flavor oscillations and neglects matter effects. The

analysis was also tested with three flavor oscillations; the result was negligibly different but the calculation time was

much greater. For illustration in this chapter, oscillation parameters are set to the global best fit [21] atmospheric

values: sin2(2θ) = 1.00 and ∆m2 = 0.0024. The sum of these four components is the Monte Carlo prediction for the

case of those oscillation parameters.

2A note on software optimization relative to this formula: consider for a moment the k! term. This is an expensive computation, and for the
number of repetitions required, it’s worth optimizing. One trick is to use an optimized function to do the log and the factorial together, e.g. the
scipy.special.gammaln() function, or in equivalent time, the scipy.stats.poisson.logpmf() function. An even better solution is to skip that whole term,
because it only depends on the data. Since we always compare Monte Carlo variations to a single experimental dataset, we do not need to evaluate
a term on the dataset again for every variation.
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(a) NuMu contributions to the total rate prediction; the numu con-

tribution is 1271 events.

(b) NuE contributions to the total rate prediction; the nue contri-

bution is 512 events.

(c) NuTau contributions to the total rate prediction; the nutau con-

tribution is 10 events.

(d) Cosmic ray muon contributions to the total rate prediction; the

contribution is 189 predicted events, from 7 simulated events

Figure 8.1: Component histograms of the simulated rates prediction. The neutrino samples each included a mix of

Genie and NuGen generated data (as described in §7.2) and the cosmic ray muon sample is generated by CORSIKA.

The livetime assumed for these figures is the full IC79 livetime. The oscillation parameters assumed are sin2(2θ) =

1.00 and ∆m2 = 0.0024. The sum of these four components is the predicted rate histogram. The white bins contain

no simulated events.
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8.2 Nuisance Parameters: Physics and Systematics

The previous section described the method for computing the output of an single likelihood evaluation; the process

of maximizing the likelihood function is described in this section. This is achieved by varying the input parameters to

the Monte Carlo. These inputs are separated into two types: physics parameters (θ23, ∆m2
23) and nuisance parameters

(which describe systematic effects in the detector). The nuisance parameters can be further divided into two types:

those that vary continuously and those that vary discretely.

The continuous variables are built into the likelihood function and varied by the same minimizer as the physics

parameters. In this analysis, the continuous nuisance parameters include the relative normalizations of the various

Monte Carlo samples: νµ, νe, ντ , and cosmic ray mu. The the slope (spectral index) of the input cosmic ray spectrum

was also incorporated into the fitting software, but was not allowed to vary because it was not found to be a limiting

error within the timeline of this thesis. The muon- and tau-flavor neutrino samples are constrained to the same nor-

malization, and the electron-flavor neutrino sample contributes a Gaussian penalty to the likelihood function as it gets

farther from the muon and tau neutrino normalization. The muon and tau neutrino, electron neutrino, and cosmic ray

muon background samples are each constrained to stay between a factor of 0 and a factor of 2 of their original Monte

Carlo expectation.

The discrete variables cannot be included in the likelihood function because it would create steps and walls in the

likelihood space, which would confuse the minimizer and make it get lost and fail. Instead, we run a new simulation

set for each variation of a discrete variable, evaluate the likelihood using that dataset, and then compare the likelihood

outputs of the nominal simulation to all the variations, taking the best case when we calculate our limits.

The discrete systematics variables considered include: the ice model, the light collection efficiency of the DOMs,

the relative efficiency of the high-quantum-efficiency DOMs and the regular DOMs, and the radial function describing

light scattering around each string (the “hole ice”).

Simulating these several discrete-variable datasets is computationally intensive, so, like most of the simulation, this

simulation step is performed centrally within the collaboration. We consider only one discrete systematic variation

for each simulated dataset, so we do not simulate all the combinations. There is no simulation with a different ice

model and also a varied hole ice scattering model. This did cause a problem when, partway through the systematics

set generation, we found out that the nominal DOM efficiency was too low, and our data fit better to simulation if we

used 110% of the nominal value.

Another complexity stems from the fact that a single Monte Carlo prediction requires input from several different

Monte Carlo generators. Each discrete systematic dataset therefore needs to be simulated using each generator, with

the neutrino generators running a separate set for each flavor of neutrino. For some systematic variations, it was not a

high enough collaboration priority to simulate all the flavors for all the variations, so we asked for only numu files, and

assumed the nominal rate for the other flavors and for background. This was especially true for background cosmic ray
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samples, where simulating enough Monte Carlo to see an effect after event selection could take hundreds of thousands

of times longer than it would for the signal (neutrino) samples. So we looked at numu with highest priority.

While many of these simulated data sets were generated, they were not included in the final analysis. At the time

of their generation, the improvements to the noise model were not yet incorporated into the simulation, and the noise

model was since confirmed as a larger systematic change to the data than any of the systematic variations that were

simulated. New simulations incorporating both the new noise model and suites of systematic variations are currently

underway.

The result of the computations described so far is a log likelihood map: a map of the parameter space in θ23 and

∆m2
23 of the likelihood of our Monte Carlo describing our data. At each point, we have varied the Monte Carlo

systematics inputs (keeping the physics (∆m2
23, θ23) constant at the test point values) to maximize the likelihoods.

This includes checking all the discrete systematics datasets as well: we have to run a minimizer for the continuous

nuisance parameters, save a likelihood value, and then run another minimizer over a different dataset for each discrete

systematic. The best of these is the reported Llh value. Among all of these Llh values for all of these test points, the

smallest one is our best fit point.

We can vary the step size of this minimization to balance two aims. First, we want the search to run quickly, with

a minimum number of steps, which can be achieved by using a larger step size between trials. Second, in contrast,

we want to arrive at the true minimum, which is achieved better by using smaller step sizes. To test this balance, I

studied the effect of changing the step size on a single likelihood point, using a “data challenge” of simulated expected

event rates combined with random variations. The physics parameter inputs were fixed at maximal mixing and world

best-fit ∆m2. When the step size became too large, the likelihood did not change at all from the likelihood of the

seed parameter values; this is consistent with the step size being larger than the scale of the dip in the likelihood

function around the true minimum. After a region of smooth transition, the likelihood difference leveled off at a single

value (presumably the true minimum), retaining this value even as the step size decreased further by several orders of

magnitude. The optimal value is right at the start of this leveling off, where the true minimum can be found, but the

step sizes are still large enough to find the minimum as quickly as (accurately) possible. For this likelihood function

and these parameters, that value was found at 0.1, as can be seen in Fig. 8.2.

8.3 Frequentist Confidence Region

From the previous sections, we get a map of likelihood values in the space of physics parameters θ23 and ∆m2
23.

The significances of these likelihood values, and thus limits on θ23 and ∆m2
23, is the topic of this section. The limits

are the “confidence interval” in the Frequentist model of statistics.3

3Frequentism, as a school of statistical thought, is often presented in contrast to the Bayesian approach [131]; this analysis uses only Frequentist
constructions.
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Figure 8.2: Likelihood minimization step size optimization. The x-axis in both plots shows the step size being tested;

on the left this is plotted on a log scale, and on the right it is plotted on a linear scale. The data points are the same in

both plots. The y-axis shows the improvement that the minimizer was able to achieve from the seed to the final output.

Note that this improvement looks negative, which is expected because the likelihood function increases for “better”

values (this is called, after all, the “maximum likelihood technique”) but the software package works by minimizing.

In ambiguous cases, I try to use “better” in this text rather than “min” or “max”.
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For a physics parameter θ, a frequentist 90% confidence interval (x1, x2) is the central interval that contains the

true value of θ for 90% of many hypothetical repetitions of an experiment.

Often, such test statistics are distributed in predictable ways, so changes in the Llh function are often used to

directly map the limit contours. Wilks theorem [132] states that in certain cases, a test statistic (our Llh) with n

degrees of freedom will be distributed like a an n-dimensional chi-squared distribution, which is easily describable.

Thus, if we can show that Wilks theorem applies (if we can show that our Llh is distributed overall like a 2-dimensional

χ2), we can simply draw contours around the best fit point through the points where the likelihood drops off by key

values: 1σ where it has dropped by 2.3, 2σ where it has dropped by 6.2, etc. More of these values can be found in

Table 8.1.

Note that this uses the standard convention for reporting significances of translating from p-values to “sigmas”

using a Gaussian, normal distribution with width 1 sigma. Thus, we are interested in the 68% contours because a

normal distribution contains 68% of its area within 1σ of its peak.

In the cases where it cannot be shown that the test statistic follows a χ2 distribution, a more elaborate method is

needed. This method is the subject of the following section.

Table 8.1: Conversions between significance in σ, central p-value, and (using Wilks’ theorem) difference in log-

likelihood values.

Gaussian two-sided 1 minus or 1 in llh

Significance p-value p-value every... difference

1σ 0.68268949 3.173 e-01 3.15× 100 2.2957

2σ 0.95449974 4.550 e-02 2.20× 101 6.1801

3σ 0.99730020 2.699 e-03 3.71× 102 11.829

4σ 0.99993666 6.334 e-05 1.58× 104 19.334

5σ 0.99999943 5.733 e-07 1.74× 106 28.744

6σ 0.99999999 1.973 e-09 5.07× 108 40.087

7σ 0.99999999 2.559 e-12 3.91× 1011 53.382

8σ 0.99999999 1.221 e-15 8.19× 1014 68.677

8.4 Feldman-Cousins Error Contours

This section describes the standard method prescribed by Feldman and Cousins [133] for determining, indepen-

dently of Wilks’[132] theorem, the frequentist confidence regions of a likelihood function. Conveniently, their paper
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Figure 8.3: Normal distribution with significances labeled

was written specifically with neutrino oscillations in mind, and several subsequent oscillation papers include more de-

tailed, lucid explanations of how to implement the method. For instance, I found [134] and [135] remarkably helpful

while developing analysis software.

We have a log likelihood map4. We want to know how significant these likelihoods are, and whether a constant

likelihood difference represents a constant significance of the result.5. For each test point, we generate many simulated

trials: the heart of the Feldman-Cousins method is that, instead of assuming a distribution of the Llh function, we map

it out with simulation.

In more detail, the procedure is as follows (for a more visual, pseudo-code version of this discussion, see Fig. 8.5).

We call the global best fit to the data (∆m2, θ)globalbest. In the process of finding the global best fit, we also found

best fit nuisance parameters for that point: (nuisanceglobalbest), which are not necessarily the best fits for any other

test point, and a likelihood value Llhglobalbest. The central question is: for each other test point of physics parameters,

how often is it possible that through random variations we could produce a likelihood as good as the one we found at

the global best?

The phrasing of that question should suggest the following method. We loop over physics test points, choosing

a particular one for discussion (without loss of generality): (∆m2, θ)test. At that physics test point, we vary the

nuisance parameters to maximize the likelihood; that defines (nuisancestest). Plugging these two into the Monte Carlo,

(∆m2, θ)test and (nuisancestest) gives us a best predicted rate, an expected experimental histogram in reconstructed

zenith angle and energy. The units of that histogram are total expected events per livetime (about 1 year).

We generate many pseudodata samples by taking random Poisson fluctuations of the rate in each bin of this

histogram6. We run each pseudodata sample through the same software as we did to find the global best fit. That is,

4The likelihoods are represented as the colors of each point in e.g. Fig. 9.1.
5We want to know the significance of each point, and whether or not a constant color represents a constant significance.
6Note here the difference between this procedure (Poisson resampling) and the procedure described in [129][130]: the resampling described in

these references considers the simulated weight of each event, and constructs a new random sample from a subset of the full simulation, drawing
each event into the sample with probability according to its weight. By contrast, the procedure I used follows the more common practice of ignoring
the statistical limitations of the simulation sample, and making variations by only considering the central value of the simulation prediction.
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first we find a best fit to the pseudodata in all parameters (∆m2, θ,nuisances)pseudobest, and from that rate calculate a

likelihood Llhpseudobest. Second, we calculate the rates and likelihood from the pseudodata taking physics parameters

of the test point (∆m2, θ)test and letting the nuisance parameters float to maximize the likelihood.

ri =

(
Llh(pseudodata, (∆m2, θ)test,nuisances)

Llh(pseudodata, (∆m2, θ,nuisances)pseudobest)

)
This likelihood ratio is one trial of one test point; with many trials of that test point we can make a histogram repre-

senting the probability distribution that true physics parameters from the test point could be mimicking the data we

observed. So, we do many pseudodata trials, returning a likelihood ratio (more precisely, a log likelihood difference)

for each trial. We histogram those differences, taking special note of where one value falls in the distribution:

Ri =

(
Llh(globaldata, (∆m2, θ, nuisances)test)

Llh(globaldata, (∆m2, θ, nuisances)globalbest)

)
Within the distribution of the many ri, the placement of Ri tells us the p-value of our test point. An example of

such a distribution (from another experiment) is shown in Fig. 8.4. The fraction of ri with worse likelihoods than the

point we are considering gives the p-value of that point. Most often, we’re interested in finding and reporting the points

with p-values (listed in Table 8.1) that represent integer sigma values using the Gaussian sigma p-value convention.

If exactly 68% of the ri are smaller than Ri (if exactly 68% of the pseudodata trials gave worse likelihoods than our

global best fit null hypothesis), then our test point (nuisancestest) is on the 1σ contour line. If the p-value is smaller,

our test point is outside of the 1-sigma contour; if the p-value is larger, our test point is within the 1-sigma contour.

By testing many points using this procedure, we can map out the significance contours on the likelihood map. For

many oscillation analyses, a contour map of this style is the preferred method for reporting final results. The location

of the 1-sigma or 90% confidence contours in one particular variable is also often quoted as a range, so the results do

not have to be purely graphical. In the early stages of each experiment, eliminating the no-oscillations hypothesis with

high significance is also common.

For a comparison between results using Feldman-Cousins and Wilks statistics, see §9.6.

8.5 Software Specifics

The procedure described over the preceding several sections gives a general idea of how to construct a likelihood

analysis with significance contour results, with minimal specific description of the analysis in this thesis. This section

describes more details specific to this analysis.

We then repeat this procedure for all interesting test points, taking advantage of a fantastic set of cluster computers.

The number of pseudodata trials at each test point determines how long the job takes to run: 150 trials on my laptop

take about 10 minutes, and for each point we run between 1 thousand and 10 thousand trials. We determine how many

trials to run dynamically (after the minimum is reached): we keep track of the number of trials producing an ri in the

tail past Ri, and when that passes a configurable number (defaulting to 10), we stop simulating. This means that test
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Figure 8.4: Example histogram of pseudodata trials outcomes for Feldman-Cousins contour construction. This his-

togram considers the no-oscillation case as a test point. The fact that such a small fraction of the trials falls beyond

the likelihood difference of the data (marked “Data, ∆L”) indicates that the data support, with high significance, the

existence of oscillations. From [134].
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Figure 8.5: Example pseudocode explaining the Feldman Cousins statistical method. Colors are used to distinguish

different points at which the oscillation parameters and nuisance parameters are evaluated. The first colored point is

red, showing the global best fit point of the observed data compared to all options in the simulation; this is the point

around which we are trying to draw error contours. The next color is green, showing a test point in the oscillation

parameters. At each green test point, a likelihood can be evaluated and compared to the best fit point, but this is not

yet a significance. To find the significance of this green point (again, there would be many green points tested), we

assemble a histogram of pseudo-data samples, each made from Poisson variations around the “true” predicted rates

using the green points. The best fit of each pseudo-data sample is marked in blue. For each blue pseudo-data best fit

point, the likelihood ratio ri is calculated and becomes an entry in the histogram. The likelihood ratio for the (green)

test point is marked (big) Ri; the fraction α of pseudo-data trials beyond that critical Ri is the significance of the

(green) test point. By testing many green points, the experimenter can trace out contours, in oscillation space, of any

desired significance, limited only by computing time. As a cross-check for the reader, if you have understood this

correctly, you should see that the nested nature of these searches means that many, many trials are required to make a

contour plot.
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points further from the best point take longer to test; this is one motivation for making a close-cropped plot around the

contour lines of primary interested. We do run one test point at the no-oscillation null hypothesis, which takes forever

to run. The results are shown in Chapter 10.

