

v astronomy requires kilometer-scale detectors

IceCube: a kilometer-scale neutrino observatory

• AMANDA: proof of concept and first science

f. halzen http://pheno.physics.wisc.edu/~halzen/ http://icecube.wisc.edu/

the science: a sampler

• Source(s) of cosmic rays: gamma-ray bursts, active galaxies, cosmological remnants...?

Dark matter

With 10³ TeV energy, photons do not reach us from the edge of our galaxy because of their small mean free path in the microwave background.

Acceleration to 10²¹eV? ~10² Joules ~ 0.01 M_{GUT}

dense regions with exceptional gravitational force creating relativistic flows of charged particles, e.g.

coalescing black holes/neutron stars
dense cores of exploding stars
supermassive black holes

Gamma Ray Burst

- Photons and protons coexist in internal shocks resulting in pion and neutrino production
- External shocks also

Radiation field: Ask astronomers

Produces cosmic ray beam

Supernova shocks expanding in interstellar medium

Crab nebula

NEUTRINO BEAMS: HEAVEN & EARTH

neutrinos associated with the source of the cosmic rays?

NEUTRINO BEAMS: HEAVEN & EARTH

Energetics of sources yielding 10 events per year in 1 kilometer squared

distance	Lum _v >	example
4000 Mpc	10 ⁴⁷ erg/s	agn
4000 Mpc	10 ⁵² erg/100s	grb
100 Mpc	5 10 ⁴³ erg/s	Markarians
8 Kpc	4 10 ³⁵ erg/s	pulsars, micro- quasar

Radiation field: Ask astronomers

Produces cosmic ray beam

Modeling yields the same conclusion:

• Line-emitting quasars such as 3C279 Beam: blazar jet with equal power in electrons and protons Target: external quasi-isotropic radiation

• Supernova remnants such as RX 1713.7-3946 (?) Beam: shock propagating in interstellar medium Target: molecular cloud

$$N_{events} \sim 10 \ km^{-2} year^{-1}$$

Irrespective of the cosmic-ray sources, some fraction will produce pions (and neutrinos) as they escape from the acceleration site

- through hadronic collisions with gas
- through photoproduction with ambient photons
- Cosmic rays interact with interstellar light/matter even if they

escape the source

Sources:

- Transparent: protons (EeV cosmic-rays) ~ photons (TeV point sources) ~neutrinos
- Obscured sources
- Hidden sources

Unlike gammas, neutrinos provide unambiguous evidence for cosmic ray acceleration!

GZK Cosmic Rays & Neutrinos

 Cosmogenic Neutrinos are Guaranteed if primaries Nucleons.

 May be much larger fluxes, for some models, such as topological defects

the science: a sampler

• Source(s) of cosmic rays: gamma-ray bursts, active galaxies, cosmological remnants...?

Dark matter

Neutralino capture and annihilation

The MSSM – general

•The Lightest Supersymmetric Particle (LSP): usually the neutralino. If R-parity is conserved, it is stable.

The Neutralino – χ

$$\widetilde{\chi}_1^0 = N_{11}\widetilde{B} + N_{12}\widetilde{W}^3 + N_{13}\widetilde{H}_1^0 + N_{14}\widetilde{H}_2^0$$

Gaugino fraction

$$Z_g = \left| N_{11} \right|^2 + \left| N_{12} \right|^2$$

- 1. Select MSSM parameters
- 2. Calculate masses, etc
- 3. Check accelerator constraints
- 4. Calculate relic density
- 5. $0.05 < \Omega_{\gamma} h^2 < 0.5$?
- 6. Calculate fluxes, rates,...Calculation done with

http://www.physto.se/~edsjo/darksusy/

The m_{χ} - Z_g parameter space

WIMP Search

astro-ph/0202370, to appear in PRD

MSSM parameter space Future probed regions I

IceCube

the science: a sampler

• Source(s) of cosmic rays: gamma-ray bursts, active galaxies, cosmological remnants...?

Dark matter

Why is Searching for v's from GRBs of Interest?

