Neutrino Astronomy

Francis Halzen University of Wisconsin

http://icecube.wisc.edu/ http://pheno.physics.wisc.edu/~halzen

v astronomy

• v astronomy requires kilometer-scale detectors

Proof of concept: AMANDA reaches ~ 0.1 km² year

• Baikal, ANTARES, NESTOR, RICE... → IceCube, ANITA, NEMO...

Multi-Messenger Astronomy

Protons, γ-rays, neutrinos, [gravitational waves] as probes of the high-energy Universe

1. Protons: directions scrambled by magnetic fields

2. γ-rays : straight-line propagation but reprocessed in the sources extragalactic backgrounds absorb Eγ > TeV

3. Neutrinos: straight-line propagation, unabsorbed, but difficult to detect

cosmic neutrinos associated with cosmic rays

Galactic and Extragalactic Cosmic Rays

Energy in extra-galactic cosmic rays ~ 3x10⁻¹⁹ erg/cm³ or 10⁴⁴ erg/yr per (Mpc)³ for 10¹⁰ years

3x10³⁹ erg/s per galaxy 3x10⁴⁴ erg/s per active galaxy 2x10⁵² erg per gamma ray burst

1 TeV = 1.6 erg

NEUTRINO BEAMS: HEAVEN & EARTH

neutrinos associated with the source of the cosmic rays?

Alternatively... Models of Cosmic Rays

Bottom up

- GRB fireballs
- Jets in active galaxies
- Accretion shocks in galaxy clusters
- Galaxy mergers
- Young supernova remnants
- Pulsars, Magnetars
- Mini-quasars
- Observed showers either protons (or nuclei)

Top-down

- Radiation from topological defects
- Decays of massive relic particles in Galactic halo
- Resonant neutrino interactions on relic v's (Z-bursts)
- Mostly pions (neutrinos, photons,

not protons)

Disfavored!

- Highest energy cosmic rays are not gamma rays
- Overproduce TeV-neutrinos

active galaxy

Radiation field: Ask astronomers

Produces cosmic ray beam?

Supernova shocks expanding in interstellar medium

Galactic Beam Dump

Modeling yields the same conclusion:

- Line-emitting quasars such as 3C279 Beam: blazar jet with equal power in electrons and protons Target: external quasi-isotropic radiation
- Supernova remnants such as RX 1713.7-3946 (?) Beam: shock in interstellar medium Target: molecular cloud

the science: a sampler

• Source(s) of cosmic rays: gamma-ray bursts, active galaxies, cosmological remnants...?

Dark matter

• Higher compact dimensions...

WIMP capture and annihilation

IceCube vs Direct Detection (Zeppelin4/Genius)

> Black: out Green: yes Blue: no

NSSN parameter space future probed regions l

Neutrino Astronomy Explores Higher Dimensions

TeV-scale gravity increases PeV v-cross section

first-generation neutrino telescopes

•Infrequently, a cosmic neutrino is captured in the ice, i.e. the neutrino interacts with an ice nucleus

•In the crash a muon (or electron, or tau) is produced

muon or tau

Detector

Cerenkov

light cone

1₂ interaction

The muon radiates blue light in its wake
Optical sensors capture (and map) the light Neutrino

Optical Module

South Pole

AMANDA–1 mile deep

OF NEW

Size perspective

Logistics simple!

Building

The Optical Module

- Construction began in 1995 (4 strings)
- AMANDA-II completed in 2000 (19 strings total)
- 677 optical modules
- 200 m across
- ~500 m tall (most densely instrumented volume)

AMANDA II

up-going muon 61 modules hit

> 4 neutrinos/day on-line

AMANDA Event Signature: Muon

CC muon neutrino interaction → track

No external geometry file is opened. Detector: ananda-b-10, 10strings, 302 modules Data file: /home/itaboada/anim_events/strict19.f2k File contains 19 events. Displaying data event 1197960 from run 0 Recorded yr/dy: 1997/285 18132.0091381 seconds past midright. Before cuts: 44 hits, 44 OMs After cuts: 44 hits, 44 OMs Antrooun