A note on computational speed: there are several tricks that can improve the implementation of this code. As a rule,

whenever there is a matrix multiplication, it is always better to use someone else’s method instead of implementing it

yourself, because as physicists we are not in the business of optimizing code (you can get factors of thousands in speed

from this). Specifically, most loops or double-loops over arrays can be replaced by matrix multiplication, dot products,

or some other function from the package “numpy”, which have been extensively optimized, tested, and documented

in online forums. Other software could also be optimized; at the time of this thesis, python was the best option.

Another trick was to do as much pre-processing of the data as at all possible before looping over it. This means

consolidating it to one (or a few) files, applying all cuts in advance, and keeping only the final analysis variables.

We went as far as to make histograms of the input simulation data, and work only with the histograms, without

further reference to the original files. This makes file reading time negligible relative to Feldman-Cousins fitting and

calculation time, which is as it should be.

The minimizer we should use is L-BFGS-B, where the L stands for low-memory (it only saves information about

the last few iterations), BFGS are the initials of the authors, and B stands for “boundaries” (it handles boundary

information better than a previous version.) The advantages of this method are discussed in [101] and §5.11.
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Chapter 9

Round Trip Simulation Trials

A round trip trial using simulation is a technique for testing the limits of any given method, independent of external

systematic effects. A regular likelihood test works by comparing two samples bin-by-bin; in a round-trip test, the

“experimental” sample is produced by the experimenter, using known input parameters and the same machinery as the

simulation sample. This is a way of testing the software against itself: if any problems arise, they must be from within

the software being tested. If everything works well, a round-trip test provides a best case scenario knowledge of the

system. More confounding effects may be introduced by factors not simulated in the test, but the experiment can never

do better with experimental data than it did with round-trip simulation data.

In this chapter, round-trip tests are used to address several questions about the design of this analysis. First, as

validations of the software itself, the input oscillation parameter point (§9.1) and statistical livetimes (§9.2) are varied.

The next questions probe the quality of the event selection: where to put the final zenith angle (§9.3.1) and energy

(§9.3.2) cuts, and how sensitive is the analysis to contamination from cosmic ray muons (§9.4) and tau neutrinos (§9.5)

(contamination from electron neutrinos is not examined because the νe component normalization is free to float within

the fit). Finally, the two statistical methods for determining significance are compared (§9.6), and found to give very

similar results in the case of this analysis.

9.1 Input Oscillation Parameters

The central focus of this analysis software is its ability to find the true input values of the neutrino oscillation

parameters ∆m2 and sin2(2θ). To test this, we vary the parameters used to produce input data for the round-trip test,

then see how well the fitter can recover the varied values. In other experiments, the plots from these tests are often

called “jellybean plots” [136] because of the appearance of small, oddly-shaped curves around many test points. Six

trials are shown in Fig. 9.1.

These trials succeed, in the sense that each variation of the input point is recovered by the likelihood fitter and

reflected in the shape of the likelihood space. One interesting thing to note about these plots is that as the input/best-fit

point varies, the variations in the likelihood space are not the same, that is, the space not only shifts but also distorts.

Specifically, the errors are smaller when the true (input) value of ∆m2 is larger, which makes the oscillation deficit



116

appear at higher energies. This makes sense, because higher energies have better energy resolution within IceCube,

and better energy resolution translates to better limits on ∆m2.

9.2 Statistical Increase

A second basic check is to confirm that increasing the statistical size of the sample increases sensitivity (decreasing

errors). To test this, we can compare the size of the error bars from two round trip tests with different detector livetime

but all other input parameters the same. Such a comparison is shown in Fig. 9.2. The two livetimes considered were

7500.71 hours and 1566.39 hours, representing 100% and 20% of the IC79 detector year, respectively. The precise

value of the 20% sample livetime was chosen to correspond to the summed length of detector runs whose run numbers

end in 0 or 1, which is not exactly 20% of the livetime.

The results of this test correspond to the expected result: the error contours are smaller with a higher statistics

sample. As expected from a
√
N error approximation, the intervals are about twice as large when the data is five times

smaller.

9.3 Placement of the L10 Cuts

The highest (last) level of cuts in this analysis is investigated in this section. These cuts are inherent in the definition

of the two-dimensional histogram in zenith angle and energy used for comparing experimental to simulated data. The

limits (and to a lesser extent, binning) of this histogram amount to a cut on zenith angle and energy. These cuts are

optimized by using round-trip trials to maximize the sensitivity of the analysis. For both zenith angle and energy, the

sizes of the bins are determined by the reconstruction resolution of the sample.

9.3.1 Zenith

The zenith angle cut is considered first. The zenith angle reconstruction, Igelfit, has an inherent resolution limit

around 10◦ because of the discretization of the results it returns. The median error measured in simulation (§7.5.3)

was 11.8◦. The bin size should be related to the energy resolution, and because we use the whole range (a histogram

rather than an on-source and off-source region) we use a bin size roughly equal to the zenith angle resolution. An

additional complicating factor is that the bins are made constant in cos(zenith) to give each bin equal solid angle area

on the sky, which means the bin sizes are not constant in zenith. To resolve this, the smallest bin is taken as not less

than 11.8◦, and other bins may be larger.

All configurations cut out the downgoing region, only considering events reconstructed as traveling up through

the earth. The exact cutoff point was varied between cos(zen) = 0 and cos(zen) = −0.7 with step sizes of 0.1.

Throughout, harsher cuts on zenith angle made the error bars in the likelihood scans uniformly larger; most likely the

effect arose exclusively from the decrease in statistics. Based only on this effect, the ideal configuration includes the
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(a) ∆m2 = 0036, sin2(2θ) = 0.80 (b) ∆m2 = 0.0036, sin2(2θ) = 0.99

(c) ∆m2 = 0.00235, sin2(2θ) = 0.80 (d) Expected [21] point: ∆m2 = 0.00235, sin2(2θ) = 0.99

(e) ∆m2 = 0.001, sin2(2θ) = 0.80 (f) ∆m2 = 0.001, sin2(2θ) = 0.99

Figure 9.1: Round trip trials varying the input oscillation parameters. The input values are chosen to approximate 1σ

errors. The rate for each sample is scaled to simulate the full IC79 detector year.
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(a) Long livetime (b) Short livetime

Figure 9.2: Results of two round-trip trials comparing long (7500.71 hours) and short (1566.39 hours) livetime.
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(a) Zenith angle binning variation: 4 bins

Figure 9.3: Results of round-trip trials comparing different binning configurations for zenith. The results from two

additional configurations are shown in the following figure. For each configuration, the four components of the simu-

lation rate (νµ, νe, ντ ,µ) are shown at expected [21] oscillation values. Each component plot is labeled with the total

number of events from that component; because the binning does not change the total number of events, these numbers

are constant between configuration. Within the νµ plot in each configuration, the bin sizes are labeled in degrees, as

a reminder that the bin size is not constant in degrees (but is still constant in solid angle). A scan of the oscillation

values is also shown, with Wilks’ theorem error bars. The livetime assumed is 7500.71 hours.
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(a) Zenith angle binning variation: 5 bins

(b) Zenith angle binning variation: 6 bins

Figure 9.4: Results of round-trip trials considering additional binning configurations for zenith. See previous figure

caption for more information.
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largest possible region, i.e. cut at the horizon and not any lower. However, there is increased disagreement between

experimental and simulated data in several variables at the horizon, so the horizon region is cut out.

Within the restricted zenith angle range of cos(zen) = −0.2 to − 1.0, tests were performed to investigate the

effect of varying the number of bins in zenith. These trials are shown in Fig. 9.3. The likelihood errors were smaller

monotonically with more bins. The number of bins was thus set to the maximum number, 6, allowed without making

bins smaller than the zenith angle resolution.

9.3.2 Energy

The test varying the energy cut uses logic similar to the test varying the zenith angle cut and binning. The en-

ergy resolution measured in simulation was 35%, or 0.15 in log10E. Based on that, the bin size in energy was 0.15.

The low energy cutoff was already set to be at least 10 GeV because of the simulation generation cutoff and experi-

mental/simulation disagreement below 10 GeV. The high energy cutoff was already set to be 1 TeV because the event

selection emphasized low-energy events, so the contribution above 1 TeV is negligible. The parameter remaining to

test is the option of pushing the low-energy cut higher. Three cases were tested, each one taking off another bin in

energy: cutting at 1.0, cutting at 1.15, and cutting at 1.30. The results are shown in Fig 9.5. From this test, it is

concluded that (similar to cutting in zenith) a harsher cut diminishes the statistics of the sample faster than it improves

the quality, so leaving off the cut is the best course.

9.4 Variations in Cosmic Ray µ Rates

Cosmic ray muons are the major background for atmospheric neutrino studies in IceCube, so understanding the

effect of muon contamination to our sample is particularly important. There are two ways used here to examine

contamination using round trip tests, each of which is described and performed in this section. In any likelihood

comparison, a hypothesis is generated by the fitter software, and compared against the data (in the case of round-trip

tests, the “data” is simulated).

One way of performing round-trip contamination tests is to vary the cosmic ray muon background contribution to

both the fitter hypothesis and the data; in this case, the fitter “knows” about the changes to the data, and data-simulation

agreement is preserved. This test is useful for determining whether the level of contamination is acceptable for a good

result. A set of tests using this method is shown in Fig. 9.7. The result of these tests is that cosmic ray muon rate

variation has a minimal effect on the sensitivity of the analysis: the effect is only noticeable when the rate changes by

an order of magnitude. From this we learn that cutting out all the muon background makes only a small difference to

the sensitivity.

Another test focusses on how accurately we can describe the cosmic ray muon contamination. For this test, we use

a different muon rate in the pseudodata than the fitter, and see how it affects the fit. The fitter varies each component of

the fit, including muons, so it should be able to account for small discrepancies in the rate. But there are limits within
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(a) Energy binning variation: 13 bins between 1 and 3 in log 10(E[GeV ])

Figure 9.5: Results of round-trip trials comparing different binning configuration for energy. The results from two

additional configurations are shown in the following figure. For each configuration, the four components of the simu-

lation rate (νµ, νe, ντ ,µ) are shown at expected [21] oscillation values. Each component plot is labeled with the total

number of events from that component. Within the νµ plot in each configuration, the bin sizes are labeled in degrees,

as a reminder that the binsize is not constant in degrees (but is still constant in solid angle). A scan of the oscillation

values is also shown, with Wilks’ theorem error bars. The livetime assumed is 7500.71 hours.
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(a) Energy binning variation: 12 bins between 1.15 and 3 in log 10(E[GeV ])

(b) Energy binning variation: 11 bins between 1.3 and 3 in log 10(E[GeV ])

Figure 9.6: Results of round-trip trials comparing three different binning configuration for energy. See previous figure

caption for more information.
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(a) Nominal simulated cosmic ray muon rate: no changes

(b) Muon rate 0.5 times nominal (c) Muon rate 2.0 times nominal

(d) Muon rate 0.1 times nominal (e) Muon rate 10.0 times nominal

Figure 9.7: Round trip trials varying the rate of cosmic ray muon contamination. In all trials, the rate is varied both in

the pseudodata and the expectation in the fitter, so agreement is preserved between “data” and simulation. Note that

with this agreement, the impact of cosmic ray muon contamination is minimal. The rate for each sample is scaled to

simulate the full IC79 detector year.
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(a) Nominal simulated cosmic ray muon rate: no changes

(b) Muon rate 2.0 times higher in fit than data (c) Muon rate 2.0 times lower in fit than data

(d) Muon rate 10.0 times higher in fit than data (e) Muon rate 10.0 times lower in fit than data

Figure 9.8: Round trip trials varying the rate of cosmic ray muon contamination. The data rate for all trials is kept

constant while the fitter central value varies. The fitter is allowed to vary the cosmic ray muon normalization between

0.1 and 2.0 times its central value. The rate for each sample is scaled to simulate the full IC79 detector year.
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the fitter: it may only change the muon background rate between 0.1 and 2.0 times the nominal value. If we set the

pseudodata to something outside this range, it distorts the likelihood space.

The results of a suite of tests in this style are shown in Fig. 9.8. For these tests, the cosmic ray muon rate in the

pseudodata was kept constant, and the rate in the fitter expectation was varied1. Note that in these results, distortion

only arises when the rate difference is larger than the range allowed in the fitter.

A third test changes the shape of the cosmic ray muon background within its statistical errors. This is within

the style of the second test (examining the effects of data-simulation). The reason for doing this test is that we

know the CORSIKA sample is severely limited by statistics, so we should investigate how much that can hurt the

sensitivity. Simulated background events are mostly (by design) cut out by the event selection. While avoiding muon

contamination is a goal, it does limit the remaining sample statistically: from my selection, there are 9 CORSIKA

simulated events remaining, which represent (with livetime weighting) 242 expected events in the final experimental

sample. The CORSIKA files are generated with a natural spectrum, so each simulated event passing cuts gets the same

weight. Considering
√
N errors on 9 events, the total rate can be considered to vary by ±80 events, which is more

than twice the entire ντ rate with standard oscillations.

The test for changing cosmic ray muon background shape within statistical errors was performed in the following

way. Two cosmic ray muon contribution histograms were constructed. The first had the 9 simulated events distributed

as their reconstructions suggested (i.e., the way that all other component histograms were constructed). The second

histogram was constructed by hand, by guessing a smooth distribution of events still consistent with the first histogram

in the low-statistics case. The original histogram is shown in the upper-left panel of Fig. 9.9; the hand-smoothed

histogram is shown in the upper-right panel of Fig. 9.9. The likelihood scan (lower panel of Fig. 9.9) uses the smooth

map to construct the “data” and the bumpy map to do the fit; this simulates the current situation, where the fluctuations

in the data are smaller than in the fitter.

This test shows that the shape of the cosmic ray muon background distribution has a huge effect on the sensitivity

and accuracy of the analysis, but short of increasing the available simulation sample by at least a factor of 100 (which

is not feasible on the timescale of this thesis), it does not suggest an easy way to fix this problem. This question will

be raised again in Ch. 10. As a stop-gap measure, the smooth template is used for all further analysis, even though the

shape was somewhat arbitrarily chosen.

1 More precisely, if someone uses my software to run this test again, make the following changes: add a factor x to the CORSIKA component
in “DefineFitComponents.py” (which changes rates for all CORSIKA) then a factor of 1/x to cancel it out in the CORSIKA component of the
pseudodata generation in “RunWilksRoundTrip.py”
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(a) Distribution of the CORSIKA cosmic ray muon com-

ponent predicted by 9 simulation events

(b) Distribution of the CORSIKA cosmic ray muon com-

ponent smoothed by hand

(c) Result of using distribution (a) to try to fit (b)

Figure 9.9: Round trip trials comparing smoothed and unsmoothed CORSIKA distributions. The rate for each sample

is scaled to simulate the full IC79 detector year.
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9.5 Variations in ντ Rates

Contamination from ντ events is worth considering. Using methods similar to the cosmic ray rate variations,

several trials were run varying the ντ rate (the test varying the shape of the cosmic ray variation was not repeated with

ντ ).