• Search for vacuum oscillations $(v_{\mu} \rightarrow v_{\tau})$: $\Delta m^2 \gtrsim 10^{-17} \text{ eV}^2$

• Test weak equivalence principle: 10-6

• Test
$$\frac{C_{\text{photon}} - C_{v}}{C_{v}}$$
 : 10-16

Neutrino Astronomy Explores Higher Dimensions

TeV-scale gravity increases PeV v-cross section

Supernova Monitor

B10: 60% of Galaxy

A-II: 95% of Galaxy

up to LMC

Kilometer-scale neutrino detectors?

How?

•Infrequently, a cosmic neutrino is captured in the ice, i.e. the neutrino interacts with an ice nucleus

In the crash a muon (or electron, or tau) is produced

Cherenkov light cone

Detector

interaction

The muon radiates blue light in its wake
Optical sensors capture (and map) the light

muon

Neutrino Detection Probability

neutrino survives

neutrino detected $\frac{L}{1} - e^{-\lambda_v}$

for v_{μ} : $L \rightarrow R_{\mu} [E_{\mu} = (1 - y) E_{\nu}]$ for v_{τ} : $L \rightarrow \frac{E_{\tau}}{m_{\tau}} c \tau_{\tau}$

Cherenkov light from muons and cascades

Reconstruction

- Maximum likelihood method
- Use expected time profiles of photon flight times

AMANDA **Event** Signatures: Muons

CC muon neutrino Interaction \rightarrow track

After cuts: 44 hits, 44 OMs Antmoun τ γ Ζ Vertex pos. : 12.4 -16.1 6.8 m Direction : 0.03970 0.41614 0.90844 Length : Inf.ro. : ?GeV Energy Time. 3205, 100000 ns. Zenith : 155.3° Azimuth : 264.6°

Diaplaying data event 1197960 from run O

18132.0091381 seconds past roidright. Before cuts: 44 hits, 44 OMs

Recorded yp/dy: 1997/285

 $\nu_{\mu} + N \rightarrow \mu + X$

- CC electron and tau neutrino interaction: $v_{(e,\tau,)} + N \rightarrow (e, \tau) + X$
- NC neutrino interaction: $v_x + N \rightarrow v_x + X$

The AMANDA Detector
IceCube

- 80 Strings
- 4800 PMT
- Instrumented volume: 1 km3 (1 Gton) 1400 m
- IceCube is designed to detect neutrinos of all flavors at energies from 10⁷ eV (SN) to 10²⁰ eV

IceTop AMANDA óuth Pole \bigcirc **Kunway** 777711771111 rrrrr111111111111 ANYTHI HILLARD THURSDAY WITH ananan minin CCCCIIIIIIIIIIIIIIIIIIIIII WWWWWWWWWWW ومحمد ومحالة لالالالالالال 1111888866666666666666 AND DOT D 2400 m

South Pole

05

a alteriore

South Pole

Dome

Skiway

Planned Location 1 km east

Dark sector

AMANDA

OF MARK

South Pole

Dark sector	
	Skiway
AMANDA	
	Dome
IceCube	

Building AMANDA

Drilling Holes with Hot Water

The Optical Module

Building AMANDA: The Optical Module and the String

Evolution of read-out strategy

<u>01/02 - 03/04</u>: Equipping all Amanda channels with FADCs to get full waveform information (IceCube compatibility) → better reconstruction, particularly cascades and high energy tracks

DAQ design: Digital Optical Module- PMT pulses are digitized in the Ice

Design parameters:

- Time resolution: < 5 ns rms
- Waveform capture:
 >250 MHz for first 500 ns
 ~ 40 MHz for 5000 ns
- Dynamic Range:
 200 PE / 15 ns
 2000 PE / 5000 ns
- Dead-time: <1%
- OM noise rate: < 500 Hz (⁴⁰K in glass sphere)

IceCube has been designed as a discovery instrument with improved:

- telescope area (> 1km2 after all cuts)
- detection volume (> 1km3 after all cuts)
- energy measurement: secondary muons (< 0.3 in ln E) and electromagnetic showers (< 20% in E)
- identification of neutrino flavor
- Sub-degree angular resolution (< unavoidable neutrino-muon misalignment)

Effective area of IceCube

Effective area vs. zenith angle (downgoing muons rejected)

Effective area vs. muon energy (trigger, atm μ, pointing cuts)

Angular resolution as a function of zenith angle

 \rightarrow above 1 TeV, resolution ~ 0.6 - 0.8 degrees for most zenith angles

Neutrino ID (solid) Energy and angle (shaded)