 $\nu_{\mu} + N \rightarrow \mu + X$
two events

No external geometry file is opened. Detector: amanda-b-10, 19 strings, 680 modules Data file: he_deff.f2k Displaying data event 1425281 from run 336 Recorded yr/dy: 2000/170 59857.5405130 seconds past midnight. Before cuts: 264 hits, 264 OMs After cuts: 264 hits, 264 OMs

200 TeV v_e

Cherenkov light from muons and cascades

Reconstruction

- Maximum likelihood method
- Use expected time profiles of photon flight times

Atmospheric ν 's as Test Beam

Atmospheric ${\bf V}$'s as Test Beam

Selection Criteria:

- (N_{hit} < 50 only)
- Zenith > 110°
- High fit quality
- Uniform light deposition along track

2 cuts only! 4 nus per day

tightening of cuts extracts atm. v signal

required background rejection

Signature	neutrino signal /	
	cosmic muon bkg	
Diffuse flux	~10- 8	
Point source	> 10 -6	
Gamma ray burst	>10-4	

down-going muon flux

zenith angle

ra(h)

selected point source flux limits

sensitivity \approx flat above horizon - 4 times better than B10 ¶!

declination averaged sensitivity: $\Phi_v^{\text{lim}} \approx 0.23 \cdot 10^{-7} \text{ cm}^{-2} \text{s}^{-1} @90\%$

Sources	declination	1997 ¶	2000
SS433	5.0 [°]	-	0.7
M87	12.4 [°]	17.0	1.0
Crab	22.0 [°]	4.2	2.4
Mkn 421	38.2°	11.2	3.5
Mkn 501	39.8°	9.5	1.8
Cyg. X-3	41.0 [°]	4.9	3.5
Cas. A	58.8°	9.8	1.2

upper limits @ 90% CL in units of 10⁻⁸cm⁻²s⁻¹

¶ published Ap. J, 582 (2003)

PRELIMINARY

NEUTRINO BEAMS: HEAVEN & EARTH

Ultra High Energy Neutrinos in AMANDA

- Energy > 10 PeV
- All sky
- Large neutrino cross sections
- •Large muon range (> 10 km)

Competitive with radio, acoustic and air shower experiments

diffuse EHE neutrino flux limits

Stecker & Salamon (AGN) Protheroe (AGN) Mannheim (AGN) Protheroe & Stanev (TD) Engel, Seckel & Stanev

Ranges are central 80%

Effective Volume for ν_e, ν_μ and ν_τ

Excess of cosmic neutrinos?

... for now use number of hit channels as energy variable ...

neutrinos associated with the source of the cosmic rays?

Bonus Physics: Cosmic ray composition

SPASE air shower arrays

. . .

1 km

2 km

Northern hemisphere detectors

Antares

Nestor

March 17, 2003 2 strings connected 2400 m deep completion: start 2006

March 29, 2003 1 of 12 floors deployed 4000 m deep completion:

Optical Cerenkov Neutrino Telescope Projects

kilometer-scale neutrino observatories

- 80 Strings
- 4800 PMT
- Instrumented volume: 1 km3 (1 Gton)

 IceCube is designed to detect neutrinos of all flavors at energies from 10⁷ eV (SN) to 10²⁰ eV

IceTop

1400 m

2400 m

APPERTATION NOTION 7777777771111111111111 VITTA A CONTRACT OF A CONTRACT ******************* www.www.www.com 11111122112220000000000001111111111 ANNYTTEPPETERTERISTS Madadabababababababababab Add deeren un ussusse "Addddddddooreennini... Manananana ومقارفة والمرارين الالالال الالالالال Well Houses

AMANDA

South

Runway

Pole

 \bigcirc

South Pole

AMANDA–1 mile deep

OF MAR

Dome

Dark sector

AMANDA

Skiway

IceCube Planned Location 1 km east

- 80 Strings
- 4800 PMT
- Instrumented volume: 1 km3 (1 Gton)

 IceCube is designed to detect neutrinos of all flavors at energies from 10⁷ eV (SN) to 10²⁰ eV

IceTop

1400 m

2400 m

APPERTATION NOTION 7777777771111111111111 VITTA A CONTRACT OF A CONTRACT ******************* www.www.www.com 11111122112220000000000001111111111 ANNYTTEPPETERTERISTS Madadabababababababababab Add deeren un ussusse "Addddddddooreennini... Manananana ومقارفة والمرارين الالالال الالالالال Well Houses