The results of varying the input data together with the fitter are show in Fig. 9.10. These results (as with the cosmic

ray muon results) show that in the case that experimental and simulation data agree, contamination is not a limiting

factor compared to accurately describing the muon contamination, but lower contamination rates are still better.

The results of tests varying the fitter expectation separately from the input “data” are shown in Fig. 9.11. Again

with tau as with cosmic ray muons, a disagreement between simulation and data have a bigger effect on the shape of

the likelihood than changing the rate does. The effect is particularly noticeable in the case where the rate expected in

the fitter is too high compared to the rate in the data.

9.6 Comparing Wilks Theorem and Feldman-Cousins Statistics

One of the major advances of this thesis is applying likelihood software to oscillations with enough speed opti-

mizations that the full Feldman-Cousins statistical methods can be applied (see §8.4). The alternative method is to use

Wilks theorem [132]. Both of these are methods for translating likelihood maps2 into significances. To test the magni-

tude of the difference between these two cases, two round trip trials were run with the same simulation configuration

but different statistical methods for determining the significance.

Both trials were set up in the usual way: the oscillation parameters used were the best-fit expected values [21]:

maximal mixing at ∆m2 = 0.00235. Simulation data was used for both the input data and the fit variation; the same

data was used in both cases, assuring a perfect match and limiting the scope of this test to only the differences in

statistical significance method (i.e. this is not a “data challenge” test where every effort is made to create an inde-

pendent simulation sample indistinguishable from experimental data). The simulation datasets used did not include

the final Genie datasets with updated vuvuzela noise (see §4.3.2), because this test was run before those datasets were

processed; the datasets used were instead those that the cuts were optimized for, which use the older noise-generator

noise model.

The Wilks’ theorem results are shown in Fig. 9.12a. The results are as expected: the likelihood space is centered

on the input oscillation parameter point, the contours are rounded with no unexplained local minima.

The results of the Feldman-Cousins trail are shown in Fig. 9.12b. The points included in this figure are the points

that finished all their psuedo-data trials within the 12 hour cluster processing time limit; because of the structure of the

significance software, higher significance points take longer to process. The color map in this figure shows p-value

2Recall: a likelihood map in this case is the result of a scan over the oscillation parameters, calculating the likelihood of each point, including a
minimization of nuisance parameters at each point. In my wilks theorem plots, likelihood is displayed as color, while significance is displayed as
labeled contours.
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(a) Nominal simulated ντ rate: no changes

(b) ντ rate 0.5 times nominal (c) ντ rate 2.0 times nominal

(d) ντ rate 0.1 times nominal (e) ντ rate 10. times nominal

Figure 9.10: Round trip trials varying the rate of ντ contamination. In all trials, the rate is varied both in the pseudodata

and the expectation in the fitter, so agreement is preserved between “data” and simulation. Lower contamination rates

are better. The rate for each sample is scaled to simulate the full IC79 detector year.
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(a) Nominal simulated ντ rate: no changes

(b) ντ rate 2.0 times higher in fit than data (c) ντ rate 2.0 times lower in fit than data

(d) ντ rate 10.0 times higher in fit than data (e) ντ rate 10.0 times lower in fit than data

Figure 9.11: Round trip trials varying the rate of ντ contamination. The data rate for all trials is kept constant while

the fitter central value varies. The fitter is allowed to vary the ντ normalization between 0.5 and 2.0 times its central

value, but the νµ varies with the same factor, i.e. the rates are tied together. The rate for each sample is scaled to

simulate the full IC79 detector year.
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(instead of llh-difference as the other figures do), and contours are only partly complete. As in the Wilks’ figures, the

contours included are 0.5σ, 1σ, and 2σ, although the 2σ contour is not complete.

Comparison between the two figures shows that while the basic shape is the same and centered on the same point,

the contours fall in subtly different places. For example, the 1σ contour in the Wilks’ case shows a ∆m2 range

of (1.2 − 3.4) × 10−3 along the maximal mixing line, while the equivalent range in the Feldman-Cousins case is

(1.7 − 3.0) × 10−3. This confirms the conventional wisdom that the two statistical methods give similar but not

equivalent results.

The original intention for this analysis was to use Wilks’ theorem to establish a basic measurement on a small

sample of the data, run tests to establish limits on the effects of various systematics effects, and estimate the differ-

ence between the expected significance of the smaller sample compared to the full sample. The intention was that

Feldman-Cousins statistics would be used in the last step of the full central measurement, once a measurement was

first established with Wilks’ theorem contours. However, this step was deemed unnecessary in light of the large shape

differences seen between the observed and expected results. The difference is large enough that it could not be created

by the difference between Wilks’ and Feldman-Cousins statistics.

The difference between these statistical methods remains important for any analysis reporting limits on oscillation

parameters with the expectation of statistical formal correctness.

In conclusion, the round-trip trail is a powerful tool for exploring systematic effects and variations within a data

sample. Round-trip trials were used to determine the placement of the final event selection cuts: the zenith angle

and energy ranges for the 2-dimensional analysis histograms. Using this tool to explore various effects, including tau

and cosmic-ray muon contamination and variations in statistical methods, we see a great variety of distortions to the

likelihood space.
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(a) Likelihood differences (in color) with Wilks’ Theorem significance contours

(b) Significances (p-values, in color) from Feldman-Cousins statistics with contours for 0.5σ (green), 1.0σ (yellow), and 2.0σ

(red). Each of the points in this plot had enough pseudo-data trials to produce 200 trials in the tail of the distribution.

Figure 9.12: Results of round-trip trials using the same setup to compare Wilks’ theorem with Feldman-Cousins as

methods for placing significance contours
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Chapter 10

Results and Conclusions

This chapter provides an overview of the thesis as a whole, discussions of anomalies found, and several ideas for

planning future work.

This thesis uses data from the IC79 configuration of the IceCube DeepCore detector to study standard oscillations

in atmospheric neutrinos. Simulated data is used to design an event selection that isolates a sample of upgoing neu-

trinos in the energy range of 10-500 GeV, with tails on both ends. All events in this sample are reconstructed using

likelihood-based reconstruction algorithms that integrate knowledge of the light scattering and absorption properties

of the glacial ice. The energy and zenith arrival angle of each event is used to histogram the samples of both simu-

lated and experimental data, and the histograms are then compared. The simulated data rates vary as a function of

the assumed oscillation parameters. The normalization of each contribution (νµ, νe,ντ , and cosmic ray µ) to the total

simulation is allowed to vary independently within a restricted range, usually 0.5 to 2.0 times the simulated central

value, with the exception that the νµ and ντ rates vary by the same amount by construction. The likelihood of these fits

is used to measure the likelihood of each tested value of the oscillation parameters. The likelihood software is tested

in several ways, and these tests uncover limitations of the simulated data set, including limited background statistics.

One new contribution of this thesis is that it adds the new Monopod reconstruction algorithm (designed for higher

energies) to a low-energy analysis. The Millipede reconstruction software suite has the first reconstructions with

promise of working over the whole IceCube energy range. This work also adds fully correct statistical treatment

of errors on the oscillation parameter contours using the Feldman-Cousins method. Using this reconstruction and

statistical framework, simulation trials show that an accurate measurement of atmospheric oscillation parameters is

possible. However, when this analysis technique is applied to experimental data from one year of IceCube running,

the resulting likelihood scan does not match the expected effect or any of the simulated systematics effects.

An unexpected result is found and discussed below: the best fit values of the oscillation parameters are not the

expected [21] best fit values. In fact, the likelihood fits better to the no-oscillation case. Considering the overwhelming

body of evidence in favor of atmospheric neutrino oscillations, this result is considered to be an anomaly based on an

as-yet not understood systematic error rather than a contradiction of oscillations. Thus, this chapter has a significant

focus on ideas for further developing the currently limiting systematic errors, especially the estimated rate of the

cosmic ray muon background.
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10.1 Single Dimension Results

The first view of the results is shown here in the single-dimensional plots. Energy versus rate is shown in Fig. 10.1;

zenith versus rate is shown in Fig. 10.2.

Consider first the energy distribution, in Fig. 10.1. The contribution from simulated cosmic ray muons is shown in

green. The statistical error bars on this sample are remarkably large, which will be discussed further in later sections.

As a reminder, the key oscillation region is 10-50 GeV (1-1.7 log10(GeV), using the units of the plot). The total rate

predicted from simulation (assuming the expected [21] oscillation parameters) is shown as the red band in the upper

panel. The experimental data agree well with this predicted rate. The lower panel shows the ratio to the no-oscillation

simulated expected rate. As expected, the oscillation case simulation rate (in red) is lower, and the data follow this

case in the key oscillation energy region. At higher energies, the total rates are lower and thus the statistical errors are

higher; in this region, the increasing data/simulation disagreement is attributed to statistical fluctuation.

The plot of rate versus zenith angle (Fig. 10.2) uses the same color scheme: green denotes simulated cosmic ray

muon contamination, and the red band shows the total predicted event rate. Once again, the simulated cosmic ray

muons are distributed in a way that makes them difficult to cut out with simple cuts. The strongest difference between

the predictions for oscillations and no-oscillations is seen on the left side of the plot, which shows events traveling

directly upwards through the Earth. Likewise, no difference due to oscillations is expected at the right side of the

plot, which shows events arriving from the angular region of the horizon. The data match the prediction at the horizon

and most of the upgoing region. There is an unexpected discrepancy in the most upgoing bin (the left-most bin): the

data here match the no-oscillations prediction nearly perfectly, while still falling within the statistical errors of the

oscillation prediction. This demonstrates again the statistical limitations of the simulation.

10.2 Likelihood Scan Results with Variations in the Cosmic Ray Muon Rates

The anticipated result of this thesis is the likelihood scan of the oscillation parameter space, focusing on its best fit

point and error range, which is presented in this section. All likelihood plots include significance contours based on

Wilks’ theorem [132]. The neutrino samples using the Genie Monte Carlo generator included the newest “vuvuzela”

noise model; the other simulation samples were made using the older “noise-generator” sample.

The results of a scan over oscillation parameters vary greatly with the input simulation prediction, and specifically

with the contribution of cosmic ray muons to the total simulated prediction. The cosmic ray muon contribution has

the largest statistical error of all the components of the simulation. Three cases of cosmic ray muon distributions are

considered, each of which lies within the statistical errors of the simulation prediction.

There are 9 events in the cosmic ray muon simulation sample passing analysis cuts. Their distribution in the

reconstructed observables histogram is shown in the upper panel of Fig. 10.3. Each simulated cosmic ray muon event

passing the analysis cuts represents 27 events predicted in the experimental sample. The statistical error on the rate
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Figure 10.1: Rate versus reconstructed energy, comparing the full data to simulation predictions in both the expected

oscillation and no oscillations cases.
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Figure 10.2: Rate versus reconstructed zenith angle, comparing the full data to simulation predictions in both the

expected oscillation and no oscillations cases.
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(a) Distribution of cosmic ray muon background assumed for the simulation estimated rate

(b) Resulting scan over the oscillation parameter space, with significance contours assuming Wilks’ theorem.

Figure 10.3: Result of a likelihood scan over the full IC79 year of data using a simulated expectation rate in which

cosmic ray muon background rates are taken directly from simulation.
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(a) Distribution of cosmic ray muon background assumed for the simulation estimated rate

(b) Resulting scan over the oscillation parameter space, with significance contours assuming Wilks’ theorem.

Figure 10.4: Result of a likelihood scan over the full IC79 year of data using a simulated expectation rate in which

cosmic ray muon background rates are smoothed artificially.
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(a) Distribution of cosmic ray muon background assumed for the simulation estimated rate

(b) Resulting scan over the oscillation parameter space, with significance contours assuming Wilks’ theorem.

Figure 10.5: Result of a likelihood scan over the full IC79 year of data using a simulated expectation rate in which

cosmic ray muon background rates are taken from the experimental data minus the simulated neutrino rate.
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prediction of each bin of the observables histogram is thus ∼ 1 simulated event, or ±27 events in the total predicted

rate.

The first case to consider is the cosmic ray muon prediction taken directly from the simulation, as distributed in the

upper panel of Fig. 10.3. Adding to this the predicted neutrino rates and using analysis method described earlier, we

compare simulation to experimental data, which results in the likelihood map shown in the lower panel of Fig. 10.3.

The significance contours shown in this figure use the Wilks’ theorem assumption. This result is unexpected in the

sense that it excludes the expected [21] oscillation parameter point with more than 7σ statistical errors, and instead

favors the no-oscillation case as the best fit. It is worth pointing out here that the analysis method does not incorporate

the statistical errors of the simulated sample, only the inherent statistical errors from the predicted rate.

The second case to consider is a hand-smoothed histogram of cosmic ray muons. This histogram, shown in the

upper panel of Fig. 10.4, was constructed (see §9.4) to examine the possible effects of comparing data to simulation

with a different shape of the cosmic ray muon contribution. The rates for each bin were chosen with the following

points in mind: the total rate of the observables histogram should be the same in the original and the smoothed

histogram, and the smoothed histogram should be a shape that could plausibly generate the original histogram in a

low-statistics case. The results of using this histogram for the cosmic ray muon contribution in a likelihood scan

are shown in the lower panel of Fig. 10.4. Comparing this likelihood scan to that in Fig. 10.3, one can see that the

smoothing represents a move towards the expected oscillation result; the expected best-fit point with these assumptions

is excluded by only 4σ.

The third case to consider tests the logical limit of this method. For this case, we construct a cosmic ray muon

histogram in a somewhat circular fashion by subtracting the statistically well-constrained neutrino predicted rate from

the total experimental rate. The remaining events may be assumed to be cosmic ray muons. This is circular in the sense

that we assume the expected values of the oscillation parameters and perfect agreement between the experimental and

simulated data apart from the simulated cosmic ray muon rate. The rates for cosmic ray muons found in this way are

plotted in the upper panel of Fig. 10.5. All fall within the statistical error range of the original simulated cosmic ray

muon rates, i.e. the rates are all within 27 ± 27 for the lower energies and close to 0 for the higher energies. The

likelihood scan of simulation to experimental data when assuming this distribution of the cosmic ray muons is shown

in the lower panel of Fig. 10.5. This likelihood shape is the closest to the expected shape: it excludes the expected

best-fit point by less than 1σ and favors oscillations over no oscillations.

Comparing these three cases shows extreme variation in the final result, which demonstrates that the accuracy of

the cosmic ray muon shape dominates the accuracy of the result.

10.3 Specific Ideas for Future Improvements

This analysis is necessarily limited by the time constraints of the PhD process. While developing the analysis for

a thesis, certain paths became clear for future improvements. These could make interesting topics for a new student’s
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summer project, or a service project for a beginning oscillation graduate student. Each project has the potential to

improve the oscillation analysis.

10.3.1 Additional Cosmic Ray Muon Simulation

The most limiting factor of this analysis is the limited sample of cosmic ray muon background. There were 9

events from the muon background simulation surviving the event selection; the statistical errors on these 9 events were

the largest single known error in the analysis. A straightforward (but difficult) way to improve this is to simulate more

background. Another possibility is to allow more background to pass the event selection, reducing the statistical errors

while increasing the errors from contamination. The contamination tests of §9.4 suggest that this may have been a

wise approach. Yet another approach would be to include the statistical errors of each simulation component more

explicitly in the analysis likelihood calculation. This may be the most feasible option, but would require a nearly

complete rewrite of the analysis software. A middle ground could be to include the errors for the cosmic ray muon

sample only.