Filled area: particle id, direction, energyShaded area: energy only

Enhanced role of tau neutrinos:

- Cosmic beam: $v_e = v_\mu = v_\tau$ because of oscillations
- v_{τ} not absorbed by the Earth (regeneration)
- Pile-Up near 1 PeV where ideal sensitivity

μ-event in IceCube

300 atmospheric neutrinos per day

AMANDA II

IceCube: -> Larger telescope -> Superior detector

Muon Events

Measure energy by counting the number of fired PMT. (This is a very simple but robust method)

Cascade event

 the length of the e⁻ cascade is small compared to the spacing of sensors. roughly spherical density distribution of light. • 1 PeV " 500 m diameter, additional 100 m per decade of energy linear energy resolution

Energy = 375 TeV

AMANDA: Proof of Concept

- since 1992 we have deployed 24 strings with more than 750 photon detectors (basically 8-inch photomultipliers).
- R&D detector for proof of concept: 375 times SuperK instrumented volume with 1.5% the total photocathode area.
- IceCube: 45 times AMANDA II instrumented volume with 7 times the total photocathode area.

Ice Properties

- Most challenging initial problems now understood using *in situ* lasers and LEDs
 - Disappearance of bubbles
 - Mapping of dust layers
- λ_{scatter} : 15 m 45 m
- λ_{absorption}:
 90m 240 m

Understanding Ice and Calibrating AMANDA

- In situ light sources
 - Ice properties
 - Relative PMT timing, gain
 - Response to electromagnetic showers
 - crosstalk
- Downgoing cosmic-ray muons

 Relative PMT timing, gain
- AMANDA-SPASE coincidences
 - Directionality
 - Ice properties
- Atmospheric neutrinos – Full detector response

Event reconstruction

- Maximum Likelihood method
- Take into account time profiles of expected photon flight times
- Bayesian approach use prior knowledge of expected backgrounds and signals

Atmospheric muons and neutrinos

- Atm. Neutrinos (v_{μ}): 60/day
- Atm. Muons: 8.6*10⁶/day

Lifetime: 135 days				
	Observed Data	Pred. Neutrinos		
Triggered	1,200,000,000	4574		
Reconstructed upgoing	5000	571		
Pass Cuts (Q " 7)	204	273		

Quality parameters: Example 1: The track length

 Short track length = more likely to be background

Quality Parameters

Likelihood

- Zenith angle mismatch between two types of fits.
- Sphericity of Hits (Brem?)
- Track Length (is an energy cut, too)
- Smoothness of hits along the track
- Number of unscattered photons

- Combine 6 to a single event quality
 - parameter.
- Only 3 for completed detector!

Atmospheric muons and neutrinos

- Atm. Neutrinos (v_{μ}): 60/day
- Atm. Muons: 8.6*10⁶/day

Lifetime: 135 days				
	Observed Data	Pred. Neutrinos		
Triggered	1,200,000,000	4574		
Reconstructed upgoing	5000	571		
Pass Cuts (Q " 7)	204	273		

Atmospheric Neutrinos, 97 data

AMANDA II: Atmospheric v's as Test Beam

- Selection Criteria:
 - $(N_{hit} < 50 only)$
 - Zenith > 110°
 - High fit quality
 - Uniform light deposition along track
- Excellent shape agreement!
 - Less work to obtain than with A-B10

3 cuts only! 4 nus per day

Gradual tightening of cuts extracts atm. v signal

2002 real time analysis at Pole

On line reconstruction and filtering with 2 high end PCs at SP

- \rightarrow 2 % minimum bias
 - \rightarrow upward tracks
 - \rightarrow cascades
 - \rightarrow high multiplicities
 - \rightarrow string trigger \rightarrow Spase-Amanda

Friday, 14 June, 2002

2002 real time analysis

v event

Summary on Technology

- Over 5 years, Amanda has evolved into a 30.000 m² neutrino telescope
- Construction and improvement hand in hand
- Developed and tested IceCube technology
- Detailed measurement of ice down to 2.4 km
- Clear record in performance, reliability, time schedule and cost
- We know that we can build a km3 telescope

AMANDA Initial physics results and first Amanda-II data

Reconstruction Handles

	up/down	energy	source direction	time
Atmospheric v_{μ}	X			
Diffuse v, EHE events	X	X		
Point Sources: AGN,WIMPs	X	X	X	
GRBs	X	X	X	X