AMANDA

South

Runway

Pole

 \bigcirc

μ-event in IceCube

300 atmospheric neutrinos per day

AMANDA II

IceCube: -> Larger telescope -> Superior detector

Muon Events

Measure energy by counting the number of fired PMT. (This is a very simple but robust method)

Cascade event

 the length of the e⁻ cascade is small compared to the spacing of sensors. roughly spherical density distribution of light. • 1 PeV ≈ 500 m diameter, additional 100 m per decade of energy linear energy resolution

Energy = 375 TeV

Neutrino ID (solid) Energy and angle (shaded)

Filled area: particle id, direction, energy
Shaded area: energy only
enhanced role of tau neutrinos:

• cosmic beam: $v_e = v_\mu = v_\tau$ because of oscillations

- v_{τ} not absorbed by the Earth (regeneration)
- pile-up near 1 PeV
 where ideal sensitivity

Supernova Monitor

Amanda-II

B10: 60% of Galaxy

A-II: 95% of Galaxy

IceCube: up to LMC

Amanda-B10

IceCube

Raffelt astro-ph/0303210 !

Enhanced role of tau neutrinos:

cosmic beam: v_e = v_μ = v_τ because of oscillations
v_τ not absorbed by the Earth (regeneration)

 pile-up near 1 PeV where ideal sensitivity

ICCCUDC

start 02 first strings 04 completed 09

Evolution of read-out strategy

<u>01/02 - 03/04</u>: Equipping all Amanda channels with FADCs to get full waveform information (IceCube compatibility) → better reconstruction, particularly cascades and high energy tracks

NEMO

Actual proposal of general layout for Km³ detector

NEMO

The use of pipes to realize the storeys gives a very low resistance to the water flow.

The largest estimated movement of the upper part of the structure due to the currents are lower than 20m.

The mechanical stresses on the rigid part of the structure are:

• a bending due to the weight of the spheres when it is out of the sea water;

• an axial load during the useful life due to the draught of the upper buoy.

The electro optical cables can be easily fixed on the ropes.

During the deployment the main ropes can be kept in position on the pipes by means of small breakable ropes.

IceCube has been designed as a discovery instrument with improved:

- telescope area (> 1km² after all cuts)
- detection volume (> 1km³ after all cuts)
- energy measurement: secondary muons (< 0.3 in ln E) and electromagnetic showers (< 20% in E)
- identification of neutrino flavor
- Sub-degree angular resolution
 (< unavoidable neutrino-muon misalignment)</p>

AMANDA

• AMANDA collected > 3,000 v's

• 4 more every day on-line

• neutrino sensitivity has reached $v = \gamma$

> 300,000 per year from IceCube

• race for solving the CR puzzle is on!

The IceCube Collaboration

- Bartol Research Institute, University of Delaware
- BUGH Wuppertal, Germany
- Universite Libre de Bruxelles, Brussels, Belgium
- CTSPS, Clark-Atlanta University, Atlanta USA
- DESY-Zeuthen, Zeuthen, Germany
- Institute for Advanced Study, Princeton, USA
- Dept. of Technology, Kalmar University, Kalmar, Sweden
- Lawrence Berkeley National Laboratory, Berkeley, USA
- Department of Physics, Southern University and A\&M College, Baton Rouge, LA, USA
- Dept. of Physics, UC Berkeley, USA
- Institute of Physics, University of Mainz, Mainz, Germany
- Dept. of Physics, University of Maryland, USA
- University of Mons-Hainaut, Mons, Belgium
- Dept. of Physics and Astronomy, University of Pennsylvania, Philadelphia, USA
- Dept. of Astronomy, Dept. of Physics, SSEC, PSL, University of Wisconsin, Madison, USA
- Physics Department, University of Wisconsin, River Falls, USA
- Division of High Energy Physics, Uppsala University, Uppsala, Sweden
- Fysikum, Stockholm University, Stockholm, Sweden
- University of Alabama, Tusceloosa, USA
- Vrije Universiteit Brussel, Brussel, Belgium
- Chiba University, Japan
- Imperial College London, UK
- Utrecht University, Utrecht, The Netherlands
- Universidad Simon Bolivar, Caracas, Venezuela
- University of Canterbury, Christchurch, New Zealand