The sample of simulated muons used for this analysis represents 11 days of simulated livetime compared to ap-

proximately one year of experimental data. Future results will need to take into account this dearth of simulated

background relative to experimental signal, and several methods may be considered.

One method for further constraining the predicted cosmic ray muon rate is to simulate more data. This method is

the most straightforward to configure, but would also require prohibitive amounts of computing time.

The additional simulation can be achieved either by running the standard CORSIKA simulation or by running a

more targeted single-muon simulation. Running CORSIKA and associated detector simulations requires an approx-

imate factor of 5 to 1 in time: 5 days of real time are required to simulated one day of simulated background with

CORSIKA, assuming that all or most of the computing power of the Madison IceCube group is available for the task

(or an equivalent amount of distributed computing power). This takes a prohibitively long amount of time to reach the

required factor of 10:1 (or at least 1:1) simulated background to experimental data.

The more targeted method for generating cosmic ray muons uses the “muon gun” software, which includes more

configurable detector volume and primary energies. By making three assumptions, the background simulation pro-

duction speed can be greatly increased. Those three assumption are that the background is only single muons and not

muon bundles, that all the background muons passing analysis cuts transverse the DeepCore central volume, and that

the muons passing analysis cuts deposit less than 1 TeV of visible energy within IceCube. With these assumptions,

generating a larger sample of cosmic ray muon background would take about 5 GPU-years. Considering current col-

laboration GPU resources, a single student could produce this sample within a one- to two-year timeframe. As that

timeline still falls outside the scope of this thesis, both of these methods are left as future work.
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10.3.2 Spline Tables

The reconstruction algorithms described in Ch.7 rely on descriptions of how light travels in the ice, called “pho-

tonics tables,” or after a fitting process is applied, “spline tables”. These tables are described in §5.8. While the tables

are adequate, improvements could be made which would lead immediately to improvements in the reconstruction

resolution.

One potential improvement would be to improve the spline fit at small distances from the DOMs. This would be

done by scanning through fits by hand and adding knots as needed. This is currently being addressed by Moriah Tobin.

Another potential improvement is to change the simulation that generates the photonics data. The simulation

currently assumes that neutrino interactions in the ice produce only three output particles: a charged lepton, a neutral

lepton (neutrino), and a single particle encompassing the average of everything else, which we call “hadrons.” The

photonics tables could be made more accurate by including more accurate descriptions of the many particles involved

in low-energy showers. An easy way to do this is to use the Geant simulation software [137], which already includes

data about such interactions. Currently, Sarah Nowicki is working on these tables. When they become available and

are used for reconstructions, the reconstruction resolutions will improve.

The spline tables were found to be a limiting factor during early development of the Biped reconstruction (a

millipede-likelihood based fit using the hypothesis of two particles: a cascade and a track). Early development showed

no improvement when a more accurate hypothesis was used. Rather than abandon the model, a problem was found and

solved at a lower level: the spline tables. These descriptions of how light travels in the ice were found to be inaccurate

at the short distances that were most relevant to low-energy fits. Fixing the tables greatly increased the accuracy of

Biped and any reconstruction using the new tables, although it required the investment of a full student-year.

10.3.3 Noise Modeling

Measurements of noise rates and probability distributions exist and could be better integrated into reconstructions

and simulations. A great deal of improvement has already been made towards a better noise model, and while it is not

the dominant error in this analysis, it still cannot be ruled out as a major systematic effect.

It is well known that the dark noise in IceCube DOMs does not strictly follow a Poisson distribution. The distribu-

tion that it does follow has been measured and described [83], but including this noise model in the various aspects of

simulation and reconstruction is a continuing process. At the moment of this work being finalized, the new noise sim-

ulation project vuvuzela (see §4.3.2) has been included as a standard part of new simulation datasets. The additional

step of including noise-only events with each simulated data set has not been completed. As an intermediate step,

simulated data is available with noise-only events separately from physics events. Consequently, it should be possible

to simulate a fully correct spectrum by including all types of relevant simulation, where noise events are an additional

entry on that list. This spectrum still needs calibration at the lowest-energy end.
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A notable difference between millipede and some other reconstructions currently under consideration is that milli-

pede includes noise hits by design in the likelihood. A straw-man alternative method is to cut out the noise hits before

giving the pulse information to the fitter. This method runs into the insurmountable problem that some noise hits may

occur close to physics hits, and it is impossible to separate them reliably and accurately. The better alternative that

millipede uses is to give some noise probability to every observed hit.

Adding new noise models to reconstruction algorithms is a more involved process. Noise in reconstruction is often

included as a constant term (as a function of the time length of the event) in the likelihood. Correcting the shape of

the noise distribution in reconstruction is equivalent to changing that addition to likelihood function. While this is

a non-trivial change, it is possible to first make an incremental improvement. One can use the measurements taken

during the creation of the vuvuzela noise model to update the values of the constant noise term. While this is not the

most accurate possible model for the noise, it does make the noise assumptions in reconstruction as correct as possible

within the constraints of a Poisson model. This correction is ∼ 10% in the noise rate.

10.3.4 Updating the Genie Simulation Generator

The simulations used in this analysis were generated with two different Monte Carlo simulation generators: Genie

and NuGen. Each one has advantages. IceCube would benefit from combining the positive qualities of each into a

single generator, or else more explicitly separating them. For example, NuGen includes the effects of propagation

through the Earth but makes bad assumptions about the details of relatively low energy interactions in the ice. If these

two functions were separated into different software steps, each analyzer (or simulation coordinator) could decide

what assumptions to combine. This effort is currently underway, led by various groups working on sterile neutrino

searches.

10.3.5 Particle Reconstructions

The choice of energy and zenith angle reconstructions has turned out to be one of the largest differences between

different students’ approaches within the IceCube oscillations working group, and as such this choice merits a higher

level of scrutiny than the other cuts.

Monopod and Igelfit were chosen for several reasons. Generally, during the time of the development of this thesis

analysis, the Millipede reconstruction library was the most well-developed and cross-checked set of reconstructions.

Millipede was the first software to use all pulses directly in a reconstruction (without dropping after-first hits, or

approximating N hits as 1 at a carefully chosen position). Millipede was the first reconstruction to successfully

include a noise model within the likelihood function, obviating the need for error-prone hit cleaning beyond a time-

window cut. Millipede reconstructions were shown to be accurate with higher energy events (O(TeV) toO(PeV)), and

the analysis of this thesis represented an opportunity to test them at lower IceCube energies. Initial tests of the energy
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resolution, as well as the final measured energy resolution of 35%, support the idea of expanding Millipede-based

reconstructions to lower energies.

While maintaining all of those positive reasons to try an analysis with Millipede-based reconstructions, there are

also some reasons against it.

The first and easiest to dismiss is that any Millipede-based reconstruction is slow. However, this slowness can be

circumvented particularly easily at low energies by setting up the reconstruction carefully. We can assume that the

tracks are shorter than the full detector, and that light will not travel the full width of the detector, and thus there are

many simple speed optimizations for running Millipede at low energies. These principles guide the several efforts to

extend existing reconstructions to lower energy ranges.

A second way in which all Millipede reconstructions could be improved is by improving the accuracy of the

light propagation tables for short distances and low energies. This should improve the quality of all reconstruction

algorithms, but it will especially benefit Millipede-based algorithms because they contain so little other than the light

propagation likelihood calculation.

A final known shortcoming of Millipede and Monopod in their current state concerns the noise model, and this

argument has not been resolved by the work of this thesis. While it is an excellent advance in reconstruction algorithms

that we now include the noise within the reconstruction likelihood, we also know that the accuracy of that noise

model is critical for any task concerning low energy events. The noise model within Millipede is currently a constant

probability, that is, any hit has a small probability of originating from noise. Equivalently stated, the noise model is

inherently Poissonian within Millipede even though we know the real detector noise has a substantial non-Poissonian

component. Much of the noise at low energies is dominated by correlated bursts that cannot be described by a single

rate. As such, it would be difficult to integrate more accurate noise modeling into Millipede. It is still possible to

improve the average noise rate, which is about 10% low in the old (and Millipede) model. While this should have

some effect, it does not fully account for the inaccuracies observed.

There are currently many efforts within the collaboration to improve event reconstruction. The most promising

of these incorporate the existing gulliver software framework, which facilitates debugging efforts and requires doc-

umented and modularized code. The most promising likelihood function is the millipede likelihood, which includes

information from all pulses on all DOMs and considers no-hit DOMs in the likelihood.

10.4 Conclusion

In conclusion, this analysis has demonstrated the feasibility of measuring atmospheric neutrino oscillations with

IceCube, but has not yet measured oscillations. Some ideas are presented for further analysis, focusing on the cosmic

ray muon background simulation.
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Łódź 2009.



151

[117] T.-P. Li and Y.-Q. Ma. Analysis methods for results in gamma-ray astronomy. Astrophys.J., 272:317–324,
1983.

[118] R. Abbasi et al. Time-Integrated Searches for Point-like Sources of Neutrinos with the 40-String IceCube
Detector. Astrophys.J., 732:18, 2011.

[119] The Shadow of the Moon in IceCube, 2010. Rencontres de Moriond Electroweak, La Thuile, Italy.

[120] Hugo Stiebel. Study of the angular resolution of the IceCube 59 string detector using the shadowing of cosmic
rays by the Moon. Master’s thesis, Stockholm University, 2011. Available upon request from IceCube internal
documents, collection 8819.

[121] Jan Blumenthal. Measurements of the shadowing of cosmic rays by the moon with the icecube neutrino ob-
servatory. Diplomarbeit in Physik, Rheinisch-Westfälischen Technischen Hochschule Aachen, 2011. Available
upon request from IceCube internal documents, collection 8819.

[122] J.R. Klein and A. Roodman. Blind analysis in nuclear and particle physics. Ann.Rev.Nucl.Part.Sci., 55:141–
163, 2005.

[123] Sebastian Euler. Observations of oscillations of atmospheric neutrinos with the IceCube Neutrino Observatory.
PhD thesis, Rheinisch-Westflische Technische Hochschule (RWTH) Aachen, 2013.

[124] D. Heck, G. Schatz, T. Thouw, J. Knapp, and J.N. Capdevielle. CORSIKA: A Monte Carlo code to simulate
extensive air showers, 1998.

[125] Askhat Gazizov and Marek P. Kowalski. ANIS: High energy neutrino generator for neutrino telescopes. Com-
put.Phys.Commun., 172:203–213, 2005.

[126] M. Dhanamjaya, V.G. Talawar, K.R.Mulla, and N. Chowdappa. Visibility of reference patterns in the doctoral
theses of engineering and technology: A citation analysis study. PEARL - A Journal of Library and Information
Science, 5:2:59–70, 2011.

[127] Adam M. Dziewonski and Don L. Anderson. Preliminary reference earth model. Physics of the Earth and
Planetary Interiors, 25(4):297 – 356, 1981.

[128] Thomas K. Gaisser, Kyle Jero, Albrecht Karle, and Jakob van Santen. A generalized self-veto probability for
atmospheric neutrinos. Phys.Rev., D90:023009, 2014.

[129] Dmitry Chirkin. Likelihood description for comparing data with simulation of limited statistics. 2013.

[130] Roger J. Barlow and Christine Beeston. Fitting using finite Monte Carlo samples. Comput.Phys.Commun.,
77:219–228, 1993.

[131] Louis Lyons. Bayes and Frequentism: a Particle Physicist’s perspective. 2013.

[132] S.S. Wilks. The Large-Sample Distribution of the Likelihood Ratio for Testing Composite Hypotheses. Annals
Math.Statist., 9(1):60–62, 1938.

[133] Gary J. Feldman and Robert D. Cousins. A Unified approach to the classical statistical analysis of small signals.
Phys.Rev., D57:3873–3889, 1998.

[134] Mayly C. Sanchez et al. Measurement of the L/E distributions of atmospheric neutrinos in Soudan 2 and their
interpretation as neutrino oscillations. Phys.Rev., D68:113004, 2003.



152

[135] Sean Grullon. A Search for a Diffuse Flux of Astrophysical Muon Neutrinos With the IceCube Neutrino Obser-
vatory in the 40-String Configuration. PhD thesis, University of Wisconsin Madison, 2010.

[136] Jose R. Alonso for the DAEδALUS Collaboration. The daeδalus project: Rationale and beam requirements.
2010.

[137] S. Agostinelli et al. GEANT4: A Simulation toolkit. Nucl.Instrum.Meth., A506:250–303, 2003.



153

Appendix A: Supplemental Plots for Level 8 Cuts

Many plots went into designing the event selection presented in this analysis, especially Ch. 7. Some of the

distributions are especially relevant to the analysis; the others are presented in this chapter for future reference and

comparison. The purpose of many of these plots is to investigate whether the variable in question would be a good cut

variable. As such, the relevant questions are:

• Do the experimental and simulated data agree reasonably well across a wide range, or if not, can we cut out the

region of disagreement without damaging the oscillaiton signal?

• Does this variable separate neutrinos (especially muon neutrinos) from cosmic ray background generated by the

CORSIKA simulation generator?

• Does this variable correlate with energy reconstruction resolution, and if so, is it in a specific region?

• Does this variable correlate with zenith angle reconstruction resolution, and if so, is it in a specific region?

The plots on the following pages are designed to address these questions. Each of these questions is best addressed

with a specific format of plot. The purpose and conclusion from each plot is addressed in its caption.

A.1 Designing Level 8 Cuts

The plots shown in this section reflect the statistics of the Level 7 sample, but with the reconstruction algorithms

of Level 8 processing.

At cut Level 7, a reasonable pure neutrino sample has already been isolated. The Level 8 processing and cuts

are based around the energy reconstruction Monopod, which was run on all events in the Level 7 sample (after the

reconstruction and cuts are both performed, the sample is called “Level 8”).

The main reconstruction in the Level 8 processing is Monopod, which is used as the energy reconstruction in the

final analysis. The purpose of the Level 8 cuts is to identify events with good energy resolution, and to establish

agreement between experimental data and simulation. Zenith angle reconstruction and quality is not considered until

the next cut level, where a zenith angle reconstruction is performed.



154

Figure A.1: NCh, after hit cleaning, at cut level 7. The hit cleaning used here is a time window cleaning, followed by

a seeded RT cleaning, then only counting the DOMs in the DeepCore fiducial region.

(a) NCh after hit cleaning versus rate, with simulation compared to data. The simulation sample (red) is the sum of several

components: CORSIKA-generated cosmic ray muons (green), and three flavors of neutrinos added together (blue).

(b) NCh after hit cleaning versus energy reconstruction error
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Figure A.2: NString, after hit cleaning, at cut level 7. The hit cleaning used here is a time window cleaning, followed

by a seeded RT cleaning, then only counting the DOMs in the DeepCore fiducial region.

(a) NString after hit cleaning versus rate, with simulation compared to data. The simulation sample (red) is the sum of several

components: CORSIKA-generated cosmic ray muons (green), and three flavors of neutrinos added together (blue).

(b) NString after hit cleaning versus energy reconstruction error
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Figure A.3: Total charge, after hit cleaning, at cut level 7. The hit cleaning used here is a time window cleaning,

followed by a seeded RT cleaning, then only counting the DOMs in the DeepCore fiducial region.

(a) Total charge after hit cleaning versus rate, with simulation compared to data. The simulation sample (red) is the sum of several

components: CORSIKA-generated cosmic ray muons (green), and three flavors of neutrinos added together (blue).

(b) Total charge after hit cleaning versus energy reconstruction error
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Figure A.4: CLast reconstructed vertex time at cut level 7. For an explanation of how the CLast vertex time is

calculated, see §5.7.