Point Sources Amanda II (2000)

Sensitivities
 calculated using
 background levels
 predicted from data

close to
 "ν/γ ~ 1 sensitivity"
 for some sources

Source\Sensitivity	muon (×10 ⁻¹⁵ cm ⁻² s ⁻¹⁾	v(×10 ⁻⁸ cm ⁻² s ⁻¹)
Markarian 421	1.8	1.1
Markarian 501	1.8	1.1
Crab	2.7	1.3
Cass. A	1.6	1.2
SS433	5.9	2.4
Cyg. X-3	1.7	1.1

Upper Limit on the diffuse flux of h.e. upward muon neutrinos

Search for diffuse v-flux in IceCube

Method:

 Assume a diffuse neutrino flux at the current AMANDA limit: dN/dE = 10⁻⁶*E⁻²/(cm² sec GeV sr)

→11,500 events /year

• The background is the atmospheric neutrino flux (after quality cuts):

→100,000 atmospheric v / year ~ 300 v per day!

number of events vs neutrino energy

Diffuse fluxes: theoretical bounds and experimental limits

EHE ($E \ge 10^{16} \text{ eV}$) Search

EHE events very bright; many PMTs detect multiple photons

Main background: muon "bundles" -> comparable N_{PMT} but less photons

Correlations to GRB

Background cuts can be loosened considerably \rightarrow high signal efficiency

Combined data give sensitivity ~ prediction!

Bonus Physics: Cosmic ray composition

SPASE air shower arrays

(+ · ·

1 km

2 km

conclusions

• AMANDA collected > 3,000 v's

• > 300,000 per year from IceCube

supernova watch for 100 years

• if history repeats, I did not tell you about IceCube science

• " you can see a lot by looking "

Antarctic Impulsive Transient Antenna (ANITA)

- ANITA Goal: Pathfinding mission for GZK neutrinos
- NASA SR&T start expected this October, launch in 2006

ANITA

Radio from EeV v's in Polar Ice

Antarctic Ice at f<1GHz, T<-20C
largest homogenous, RF-transmissive solid mass in the world

RICE Radio Detection in South Pole Ice

- Installed ~15 antennas few hundred m depth with AMANDA strings.
- Tests and data since 1996.
- Most events due to local radio noise, few candidates.
- Continuing to take data, and first limits prepared.
- Proposal to Piggyback with ICECUBE

Two cones show 3 dB signal strength

Examples

Sensitivity to cascades demonstrated with *in-situ* sources & down-going muon brems.

Detailed measurement of optical properties

- low absorption (in particular in UV !!)
- scattering dominates absorption
- mapping of dust layers

spase-amanda

AMANDA Is Working Well: 4 nus per day!

• Sensitivity to up-going muons demonstrated with CC atm. v_{μ} interactions:

 Sensitivity to cascades demonstrated with *in-situ* sources (see figs.) & down-going muon brems.

- AMANDA also works well with SPASE:
 - Calibrate AMANDA angular response
 - Do cosmic ray composition studies.

Ice Properties

- Most challenging initial problem, now essentially fully understood using in situ laser light sources
 - Bubble presence vs. depth
 - Dust layers
 - Drill-hole bubbles
- Fully simulated in the Monte Carlo

Quality parameters: Example 2: The smoothness

- The smoothness is a measure of how regular the photon density is distributed along the track.
- A well reconstructed muon track is more likely to have a high smoothness.

Quality parameters: Example 3: The angular difference between 2 fits

• A well reconstructed event has better agreement between a simple fit and a full likelihood reconstruction.

Quality cut

Search for point sources 97

EM & Hadronic Showers: "Cascades"

- Motivations for searching for cascades:
 - oscillations: $v_{\mu} \rightarrow v_{e,\tau}$
 - better E_v measurement
 - less cosmic-ray background
 - contained events give sensitivity over 4π
 - easier to calibrate
 - Glashow resonance
 - at E > 100 TeV, only v_{τ} can penetrate the Earth

• Drawbacks:

- effective volume smaller than for v_{μ}
- angular resolution worse than for tracks

Analysis gets easier and more competitive with muons as detector grows in size. Amanda-B \rightarrow Amanda-II

Neutrinos from GRBs

