a one billion ton neutrino detector ?

requires kilometerscale neutrino detectors

SuperKamiokande in the Japanese alps

detecto r

neutrino travels through the earth

Photomultiplier Tube

detector

neutrino travels through the earth

through the earth

neutrino travels through the earth

- blue light produced in nuclear reaction
- optical sensors capture (and map) the light

Neutrino Astronomy Explores Higher Dimensions

TeV-scale gravity increases PeV v-cross section

neutrino and muon area

$$events = A_{v} \times \Phi_{v}$$
$$= A_{\mu} \times P_{v \to \mu} \times \Phi_{v}$$
$$P_{v \to \mu} = \lambda_{\mu} / \lambda_{v} = R_{\mu} n \sigma_{v} \approx 10^{-6} E_{TeV}$$

$$A_{\nu} = P_{\nu \Diamond \mu} A_{\mu}$$

flux of extra-galactic cosmic rays

ankle \rightarrow one 10^{19} eV particle per km squared per year per sr

 $E^{2} \frac{dN}{dE} = \frac{10^{19} eV}{(10^{10} cm^{2})(3 \times 10^{7} sec) sr}$

 $= 3 \times 10^{-8} \text{ GeV cm}^{-2} \text{ sec}^{-1} \text{ sr}^{-1}$

(0.5 Crab only !)

at TeV energy

Neutrino area: 10~100 cm²

Muon area: ~ 10,000 m² (geometric area 0.03-0.1 km²)

the AMANDA Detector