(a) CLast reconstructed vertex time versus rate, with simulation compared to data. The simulation sample (red) is the sum of several

components: CORSIKA-generated cosmic ray muons (green), and three flavors of neutrinos added together (blue).

(b) CLast reconstructed vertex time versus energy reconstruction error
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Figure A.5: Distance between the central string and center-of-gravity reconstructed vertex, squared, at cut level 7

(a) Distance between the central string and center-of-gravity reconstructed vertex, squared, versus rate, with simulation compared

to data. The simulation sample (red) is the sum of several components: CORSIKA-generated cosmic ray muons (green), and three

flavors of neutrinos added together (blue).

(b) Distance between the central string and center-of-gravity reconstructed vertex, squared, versus energy reconstruction error
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Figure A.6: Monopod reconstructed depth at cut level 7

(a) Monopod reconstructed depth versus rate, with simulation compared to data. The simulation sample (red) is the sum of several

components: CORSIKA-generated cosmic ray muons (green), and three flavors of neutrinos added together (blue).

(b) Monopod reconstructed depth versus energy reconstruction error
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Figure A.7: Distance between the central string and the Monopod reconstructed vertex, squared, at cut level 7. For

more information about the Monopod reconstruction algorithm, see §5.11.1.

(a) Distance between the central string and the Monopod reconstructed vertex, squared, versus rate, with simulation compared to

data. The simulation sample (red) is the sum of several components: CORSIKA-generated cosmic ray muons (green), and three

flavors of neutrinos added together (blue).

(b) Distance between the central string and the Monopod reconstructed vertex, squared, versus energy reconstruction error
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Figure A.8: Number of direct hits relative to the Monopod reconstructed interaction vertex, at cut level 7. For more

information about the Monopod reconstruction algorithm, see §5.11.1. Direct hits are those that arrive between 15 nsec

before the expected light arrival time and 75 nsec after the expected time.

(a) Number of Direct hits relative to Monopod versus rate, with simulation compared to data. The simulation sample (red) is the

sum of several components: CORSIKA-generated cosmic ray muons (green), and three flavors of neutrinos added together (blue).

(b) Number of direct hits relative to Monopod versus energy reconstruction error
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Figure A.9: Number of early pulses relative to the Monopod reconstructed interaction vertex, at cut level 7. For more

information about the Monopod reconstruction algorithm, see §5.11.1. Early pulses are those that arrive 15 nsec or

more before the expected light arrival time.

(a) Number of early pulses relative to the Monopod reconstruction versus rate, with simulation compared to data. The simulation

sample (red) is the sum of several components: CORSIKA-generated cosmic ray muons (green), and three flavors of neutrinos

added together (blue).

(b) Number of early pulses relative to the Monopod reconstructed interaction vertex versus energy reconstruction error
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Figure A.10: Number of late pulses relative to the Monopod reconstructed interaction vertex, at cut level 7. For more

information about the Monopod reconstruction algorithm, see §5.11.1. Late pulses are those that arrive 250 nsec or

more after the expected light arrival time.

(a) Number of late pulses relative to the Monopod reconstructed interaction vertex versus rate, with simulation compared to data.

The simulation sample (red) is the sum of several components: CORSIKA-generated cosmic ray muons (green), and three flavors

of neutrinos added together (blue).

(b) Number of late pulses relative to the Monopod reconstructed interaction vertex versus energy reconstruction error
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Figure A.11: Reconstructed energy, using the Monopod reconstruction algorithm, at cut level 7. For more information

about the Monopod reconstruction algorithm, see §5.11.1.

(a) Reconstructed Energy versus rate, with simulation compared to data. The simulation sample (red) is the sum of several compo-

nents: CORSIKA-generated cosmic ray muons (green), and three flavors of neutrinos added together (blue).

(b) Reconstructed Energy versus energy reconstruction error



165

Figure A.12: Reconstructed Zenith, using the Monopod reconstruction algorithm, at cut level 7. For more information

about the Monopod reconstruction algorithm, see §5.11.1. Monopod is not expected to be an accurate zenith angle

reconstruction, but is included here to allow comparison.

(a) Reconstructed Energy versus rate, with simulation compared to data. The simulation sample (red) is the sum of several compo-

nents: CORSIKA-generated cosmic ray muons (green), and three flavors of neutrinos added together (blue).

(b) Reconstructed Energy versus energy reconstruction error (c) Reconstructed Energy versus zenith angle reconstruction error.
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Appendix B: Supplemental Plots for Level 9 Cuts

The plots shown in this section reflect the statistics of the Level 8 sample while considering variables calculated

during Level 9 processing. For continuity, variables from the Level 8 processing are included also.

The main reconstruction at Level 9 is the Igelfit directional reconstruction; the zenith angle component of the

output is used as an observable in the final analysis. The cuts at level 9 are deigned to identify an event sample with

good zenith angle resolution while preserving: agreement between experimental and simulated data, purity of the

neutrino sample against the cosmic ray muon background, and a large enough statistical sample to analyze.
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Figure B.1: NCh, after hit cleaning, at cut level 8. The hit cleaning used here is a time window cleaning, followed by

a seeded RT cleaning, then only counting the DOMs in the DeepCore fiducial region.

(a) NCh after hit cleaning versus rate, with simulation compared to data. The simulation sample (red) is the sum of several

components: CORSIKA-generated cosmic ray muons (green), and three flavors of neutrinos added together (blue).

(b) NCh after hit cleaning versus Monopod energy reconstruction

error

(c) NCh after hit cleaning versus Igelfit energy reconstruction er-

ror
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Figure B.2: NString, after hit cleaning, at cut level 8. The hit cleaning used here is a time window cleaning, followed

by a seeded RT cleaning, then only counting the DOMs in the DeepCore fiducial region.

(a) NString after hit cleaning versus rate, with simulation compared to data. The simulation sample (red) is the sum of several

components: CORSIKA-generated cosmic ray muons (green), and three flavors of neutrinos added together (blue).

(b) NString after hit cleaning versus Monopod energy reconstruc-

tion error

(c) NString after hit cleaning versus Igelfit zenith angle recon-

struction error
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Figure B.3: Total charge, after hit cleaning, at cut level 8. The hit cleaning used here is a time window cleaning,

followed by a seeded RT cleaning, then only counting the DOMs in the DeepCore fiducial region.

(a) Total charge after hit cleaning versus rate, with simulation compared to data. The simulation sample (red) is the sum of several

components: CORSIKA-generated cosmic ray muons (green), and three flavors of neutrinos added together (blue).

(b) Total charge after hit cleaning versus Monopod energy recon-

struction error

(c) Total charge after hit cleaning versus Igelfit zenith angle re-

construction error
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Figure B.4: CLast reconstructed vertex time at cut level 8. For an explanation of how the CLast vertex time is

calculated, see §5.7.

(a) CLast reconstructed vertex time versus rate, with simulation compared to data. The simulation sample (red) is the sum of several

components: CORSIKA-generated cosmic ray muons (green), and three flavors of neutrinos added together (blue).

(b) CLast reconstructed vertex time versus Monopod energy re-

construction error

(c) CLast reconstructed vertex time versus Igelfit zenith angle re-

construction error
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Figure B.5: Distance between the central string and center-of-gravity reconstructed vertex, squared, at cut level 8

(a) Distance between the central string and center-of-gravity reconstructed vertex, squared, versus rate, with simulation compared

to data. The simulation sample (red) is the sum of several components: CORSIKA-generated cosmic ray muons (green), and three

flavors of neutrinos added together (blue).

(b) Distance between the central string and center-of-gravity re-

constructed vertex, squared, versus Monopod energy reconstruc-

tion error

(c) Distance between the central string and center-of-gravity re-

constructed vertex, squared, versus Igelfit zenith angle reconstruc-

tion error
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Figure B.6: Monopod reconstructed depth at cut level 8

(a) Monopod reconstructed depth versus rate, with simulation compared to data. The simulation sample (red) is the sum of several

components: CORSIKA-generated cosmic ray muons (green), and three flavors of neutrinos added together (blue).

(b) Monopod reconstructed depth versus Monopod energy

reconstruction error

(c) Monopod reconstructed depth versus Igelfit zenith angle

reconstruction error
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Figure B.7: Distance between the central string and the Monopod reconstructed vertex, squared, at cut level 8. For

more information about the Monopod reconstruction algorithm, see §5.11.1.

(a) Distance between the central string and the Monopod reconstructed vertex, squared, versus rate, with simulation compared to

data. The simulation sample (red) is the sum of several components: CORSIKA-generated cosmic ray muons (green), and three

flavors of neutrinos added together (blue).

(b) Distance between the central string and the Monopod recon-

structed vertex, squared, versus Monopod energy reconstruction

error

(c) Distance between the central string and the Monopod recon-

structed vertex, squared, versus Igelfit zenith angle reconstruction

error
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Figure B.8: Number of direct hits relative to the Monopod reconstructed interaction vertex, at cut level 8. For more

information about the Monopod reconstruction algorithm, see §5.11.1. Direct hits are those that arrive between 15 nsec

before the expected light arrival time and 75 nsec after the expected time.

(a) Number of direct hits relative to Monopod versus rate, with simulation compared to data. The simulation sample (red) is the

sum of several components: CORSIKA-generated cosmic ray muons (green), and three flavors of neutrinos added together (blue).

(b) Number of direct hits relative to Monopod versus Monopod

energy reconstruction error

(c) Number of direct hits relative to Monopod versus Igelfit zenith

angle reconstruction error
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Figure B.9: Number of early pulses relative to the Monopod reconstructed interaction vertex, at cut level 8. For more

information about the Monopod reconstruction algorithm, see §5.11.1. Early pulses are those that arrive 15 nsec or

more before the expected light arrival time.

(a) Number of early pulses relative to the Monopod reconstruction versus rate, with simulation compared to data. The simulation

sample (red) is the sum of several components: CORSIKA-generated cosmic ray muons (green), and three flavors of neutrinos

added together (blue).

(b) Number of early pulses relative to the Monopod reconstructed

interaction vertex versus Monopod energy reconstruction error

(c) Number of early pulses relative to the Monopod reconstructed

interaction vertex versus Igelfit zenith angle reconstruction error
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Figure B.10: Number of late pulses relative to the Monopod reconstructed interaction vertex, at cut level 8. For more

information about the Monopod reconstruction algorithm, see §5.11.1. Late pulses are those that arrive 250 nsec or

more after the expected light arrival time.

(a) Number of late pulses relative to the Monopod reconstructed interaction vertex versus rate, with simulation compared to data.

The simulation sample (red) is the sum of several components: CORSIKA-generated cosmic ray muons (green), and three flavors

of neutrinos added together (blue).

(b) Number of late pulses relative to the Monopod reconstructed

interaction vertex versus Monopod energy reconstruction error

(c) Number of late pulses relative to the Monopod reconstructed

interaction vertex versus Igelfit zenith angle reconstruction error
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Figure B.11: Reconstructed energy, using the Monopod reconstruction algorithm, at cut level 8. For more information

about the Monopod reconstruction algorithm, see §5.11.1.

(a) Reconstructed Energy versus rate, with simulation compared to data. The simulation sample (red) is the sum of several compo-

nents: CORSIKA-generated cosmic ray muons (green), and three flavors of neutrinos added together (blue).

(b) Reconstructed Energy versus Monopod energy reconstruction

error (c) Reconstructed Energy versus Igelfit reconstruction error
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Figure B.12: Reconstructed Zenith, using the Monopod reconstruction algorithm, at cut level 8. For more information

about the Monopod reconstruction algorithm, see §5.11.1. Monopod is not expected to be an accurate reconstruction

for zenith angle, but the plot is included here for comparison to the Igelfit reconstructed zenith.

(a) Reconstructed zenith angle versus rate, with simulation compared to data. The simulation sample (red) is the sum of several

components: CORSIKA-generated cosmic ray muons (green), and three flavors of neutrinos added together (blue).

(b) Monopod reconstructed zenith angle versus Monopod energy

reconstruction error

(c) Monopod reconstructed zenith angle versus Igelfit zenith angle

reconstruction error
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B.1 Results of Running Igelfit

Because no new cuts are applied at L9 (i.e., there are no cuts on Igelfit quality), the plots from the previous section

also apply to this cut level. The only plots included in this section show the new variables calculated with Igelfit.

Note that reconstructed depth is left out of these plots because Igelfit does not vary the vertex position away from

the seed it is given, thus the depth distribution is the same for both Monopod and Igelfit.
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Figure B.13: Number of direct hits relative to the Igelfit reconstruction, at cut level 9. For more information about the

Igelfit reconstruction algorithm, see §5.11.3. Direct hits are those that arrive between 15 nsec before the expected light

arrival time and 75 nsec after the expected time.

(a) Number of direct hits relative to Igelfit versus rate, with simulation compared to data. The simulation sample (red) is the sum of

several components: CORSIKA-generated cosmic ray muons (green), and three flavors of neutrinos added together (blue).

(b) Number of direct hits relative to Igelfit versus Monopod en-

ergy reconstruction error

(c) Number of direct hits relative to Igelfit versus Igelfit zenith

angle reconstruction error
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Figure B.14: Number of early pulses relative to the Igelfit reconstruction, at cut level 8. For more information about

the Monopod reconstruction algorithm, see §5.11.1. Early pulses are those that arrive 15 nsec or more before the

expected light arrival time.

(a) Number of early pulses relative to the Igelfit reconstruction versus rate, with simulation compared to data. The simulation

sample (red) is the sum of several components: CORSIKA-generated cosmic ray muons (green), and three flavors of neutrinos

added together (blue).

(b) Number of early pulses relative to the Igelfit reconstruction

versus Monopod energy reconstruction error

(c) Number of early pulses relative to the Igelfit reconstruction

versus Igelfit zenith angle reconstruction error
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Figure B.15: Number of late pulses relative to the Igelfit reconstruction, at cut level 8. For more information about the

Igelfit reconstruction algorithm, see §5.11.3. Late pulses are those that arrive 250 nsec or more after the expected light

arrival time.

(a) Number of late pulses relative to the Igelfit reconstruction versus rate, with simulation compared to data. The simulation sample

(red) is the sum of several components: CORSIKA-generated cosmic ray muons (green), and three flavors of neutrinos added

together (blue).

(b) Number of late pulses relative to the Igelfit reconstruction ver-

sus Monopod energy reconstruction error

(c) Number of late pulses relative to the Igelfit reconstruction ver-

sus Igelfit zenith angle reconstruction error



183

Figure B.16: Reconstructed Zenith, using the Igelfit reconstruction algorithm, at cut level 8. For more information

about the Igelfit reconstruction algorithm, see §5.11.3.

(a) Igelfit reconstructed zenith angle versus rate, with simulation compared to data. The simulation sample (red) is the sum of

several components: CORSIKA-generated cosmic ray muons (green), and three flavors of neutrinos added together (blue).

(b) Igelfit reconstructed zenith angle versus Monopod energy re-

construction error

(c) Igelfit reconstructed zenith angle versus Igelfit zenith angle

reconstruction error
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Appendix C: Supplemental Plots for Level 10 Cuts

The final set of cuts is a simple cut on Monopod reconstructed energy and Igelfit reconstructed zenith. The events

passing these cuts are used for the final analysis. The full IC79 dataset is used.
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Figure C.1: NCh, after hit cleaning, at cut level 10. The hit cleaning used here is a time window cleaning, followed by

a seeded RT cleaning, then only counting the DOMs in the DeepCore fiducial region.

(a) NCh after hit cleaning versus rate, with simulation compared to data. The simulation sample (red) is the sum of several

components: CORSIKA-generated cosmic ray muons (green), and three flavors of neutrinos added together (blue).

(b) NCh after hit cleaning versus Monopod energy reconstruction

error

(c) NCh after hit cleaning versus Igelfit energy reconstruction er-

ror



186

Figure C.2: NString, after hit cleaning, at cut level 10. The hit cleaning used here is a time window cleaning, followed

by a seeded RT cleaning, then only counting the DOMs in the DeepCore fiducial region.

(a) NString after hit cleaning versus rate, with simulation compared to data. The simulation sample (red) is the sum of several

components: CORSIKA-generated cosmic ray muons (green), and three flavors of neutrinos added together (blue).

(b) NString after hit cleaning versus Monopod energy reconstruc-

tion error

(c) NString after hit cleaning versus Igelfit zenith angle recon-

struction error
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Figure C.3: Total charge, after hit cleaning, at cut level 10. The hit cleaning used here is a time window cleaning,

followed by a seeded RT cleaning, then only counting the DOMs in the DeepCore fiducial region.

(a) Total charge after hit cleaning versus rate, with simulation compared to data. The simulation sample (red) is the sum of several

components: CORSIKA-generated cosmic ray muons (green), and three flavors of neutrinos added together (blue).

(b) Total charge after hit cleaning versus Monopod energy recon-

struction error

(c) Total charge after hit cleaning versus Igelfit zenith angle re-

construction error
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Figure C.4: CLast reconstructed vertex time at cut level 10. For an explanation of how the CLast vertex time is

calculated, see §5.7.

(a) CLast reconstructed vertex time versus rate, with simulation compared to data. The simulation sample (red) is the sum of several

components: CORSIKA-generated cosmic ray muons (green), and three flavors of neutrinos added together (blue).

(b) CLast reconstructed vertex time versus Monopod energy re-

construction error

(c) CLast reconstructed vertex time versus Igelfit zenith angle re-

construction error
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Figure C.5: Distance between the central string and center-of-gravity reconstructed vertex, squared, at cut level 10

(a) Distance between the central string and center-of-gravity reconstructed vertex, squared, versus rate, with simulation compared

to data. The simulation sample (red) is the sum of several components: CORSIKA-generated cosmic ray muons (green), and three

flavors of neutrinos added together (blue).

(b) Distance between the central string and center-of-gravity re-

constructed vertex, squared, versus Monopod energy reconstruc-

tion error

(c) Distance between the central string and center-of-gravity re-

constructed vertex, squared, versus Igelfit zenith angle reconstruc-

tion error
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Figure C.6: Monopod reconstructed depth at cut level 10

(a) Monopod reconstructed depth versus rate, with simulation compared to data. The simulation sample (red) is the sum of several

components: CORSIKA-generated cosmic ray muons (green), and three flavors of neutrinos added together (blue).

(b) Monopod reconstructed depth versus Monopod energy

reconstruction error

(c) Monopod reconstructed depth versus Igelfit zenith angle

reconstruction error
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Figure C.7: Distance between the central string and the Monopod reconstructed vertex, squared, at cut level 10. For

more information about the Monopod reconstruction algorithm, see §5.11.1.

(a) Distance between the central string and the Monopod reconstructed vertex, squared, versus rate, with simulation compared to

data. The simulation sample (red) is the sum of several components: CORSIKA-generated cosmic ray muons (green), and three

flavors of neutrinos added together (blue).

(b) Distance between the central string and the Monopod recon-

structed vertex, squared, versus Monopod energy reconstruction

error

(c) Distance between the central string and the Monopod recon-

structed vertex, squared, versus Igelfit zenith angle reconstruction

error
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Figure C.8: Number of direct hits relative to the Monopod reconstructed interaction vertex, at cut level 10. For more

information about the Monopod reconstruction algorithm, see §5.11.1. Direct hits are those that arrive between 15 nsec

before the expected light arrival time and 75 nsec after the expected time.

(a) Number of direct hits relative to Monopod versus rate, with simulation compared to data. The simulation sample (red) is the

sum of several components: CORSIKA-generated cosmic ray muons (green), and three flavors of neutrinos added together (blue).

(b) Number of direct hits relative to Monopod versus Monopod

energy reconstruction error

(c) Number of direct hits relative to Monopod versus Igelfit zenith

angle reconstruction error
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Figure C.9: Number of early pulses relative to the Monopod reconstructed interaction vertex, at cut level 10. For more

information about the Monopod reconstruction algorithm, see §5.11.1. Early pulses are those that arrive 15 nsec or

more before the expected light arrival time.

(a) Number of early pulses relative to the Monopod reconstruction versus rate, with simulation compared to data. The simulation

sample (red) is the sum of several components: CORSIKA-generated cosmic ray muons (green), and three flavors of neutrinos

added together (blue).

(b) Number of early pulses relative to the Monopod reconstructed

interaction vertex versus Monopod energy reconstruction error

(c) Number of early pulses relative to the Monopod reconstructed

interaction vertex versus Igelfit zenith angle reconstruction error
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Figure C.10: Number of late pulses relative to the Monopod reconstructed interaction vertex, at cut level 10. For more

information about the Monopod reconstruction algorithm, see §5.11.1. Late pulses are those that arrive 250 nsec or

more after the expected light arrival time.

(a) Number of late pulses relative to the Monopod reconstructed interaction vertex versus rate, with simulation compared to data.

The simulation sample (red) is the sum of several components: CORSIKA-generated cosmic ray muons (green), and three flavors

of neutrinos added together (blue).

(b) Number of late pulses relative to the Monopod reconstructed

interaction vertex versus Monopod energy reconstruction error

(c) Number of late pulses relative to the Monopod reconstructed

interaction vertex versus Igelfit zenith angle reconstruction error
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Figure C.11: Reconstructed energy, using the Monopod reconstruction algorithm, at cut level 10. For more information

about the Monopod reconstruction algorithm, see §5.11.1.

(a) Reconstructed Energy versus rate, with simulation compared to data. The simulation sample (red) is the sum of several compo-

nents: CORSIKA-generated cosmic ray muons (green), and three flavors of neutrinos added together (blue).

(b) Reconstructed Energy versus Monopod energy reconstruction

error (c) Reconstructed Energy versus Igelfit reconstruction error
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Figure C.12: Reconstructed Zenith, using the Monopod reconstruction algorithm, at cut level 10. For more information

about the Monopod reconstruction algorithm, see §5.11.1. Monopod is not expected to be an accurate reconstruction

for zenith angle, but the plot is included here for comparison to the Igelfit reconstructed zenith.

(a) Reconstructed zenith angle versus rate, with simulation compared to data. The simulation sample (red) is the sum of several

components: CORSIKA-generated cosmic ray muons (green), and three flavors of neutrinos added together (blue).

(b) Monopod reconstructed zenith angle versus Monopod energy

reconstruction error

(c) Monopod reconstructed zenith angle versus Igelfit zenith angle

reconstruction error
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Figure C.13: Number of direct hits relative to the Igelfit reconstruction, at cut level 10. For more information about

the Igelfit reconstruction algorithm, see §5.11.3. Direct hits are those that arrive between 15 nsec before the expected

light arrival time and 75 nsec after the expected time.

(a) Number of direct hits relative to Igelfit versus rate, with simulation compared to data. The simulation sample (red) is the sum of

several components: CORSIKA-generated cosmic ray muons (green), and three flavors of neutrinos added together (blue).

(b) Number of direct hits relative to Igelfit versus Monopod en-

ergy reconstruction error

(c) Number of direct hits relative to Igelfit versus Igelfit zenith

angle reconstruction error
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Figure C.14: Number of early pulses relative to the Igelfit reconstruction, at cut level 10. For more information about

the Monopod reconstruction algorithm, see §5.11.1. Early pulses are those that arrive 15 nsec or more before the

expected light arrival time.

(a) Number of early pulses relative to the Igelfit reconstruction versus rate, with simulation compared to data. The simulation

sample (red) is the sum of several components: CORSIKA-generated cosmic ray muons (green), and three flavors of neutrinos

added together (blue).

(b) Number of early pulses relative to the Igelfit reconstruction

versus Monopod energy reconstruction error

(c) Number of early pulses relative to the Igelfit reconstruction

versus Igelfit zenith angle reconstruction error
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Figure C.15: Number of late pulses relative to the Igelfit reconstruction, at cut level 10. For more information about

the Igelfit reconstruction algorithm, see §5.11.3. Late pulses are those that arrive 250 nsec or more after the expected

light arrival time.

(a) Number of late pulses relative to the Igelfit reconstruction versus rate, with simulation compared to data. The simulation sample

(red) is the sum of several components: CORSIKA-generated cosmic ray muons (green), and three flavors of neutrinos added

together (blue).

(b) Number of late pulses relative to the Igelfit reconstruction ver-

sus Monopod energy reconstruction error

(c) Number of late pulses relative to the Igelfit reconstruction ver-

sus Igelfit zenith angle reconstruction error
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Figure C.16: Reconstructed Zenith, using the Igelfit reconstruction algorithm, at cut level 10. For more information

about the Igelfit reconstruction algorithm, see §5.11.3.

(a) Igelfit reconstructed zenith angle versus rate, with simulation compared to data. The simulation sample (red) is the sum of

several components: CORSIKA-generated cosmic ray muons (green), and three flavors of neutrinos added together (blue).

(b) Igelfit reconstructed zenith angle versus Monopod energy re-

construction error

(c) Igelfit reconstructed zenith angle versus Igelfit zenith angle

reconstruction error
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Appendix D: The IceCube Moon Shadow Paper

For more information about the IceCube moon shadow, see the following paper and also Chapter 6.
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We report on the observation of a significant deficit of cosmic rays from the direction of the Moon with
the IceCube detector. The study of this “Moon shadow” is used to characterize the angular resolution and
absolute pointing capabilities of the detector. The detection is based on data taken in two periods before the
completion of the detector: between April 2008 and May 2009, when IceCube operated in a partial
configuration with 40 detector strings deployed in the South Pole ice, and between May 2009 and May
2010 when the detector operated with 59 strings. Using two independent analysis methods, the Moon
shadow has been observed to high significance (> 6σ) in both detector configurations. The observed
location of the shadow center is within 0.2° of its expected position when geomagnetic deflection effects are
taken into account. This measurement validates the directional reconstruction capabilities of IceCube.
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I. INTRODUCTION

IceCube is a km3-scale Cherenkov detector deployed in
the glacial ice at the geographic South Pole. Its primary
goal is to search for astrophysical sources of high-energy
neutrinos. A major background for this search is the high
rate of atmospheric muons produced when cosmic rays
with energies above a few TeV interact with the Earth’s
atmosphere. The rate of muon events in IceCube above
several hundred GeV dominates the total trigger rate of the
detector, and is approximately six orders of magnitude
higher than the rate of neutrino-induced events.
The incoming direction of multi-TeV cosmic muons is

on average within 0.1° of the arrival direction of the primary
cosmic-ray particle [1]. This implies that the distribution of
incoming muons should mimic the almost isotropic dis-
tribution of TeV cosmic rays in the sky [2,3]. An important
feature of the angular distribution of cosmic rays is the
presence of a relative deficit in the flux of cosmic rays
coming from the direction of the Moon. This effect, due to
the absorption of cosmic rays by the Moon, was first
predicted by Clark in 1957 [4], and its observation has been
used by several experiments as a way of calibrating the
angular resolution and the pointing accuracy of their
particle detectors (see [5–8], or [9] for recent results.)
For IceCube, the Moon shadow analysis is a vital and

unique verification tool for the track reconstruction algo-
rithms that are used in the search for point-like sources of
astrophysical neutrinos [10], among other analyses. In this
paper we will report on the observation of the Moon
shadow using data taken between April 2008 and May
2010, before the completion of the IceCube Neutrino
Observatory in December 2010.
Two independent analysis methods were used in the

search for the Moon shadow. The first analysis performs a
binned, one-dimensional search for the Moon shadow that
compares the number of events detected from the direction
of the Moon to the number of background events recorded
at the same declination as the Moon but at a different right
ascension. The second method uses an unbinned, two-
dimensional maximum-likelihood algorithm that retrieves
the best fit value for the total number of events shadowed
by the Moon.
Both methods show consistent results, and constitute the

first statistically significant detection of the shadow of the
Moon using a high-energy neutrino telescope.

II. DETECTOR CONFIGURATION AND
DATA SAMPLE

A. The IceCube detector

The IceCube neutrino telescope uses the deep Antarctic
ice as a detection medium. High-energy neutrinos that
interact with nucleons in the ice produce relativistic leptons
that emit Cherenkov radiation as they propagate through
the detector volume. This Cherenkov light is detected by a

volumetric array of 5160 digital optical modules (DOMs)
deployed at depths between 1450 and 2450 m below the ice
surface. Each DOM consists of a 25 cm diameter photo-
multiplier tube (PMT) [11] and the electronics for signal
digitization [12] housed inside a pressure-resistant glass
sphere.
The DOMs are attached to 86 strings that provide

mechanical support, electrical power, and a data connection
to the surface. Consecutive DOMs in each string are
vertically separated by a distance of about 17 m, while the
horizontal spacing between strings is about 125 m. A
compact group of eight strings with a smaller spacing
between DOMs is located at the bottom of the detector
and forms DeepCore [13], which is designed to extend the
energy reach of IceCube to lower neutrino energies. The
IceTop surface array, devoted to the detection of extensive air
showers from cosmic rays with energies between 300 TeV
and 1 EeV, completes the instrumentation of the observatory.
The construction of IceCube began in 2005 and was

completed in December 2010. During construction, the
detector operated in several partial configurations. Data
from two different configurations were used in this paper:
between 2008 and 2009 the detector operated with 40
strings deployed in the ice (IC40), and between 2009 and
2010 the detector operated in its 59-string configuration
(IC59). The layout of the two detector configurations used
in this work can be seen in Fig. 1.

B. Data sample

In order to reduce the rate of noise-induced events,
IceCube DOMs are operated in a coincidence mode called
hard local coincidence (HLC). During the operation of
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FIG. 1. Layout of the two detector configurations considered in
this analysis. IC40 (gray) operated between 2008 and 2009. The
deployment of more strings initiated the IC59 configuration
(black) operated between 2009 and 2010. The remaining strings
that form the final 86-string configuration, the last of them
installed in December 2010, are shown as open circles. The y axis
(Grid North) is aligned with the Greenwich Prime Meridian.
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IC40 and IC59 the HLC requirement was met if photon hits
were detected within a �1 μs window in the two nearest
neighbor or next-to-nearest neighbor DOMs. The detection
of HLC hits leads to a full readout and transmission to the
surface of the digitized PMT signals. A trigger condition is
then used to combine these photon hits into a candidate
event. The main trigger in IceCube is a simple multiplicity
trigger called SMT8 that requires HLC hits in eight DOMs
within 5 μs. For each trigger, all HLC hits within a �10 μs
window are recorded and merged into a single event.
The majority of events detected by IceCube are due to

down-going muons produced in the interaction of high-
energy cosmic rays with the Earth’s atmosphere. During the
operation of IC40, the cosmic muon-induced trigger rate
was about 1.1 kHz, which increased to about 1.7 kHz
during the IC59 data-taking period. This high rate of
cosmic-ray muon events provides a high-statistics data
set that can be used to search for the Moon shadow.
Since the rate of data transfer from the South Pole via the

South Pole archival and data exchange satellite communi-
cation system is limited to about 100 Gb per day, only a
limited number of muon events can be transmitted north
over the satellite. For this reason, the data used in this
analysis were taken using a dedicated online filter that
selects only events passing minimum quality cuts and
reconstructed within a predefined angular acceptance
window around the Moon.
A fast likelihood-based muon track reconstruction [14] is

performed at the South Pole to obtain the arrival direction
of each event. The reconstructed direction of the muon
track is then compared to the position of the Moon in the
sky, which is calculated using the publicly available
SLALIB library of astronomical routines [15].
An event satisfies the Moon filter selection criterium if at

least 12 DOMs in 3 different strings record photon hits, and
if the reconstructed direction is within 10° of the Moon
position in declination and 40°= cosðδμÞ in right ascension
(where δμ is the declination of the event and the cosine
factor accounts for projection effects).
The filter is enabled when the Moon is at least 15° above

the horizon. Due to the particular geographic location of
IceCube at the South Pole, the Moon rises above this
threshold only once per month, as its elevation above the
horizon changes slowly over the course of days. Since the
number of muon events recorded by IceCube is a strong
function of the elevation angle, the rate of events that pass
the acceptancewindow condition changes during this period
as this window follows the apparent motion of the Moon at
the South Pole. The strong correlation between the Moon
elevation and rate of events passing the Moon filter is shown
in Fig. 2. The maximum event rate is also modulated over a
longer time scale of 18.6 years (known as the lunar draconic
period [16]) in which the maximum elevation of the Moon
above the horizon at the South Pole oscillates between the
extreme values of 18.4 and 28.4°. The maximum Moon

elevation during the IC40 data-taking period was 26.9°,
while for IC59 it was 25.6°. Approximately 1.29 × 108

muon events passing the Moon filter condition were
recorded during the IC40 data-taking period, and about
1.77 × 108 events were recorded during the operation of the
IC59 configuration.
Once these events have been transferred from the South

Pole, an iterative maximum-likelihood reconstruction algo-
rithm is applied to the data set to obtain a more precise track
direction [14]. The algorithm also determines the angular
uncertainty in the reconstructed track direction by mapping
the likelihood space around the best track solution and
fitting it with a paraboloid function [17]. A narrow
paraboloid indicates a precise reconstruction, while a wide
paraboloid indicates a larger uncertainty in the recon-
structed direction of the muon track. The 1σ contour line
of the paraboloid function defines an error ellipse for the
reconstructed direction of the track. In this analysis, a
single, one-dimensional estimator of the uncertainty is
obtained by calculating the root-mean-square (rms) value
of the semimajor axes of that error ellipse.
The likelihood-based track reconstruction algorithm

used in this work is based on the leading-edge times of
the first light pulses recorded by each DOM. For the fast
track reconstruction at the South Pole the single-photo-
electron (SPE) fit is used. In this fit, the likelihood that the
first photon arrived at the pulse leading-edge times is
maximized. The photons arriving at later times are ignored.
Neutrino point source searches rely on the multiphotoe-

lectron (MPE) fit. In the MPE fit, the total number of
photoelectronsNd in each DOM, d, is taken into account by
multiplying the likelihood that a photon was detected at the
first leading-edge time with the probability that the remain-
ing Nd − 1 photons arrived later [14]. For bright, i.e. high-
energy, events in simulated data the MPE fit results in a
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FIG. 2. Rate of muon events passing the Moon filter during the
month of September 2009, when IceCube was operating in its
IC59 configuration. The correlation between the Moon elevation
(dashed line) and event rate (solid line) is clearly visible.
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slightly better angular resolution than the SPE fit. Also, the
number of direct (unscattered) photons associated with the
reconstructed track tends to be larger with the MPE fit than
with the SPE fit. This makes this quantity as well as related
quantities more effective for selecting well-reconstructed
events. The MPE fit is discussed further in Sec. V B 2.
The track reconstruction algorithms use the local detec-

tor coordinate system and the direction of a reconstructed
track is given as a zenith and azimuth angle. Using the
event times as recorded by the data acquisition system,
these are transformed into a right ascension, αμ, and
declination, δμ, which are the more natural variables for
searches of neutrino point-like sources.

III. SIMULATION

A. Cosmic-ray energy and composition

The muons produced in the interaction between the
cosmic rays and the atmosphere must traverse several
kilometers of ice before reaching the IceCube detector,
losing energy in the process. This sets a lower limit of
several hundred GeV on the energy of the muons at the
ground level that would trigger the detector. By extension,
the primary cosmic-ray particle needed to produce this kind
of muon should have an energy of at least several TeV. In
the following, we will refer to the energy of the primary
cosmic ray, not the muons, unless specified otherwise.
Given that this analysis deals with cosmic-ray showers

near the energy threshold of the detector, the number of
muons produced in each shower that reaches the detector is
small. Most events in the Moon data sample are composed
of one or two energetic muons, and only 2% of the events
have muon multiplicities higher than ten.
The detailed energy scale for the IC40 and IC59 data sets

was determined using simulated cosmic-ray air showers
created with the CORSIKA Monte Carlo code [18] using
the SIBYLL model of high-energy hadronic interactions
[19]. The chemical composition and spectral shape of the
cosmic rays generated in this simulation follow the polyg-
onato model [20].
From these simulations, we estimate that the median

energy of the primary cosmic rays that trigger the IceCube
detector is 20 TeV, while the median energy of events that
satisfy the Moon filter condition is about 40 TeV for both
IC40 and IC59, with 68% of the events between 10 and
200 TeV. The increased median energy of the filtered
sample is due to the greater average zenith angles of the
cosmic rays that pass the filter, which requires primary
particles with enough energy to produce muons able to
traverse more ice and trigger IceCube. The muons pro-
duced by cosmic rays passing the Moon filter have a mean
energy of about 2 TeV at the ground level and reach the
detector with a mean energy of 200 GeV. The mean muon
energy also depends on the zenith angle, and increases from
2.5 TeV for a zenith angle of 65° (the maximum elevation

of the Moon) to 5.6 TeV for a zenith angle of 75° (the
minimum elevation of the Moon for which data is
recorded.) This dependence is shown in Fig 3.
The energy spectrum of all primary cosmic rays trigger-

ing the IceCube detector is shown in Fig. 4 and compared to
the spectrum of those that pass the Moon filter. Also shown
in the figure are the five main chemical elements (protons,
He, C, O, and Fe) that make more than 95% of the Moon
filter data sample assuming the polygonato composition
model. The two main components of the sample are proton
(68% of the events) and helium (23%).
As will be described in the following subsection, an

important quantity for calculating the deflection of cosmic
rays in the magnetic field of the Earth is the particle rigidity
R ∼ E=Z, for a particle with the energy E and electric
charge Z. The distribution of magnetic rigidities for the
sample is given in Fig. 4 for reference.

B. Geomagnetic field effects

Cosmic rays with TeV energies should experience a
small deflection in their trajectories due to the influence of
the magnetic field of the Earth as they propagate towards
the detector. This deflection would appear in the Moon
shadow analysis as a shift in the position of the shadow
with respect to the true Moon position, which could be
wrongly interpreted as a systematic offset produced by the
event reconstruction.
In order to quantify this offset and compare it with any

possible shift observed in the data, we have developed a
particle propagation code that can be used to trace cosmic
rays in the geomagnetic field. Using this code, particles are
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FIG. 3 (color online). Muon energy at the ground level as a
function of the zenith angle for events passing the Moon filter
condition. The solid line indicates the median muon energy in
each zenith bin, while the 68% containing interval is defined
between the two dashed lines. The monotonic increase in muon
energy with the zenith angle is a consequence of the larger ice
overburden for very inclined events, which raises the initial muon
energy necessary to reach the detector.
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propagated radially outwards from the South Pole up to a a
distance of 30 Earth radii from the center of the Earth at
which point the opening angle between the initial and final
velocity vectors is computed. This angle gives the magni-
tude of the deflection in the geomagnetic field.
We use the international geomagnetic reference field

(IGRF) model [21] to calculate deflections. In this model,
the field is calculated using a truncated multipole series
expansion. The current revision of the model, IGRF-11, can
be used to calculate B-field values through 2015, providing
a good coverage of the time range over which the data
were taken. The model is accessible through a library of
FORTRAN routines called GEOPACK developed by
N. Tsyganenko.1

The IGRF-11 model describes what is known as the
internal magnetic field of the Earth, which is presumably
produced by electric currents in the outer core of the planet
and accounts for most of the total magnetic field. Aweaker
component, known as the external field, is produced by
electrical currents in the ionosphere. The external compo-
nent is not included in our calculation since it only modifies
the total angular deflection by a few percent while
significantly increasing the computation time needed to
perform the simulation.
In our simulation, primary cosmic rays are propagated in

the direction of the Moon as seen from the South Pole for
different times during the data-taking period. The cosmic-
ray energy and chemical composition is sampled from the
event distributions that pass the Moon filter, shown in
Fig. 4. The resulting total deflection Δλ is shown in Fig. 5
as a function of energy for 105 simulated cosmic-ray
particles for the five main chemical elements that contribute
to the Moon data set. The energy and charge dependence of
the deflection angle is evident in the plot. Different bands in

the plot correspond to different chemical elements. The
width of each band is due to particles that were propagated
in different directions in the sky (i.e. through different
regions of the Earth’s magnetic field) experiencing different
deflections. A power-law fit to the simulation results has
been performed to estimate the deflection angle as a
function of energy and charge. The fit gives a good
agreement for the following expression:

Δλ½°� ¼ 1.9°
Z

E½TeV� ∼
1.9°
R½TV� ; (1)

where Z is the charge of the cosmic ray (CR) in units of the
elementary charge e, E is its energy in TeV, and Δλ is given
in degrees. This expression has the same functional form as
the one found in [22] with a higher normalization in our
simulation, which could be due to the difference in geo-
graphic location and other simulation details. The
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FIG. 4 (color online). Differential event rate as a function of cosmic-ray primary energy (left) and rigidity (right) for all events in IC59
(light blue) and for only those passing the Moon filter (gray) as determined from simulation studies. The main chemical elements that
make up the events passing the Moon filter are shown with lines of different color. The width of the histogram bins is 0.014 in
log10ðenergy; rigidityÞ. The IC40 configuration shows a similar energy response.
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FIG. 5 (color online). Angular deflection as a function of
energy for the different chemical elements simulated using the
particle propagation code described in Sec. III B.1http://geo.phys.spbu.ru/~tsyganenko/modeling.html.
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deflection angle is also given as a function of the rigidity R
of the cosmic ray in teravolts (TV).
The deflection of each cosmic ray with the arrival

direction ðαμ; δμÞ in sidereal coordinates is calculated with
respect to the position of the Moon at the time of the event
ðαMoon;αMoonÞ. The two coordinates that characterize the
position of an event in this system are a right ascension
difference, Δα ¼ ðαμ − αMoonÞ cos δμ, and a declination
difference, Δδ ¼ δμ − δMoon, with respect to the nominal
Moon position. The median shift in the right ascension Δα
for all CR particles in our simulation is 0.08°, with 68% of
the particles having deflection angles in the interval
0.02° < Δα < 0.24°. The median shift in the declination
Δδ is consistent with 0°, with 68% of the events contained
in the interval jΔδj < 0.04°. Propagation tests performed
using only the dipole term of the geomagnetic field instead
of the full IGRF model produce similar results.
The cosmic-ray muons that ultimately trigger IceCube

are also deflected by the geomagnetic field. However, given
the typical energies of the muons (about 2 TeV), their total
track length (in the 50–100 km range), and their charge
distribution, their contribution to the total deflection angle
is typically below ∼0.01°. For this reason, the muon
contribution has been ignored in calculating the expected
total deflection angle.
The direction of muons propagating through the ice is

smeared due to multiple Coulomb scattering (MCS). Given
the typical muon energies and the thickness of the ice
overburden, we estimate that the average rms opening angle
for deflections due to MCS is about 0.05°. This smearing is
much smaller than the angular resolution of IceCube for
muons in this energy range (typically between 0.5 and 0.9°)
and is already included in the estimate of the angular
resolution from simulation studies given in Secs. IV and V.

IV. BINNED ANALYSIS

A. Description of the method

The main goal of the binned analysis is to obtain a profile
view of the Moon shadow and measure its width, which can
be used as a direct estimator of the angular resolution of the
event reconstruction. This is accomplished by comparing
the observed number of events as a function of angular
distance from the Moon to an estimate of how many events
would have been observed if there was no shadow.
For this comparison, the angular distance between the

reconstructed muon tracks and the expected position of the
Moon is binned in constant increments of 0.2° up to a
maximum angular distance of 5°. This defines the so-called
on-source distribution of events. The same binning pro-
cedure is applied to eight off-source regions centered around
points located at the same declination as the Moon, but
offset from it in the right ascension by�5°,�10°,�15°, and
�20°, where it is assumed that the shadowing effect is
negligible. The average number of counts as a function of

radius for these eight off-source regions represents the
expectation in the case of no Moon shadow.
The relative difference between the number of events in

the ith bin in the on-source region Non
i , and the average

number of events in the same bin in the off-source regions
hNoff

i i is calculated using the following expression:

ΔNi

hNii
¼ Non

i − hNoff
i i

hNoff
i i : (2)

The uncertainty in the relative difference is given by

σΔN=hNi ¼
Non

i

hNoff
i i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Non
i
þ 1

shNoff
i i

s
; (3)

where s ¼ 8 is the number of off-source regions. The
distribution of relative differences as a function of angular
radius from the Moon constitutes a profile view of the
shadow.
Simulation studies indicate that the point spread function

(PSF) of the detector can be approximated with a two-
dimensional Gaussian function. We use this approximation
to obtain an estimate of the angular resolution of the track
reconstruction by fitting the distribution of ΔNi=hNii for
the events in the Moon data set.
Following [23], we treat the Moon as a point-like

cosmic-ray sink that removes ΦπR2
M events from the muon

sample, where RM is the angular radius of the Moon
(RM ∼ 0.26°) and Φ is the cosmic-ray flux at the location of
the Moon in units of events per square degree. This deficit
is smeared by the PSF of our detector, resulting in a radially
symmetric two-dimensional Gaussian distribution of shad-
owed events. The differential density of shadowed events
per solid angle, Ω,can be expressed as

dN
dΩ

¼ −
ΦR2

M

2σ2
e−ψ

2=2σ2 ; (4)

where ψ is the radial distance from the center of the Moon.
The number of shadowed events in the ith bin of the width
Δψ can be calculated by integrating the differential event
density over the bin annulus in polar coordinates (ψ , ϕ):

Nsðψ iÞ ¼
Z

2π

0

Z
ψ iþΔψ=2

ψ i−Δψ=2
ψ
dN
dΩ

dψdϕ (5)

≈ −
ΦπR2

MΔψ
σ2

ψ ie−ψ
2
i =2σ

2

: (6)

The number of events, Ne, that would have been
observed in the same bin with no shadowing is
2πΦψ iΔψ . The ratio of Eqs. (6) and Ne gives us the
expected distribution of relative differences ΔNi=hNii for a
detector with a Gaussian PSF of the angular resolution σ:
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Ns

Ne
ðψ iÞ ¼ −

R2
M

2σ2
e−ψ

2
i =2σ

2

: (7)

This expression is used to fit the experimental data. The
only free parameter in the fit is σ, which is used as the
estimator for the angular resolution of the experimental data
set. The value obtained from the fit can be compared to the
expected angular resolution obtained from simulation
studies. Following previous Moon shadow studies [8,23],
we use the Gaussian σ parameter as the estimator instead of
a 68% containing radius used elsewhere in the literature.
Our treatment ignores the finite angular size of the lunar

disc, which may affect the result of the fit. However, since
the expected angular resolution (of the order 1°) is several
times larger than the angular radius of the Moon, we expect
that the effect should influence the fit value of σ only at the
few-percent level.
A set of cuts was developed to optimize for the statistical

significance of the detection of the Moon shadow. Under the
assumption of Poisson statistics, the relation between the
significance S, the fraction η of events passing the cuts, and
the resulting median angular resolution Ψmed after cuts is

S ∝
ffiffiffi
η

p
Ψmed

: (8)

The optimization of the cuts was performed on the
CORSIKA-simulated air showers described in Sec. III.

Two cut variables were used in this analysis: the angular
uncertainty σi in the reconstruction of the muon track
direction estimated individually for each event, and the
reduced log likelihood rlogl, which is the log likelihood for
the best track solution divided by the number of degrees of
freedom in the fit. The number of degrees of freedom in the
track fit is equal to the number of DOMs triggered by the
event minus the number of free parameters in the fit (five
for this fit). Both rlogl and σ are standard cut variables used
in the search for point-like sources of astrophysical
neutrinos [10], the search for a diffuse flux of high-energy
neutrinos [24], and several other analyses of IceCube data.
Once the cuts have been determined, the number of

events falling inside a circular search bin around the Moon
is compared to the number of events contained in a bin of
the same angular radius for the average off-source region.
The statistical significance of an observed deficit in the
number of events in the search bin is calculated using the
method given by [25].
The optimal radius of the search bin ψb can be found by

maximizing the S0 parameter in the following expression:

S0ðψ sÞ ∝
R ψ s
0 ψ 0PSFðψ 0Þdψ 0

ψ s
; (9)

where ψ s is the radius of the bin and PSFðψ 0Þ is the point
spread function of the detector after cuts obtained from
simulations. Due to its symmetry, the PSF has already been
integrated over the azimuthal coordinate and only the radial
dependence remains. The optimization of the search bin
radius is also performed using simulated CORSIKA
showers generated for each detector configuration.

B. Results

A set of cuts was determined independently for both the
IC40 and IC59 detector configurations using the optimi-
zation procedure described above on simulated data. For
IC40, only events with rlog < 9 and σi < 1.01° were used
in the analysis, with 26% of the events surviving the cuts.

TABLE I. Optimal bin radius (ψb), the number of observed
events in the on-source (Nb

on) and off-source (Nb
off ) bins, the event

deficit in the on-source bin (ΔN), and the statistical significance
of the deficit for the binned analysis of IC40 and IC59 data sets.

IC40 IC59

ψb 0.75° 0.79°
Nb

on 52967 96412
Nb

off 54672 100442
ΔN −1705 −4030
Significance 6.9σ 12.1σ
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FIG. 6. Relative difference between the number of events in the on-source and the average off-source region as a function of the
angular distance from the nominal position of the Moon for the IC40 (left) and IC59 (right) data sets. A Gaussian fit to the deficits is
shown in gray.
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After cuts, the median angular resolution of the
reconstruction was estimated from simulation to be
0.93°, with 68% of the events having angular uncertainties,
σi, between 0.38 and 2.18°. A two-dimensional fit to the
simulated data shows that for the Gaussian approximation
the corresponding resolution σ is about 0.74°.
In the case of IC59, the events selected for the analysis

were those with rlog < 8.8 and σi < 1.04°, which resulted
in a passing rate of 34%. The median resolution after cuts
was 0.78°, with the 68% containing interval located between
0.33° and 1.78°, with a Gaussian width, σ, of about 0.71°.
After the cuts were applied to both data sets, the radius of

the optimal search bin (ψb) and the number of events
contained in that bin for both the on-source (Nb

on) and off-
source (Nb

off ) windows was calculated. In both detector
configurations, a deficit in the number of events in the on-
source bin when compared to the off-source bin was
observed at high statistical significance (> 6σ), as expected
due to the shadowing effect of the Moon. A complete list of
the number of events observed on each bin, the observed
deficit in the on-source bin, as well as the statistical
significance associatedwith such a deficit, is given in Table I.
The Moon shadow profile shown in Fig. 6 was fit using

the expression given in Eq. (7), where σ is the only free
parameter. A list of fit results is given in Table II. In both
cases, the observed angular resolution shows good agree-
ment with the one obtained from the above-mentioned
simulation studies.

V. UNBINNED ANALYSIS

A. Description of the method

The second algorithm used to search for the Moon
shadow is based on an unbinned maximum-likelihood
method analogous to that used in the search for point-like
sources of high-energy neutrinos [26]. This kind of like-
lihood analysis was first proposed in [27], and was applied
for the first time to a Moon shadow search in [28].
The goal of the unbinned analysis is to determine the

most likely location of the Moon shadow to compare it with
the expected location after accounting for magnetic deflec-
tion effects. An agreement between the observed and
expected positions of the shadow center will serve as an
important confirmation of the absolute pointing accuracy of
the detector.
The analysis is also used to obtain the most likely

number of events shadowed by the Moon, which can be

compared to the expectation. An essential ingredient in the
unbinned analysis is an event-wise estimation of the
angular error. Both systematic underestimation and over-
estimation of this error would lead to a shallower apparent
shadow than expected. The number of shadowed events is a
free parameter in this analysis and the comparison with the
expected number of shadowed events is effectively a test of
the angular uncertainty estimate.
In this analysis [29,30], the position of eachmuon event is

defined with respect to the Moon position in the coordinate
system ðΔα;ΔδÞ that was defined in Sec. III B. Only events
with jΔδj ≤ 8° and jΔαþ αoffj ≤ 8° were considered in the
analysis, where αoff ¼ 0° defines the on-source region, and
αoff ¼ �18° defines two off-source regions.
A set of quality cuts was determined for this analysis

using the same simulation data set as in the one-dimensional
binned case. The same variables were used in the optimi-
zation of the cuts: the angular reconstruction uncertainty σi,
and the reduced log likelihood of each event rlogl.
The analysis method assumes that the data can be

described as a linear combination of signal and background
components, where the relative contribution from each
component is established by a maximum-likelihood fit to
the data. For a data set containing N events, the log-
likelihood function is defined as

logLðns; ~xsÞ ¼
XN
i¼1

log

�
ns
N
Sð~xi;σi; ~xsÞ þ

�
1−

ns
N

�
Bð~xiÞ

�
;

(10)

where S and B are the signal and background probability
density functions (PDFs), ns is the unknown number of
signal events, or in this case the total number of shadowed
events, and ~xs is the unknown central position of the

TABLE II. Gaussian angular resolution σ obtained from the fit
to the Moon shadow profile shown in Fig. 6. The χ2=dof of the fit
is also given for the two results.

IC40 IC59

σ 0.71°� 0.07° 0.63°� 0.04°
χ2=dof 31.4=24 13.0=24
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FIG. 7. Search grid in ðΔα;ΔδÞ as used in the unbinned
likelihood analysis. A value of ns is determined for each one
of the points in the grid. The nominal location of the Moon is
shown as a black square at ~xs ¼ ð0; 0Þ.
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shadow of the Moon, relative to the nominal position of
the Moon. Note that since the expected signal in the case of
the Moon is a deficit in the muon flux rather than an excess,
ns should be negative. In the absence of a geomagnetic
field, the shadow should occur exactly on the nominal
position of the Moon, i.e. ~xs ¼ ð0; 0Þ, but according to the
estimates described in Sec. III B we expect the shadow to
be shifted by about 0.1°.
The signal PDF for each event is modeled using a two-

dimensional Gaussian distribution around the reconstructed
direction ~xi of the muon track:

Sð~xi; σi; ~xsÞ ¼
1

2πσ2i
e
−j~xi−~xs j2

2σ2
i ; (11)

where the width of the Gaussian distribution σi is the angular
reconstruction uncertainty obtained on an event-by-event
basis by the paraboloid algorithm described in Sec. II B.
The background PDF is assumed to depend only on Δδ,

and is derived from the distribution of reconstructed
declination angles for the muon tracks contained in the
two off-source regions.
The best fit values for the number of signal events in the

data ns and the shift of the shadow center ~xs are determined
by maximizing the log-likelihood function (10). Besides ~xs
and ns, the width and overall shape of the shadow are also
of interest. In searches for point sources of high-energy
neutrinos [26], for all points ~xs on a fine grid covering the

sky, the value of ns is determined which maximizes the
likelihood function. Similarly, in the Moon shadow analy-
sis we determine the value of ns that maximizes the
likelihood function (10) on a rectangular grid of 961 values
for ~xs ¼ ðΔαs;ΔδsÞ. This 31 × 31 grid is defined inside a
window with a size of jΔδj ≤ 4° and jΔαj ≤ 4° shown
in Fig. 7.
In order to avoid edge effects, all events in the 8° × 8° on-

source region are taken into account in the maximum-
likelihood calculation.
The statistical significance associated with each value of

ns can then be calculated by applying the same likelihood
analysis to the two off-source regions. The rms spread of
the resulting distribution of ns values for those regions
gives an estimate of the 1σ spread expected in the case of a
null detection. Using this estimate, each point in the on-
source region can be given a statistical significance by
taking the ratio between the value of ns at that point and the
1σ estimate from the off-source regions.
The observed value of ns is compared to an estimate of

the true number of CRs shadowed by the Moon. This
estimate is obtained by counting the number of events that
fall within a circular window with the same radius as the
Moon but located in the off-source region.

B. Results

1. SPE analysis

The cuts used in the unbinned analysis are listed in
Table III. The resulting median angular resolution of the
IC40 and IC59 data sets was estimated by applying those
same cuts to simulated cosmic-ray events. In the case of
IC40, the median angular resolution is 1.13°, with 68% of
the events having angular uncertainties, σi, between
0.48° and 2.63°. For IC59, the median resolution is
0.98°, with a 68% containing interval defined between
0.38 and 2.23°.

TABLE III. Description of the cuts used in the unbinned
analysis. Percentages indicate the relative fraction of events that
survive the cut with respect to the previous selection criterium.

IC40 IC59

Events before cuts 18.8 × 106 22.2 × 106

Cut 1: 0.075° < σi < 1.5° 50% 58%
Cut 2: 6.5 < rlogl < 8 89% 91%
Events after cuts 8.4 × 106 11.7 × 106
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FIG. 8 (color online). Contour plot of the value of ns in the ðΔα;ΔδÞ coordinate system for on-source regions of the IC40 (left) and
IC59 data sets (right).
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As described in the previous section, the maximum-
likelihood values of ns were calculated on a grid around
the position of the Moon for both sets. The contour maps of
the ns values obtained for IC40 and IC59 are shown in
Fig. 8, where the shadowing effect of theMoon is visible as a
strong deficit in the central regions of the maps. The deepest
deficit observed with both detector configurations is in good
agreement with the expected number of shadowed events,
listed in Table IV. Using the rms spread of the off-source
regions as a 1σ estimator in the case of a null detection, we
calculated the statistical significance of the observation by
taking the ratio of the largest deficit observed to the rms
spread, which is also shown in Table IV. The shadow of the
Moon is observed in both the IC40 and IC59 data sets to a
high statistical significance (> 10σ).
In order to obtain a better estimate of the position of the

minimum of the shadow, a finer grid with a spacing of
about 0.016° was used in the central �0.4° ×�0.4° region
around the Moon. Using this grid, we obtain the positions
indicated in Table IV as offsets in right ascension (Δα) and
declination (Δδ) with respect to the nominal position of the

Moon in the sky. The shadow positions for both detector
configurations are shown in Fig. 9 together with 1σ, 2σ, and
3σ contours. The expected location of the minimum after
accounting for geomagnetic deflection effects is also given
for comparison. In both detector configurations, the
observed position of the minimum is consistent with its
expected location to within statistical fluctuations. These
measurements imply that, on average, the absolute pointing
accuracy of the detector during the IC40 and IC59 data-
taking periods was better than about 0.2°.

2. MPE analysis

The unbinned analysis was also applied to IC59 events
reconstructed using the MPE algorithm and its correspond-
ing angular error estimate described in Sec. II B. In
simulations, the MPE fit performs better than the SPE
reconstruction thanks to its more realistic description of the
arrival times of multiple photons at each DOM. However, at
high energies the algorithm can be confused by stochastic
energy losses that occur along the muon track and are not
described in the likelihood function implemented in the
MPE algorithm. This usually results in an underestimation
of the angular uncertainty on the reconstructed direction of
the track. In practice, this problem can be solved by
rescaling the average pull (the ratio between the real and
estimated angular errors as obtained from simulation
studies) to unity. The MPE version of the unbinned analysis
was used as a verification of this correction technique.
Simulation studies indicate an average pull of 1.55 for

the MPE reconstruction, versus 1.0 for SPE. Without
correcting for this underestimation of the angular error
in the MPE fit, the Moon shadow analysis resulted in a
minimum value for ns of 3574� 434 shadowed events,
differing by more than 5 standard deviations from the
expectation of 6373� 80. Redoing this analysis with the

TABLE IV. Unbinned analysis results detailing the observed
and expected deficit counts from the Moon for IC40 and IC59.
The observed deficits and the ðΔα;ΔδÞ offsets are given for the
most likely position of the Moon shadow as determined by the
maximum-likelihood fit.

IC40 IC59

Observed deficit 5320� 501 8700� 550
Expected deficit 5734� 76 8192� 91
Off-source rms 521 627
Significance 10.2σ 13.9σ
Δα −0.02° 0.06°
Δδ 0.08° 0.00°
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FIG. 9. Contour plot for the position of the minimum of the Moon shadow in the IC40 (left) and IC59 data (right) in the ðΔα;ΔδÞ
coordinate system. The reconstructed position for the Moon shadow from the maximum-likelihood analysis is shown as a black point,
while the expected position of the Moon shadow after accounting for magnetic deflection is shown as a white circle.
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angular error estimates rescaled by a factor of 1.55 resulted
in a fitted ns value compatible with expectation, validating
the pull correction method.
In neutrino analyses, where the range of muon energies is

much larger than in the Moon analysis sample, the applied
MPE pull correction is energy dependent, instead of using
only the average value of the pull for the entire data set.

VI. CONCLUSIONS

The shadow of the Moon in TeV cosmic rays has been
detected to a high significance (> 6σ) using data taken with
the IC40 and IC59 configurations of the IceCube neutrino
observatory. For both detector configurations, the observed
positions of the shadow minimum show good agreement
with expectations given the statistical uncertainties. An
important implication of this observation is that any
systematic effects introduced by the detector geometry
and the event reconstruction on the absolute pointing
capabilities of IceCube are smaller than about 0.2°.
The average angular resolution of both data samples was

estimated by fitting a Gaussian function to the shadow
profile. In both cases, the 1σ width of the Moon shadow
was found to be about 0.7°, which is in good agreement
with the expected angular resolution based on simulation
studies of down-going muons.
The total number of shadowed events estimated using the

unbinned analysis is also consistent with expectations for
IC40 and IC59. This provides an indirect validation of the
angular uncertainty estimator obtained from the recon-
struction algorithm. This is especially relevant for the
MPE analysis, where simulation studies indicate that the
uncertainty estimator has to be rescaled in order to avoid
underestimating the true angular error. Applying this cor-
rection factor to the data results in a number of shadowed
events compatible with expectation.
Note that the value of the average angular resolution

determined in this analysis is not a direct measurement of
the point spread function to be used in searches for point
sources of high-energy neutrinos. Rather, the agreement of
this value with the value estimated from our simulations

should be seen as an experimental verification of our
simulation and the methods used to estimate the angular
uncertainty of individual track reconstructions. This angu-
lar uncertainty depends on several factors, in particular on
the energy with which the muon traverses the detector. As
the energy distribution for neutrino analyses differs from
that of the Moon shadow analysis, the average angular
resolution may be better or worse, but can reliably be
estimated from our simulation.
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