The CDF exotics group indulged a little research inspired by string theory; looking for signs of curled-up extra space dimensions with a measureable size. In the spirit of such Quixotic research, I'd like to present a related issue.
What does a world look like if it has two dimensions for time instead of just one?
Your intuition undoubtedly says--”That's silly, it would have to look very different from ours, so why bother?”
Because it is an amusing way to spend time on the bus
Because some string theorists have come up with modest arguments that we do have two time dimensions. OK, I'll grant this is a pretty poor reason.
Because there are serious problems with invisible mass in cosmology, and visibility of matter on other timelines is probably going to be a problem—just as an intuitive guess.
This is just a preliminary look—I don't want to try to figure out what quantum mechanics would look like, for instance. And by macroscopic time dimensions I mean large enough to use a calendar to measure.
There are some questions about visibility, the speed of light, and causality that aren't don't have obvious answers. I will not go over all of the possibilities in this talk—in fact I have only gone over some of them as of today.
Questions:
Can you directly measure time dimensions orthogonal to your own? Probably not, but . . .
Can we preserve causality? We'll try . . .
Do objects on different timelines interact? Mighty dull theory if they don't, but probably more weakly as the angle between the timelines diverges. . . .
Does light always seem to move at the same speed? Not clear. My first guess is YES, because we don't seem to see it move faster.
Can a particle have negative energy? As long as it all adds up OK at the end I'm not going to be too picky . . .
Is it enough just to intersect one of the time coordinates? NO . . .
Will the measured angle between timelines vary with speed? We'll have to see . . .
Is the measurement of relative timeline angle symmetric? Probably . . .
I should be a bit more explicit about what I mean by the term timeline. Assume that the two time dimensions can be treated as a Euclidean plane: no curling up at measureable scales. An undisturbed object will evolve along a straight line in this plane. That straight line describing where the object is in each time dimensions is the timeline.
I've a few pictures to show examples. T1 and T2 are names for the axes of the time plane.
Look carefully at that second picture. B and A have positive time coordinates with respect to each other, as do A and C. But B and C do not, and we can create a causality-violating chain of events in which each pair of objects have positive time coordinates relative to each other.
Thus if we want to preserve causality, the time axes have to have some physical significance. And so the phase space gets smaller the closer a timeline is to an axis.
OK, this is more than a little weird. We can give up causality and rely on small interaction rates to keep the world polite, if we want to. Let's plow on undeterred.
I use a semicolon to separate the space components from the time components when writing things down.
The first approach I tried is the old faithful Einsteinian formalism. Start with an invariant. Assume that transforms to different reference frames are linear.
A little dull algebra gives you a new type of boost, with this as the final version (neglecting y and z components).
But after having my eyes glaze over trying to figure out how to interpret this, I decided to ask what you'd actually see if you did the obvious thing: shine a flashlight at an object and see what it looks like. So fire off a photon at an object on another timeline and look for its reflection. This assumes that you can emit and absorb photons with different timelines: but if you can't then you can't see anything on a different timeline, because even the sensation of pressure is mediated by photons. The simplest handle you have on measurement is the time (as measured by you) that it takes for the photon to go and return.
In ordinary special relativity this results in simple linear relations between measured time in both reference frames, and a simple way of estimating the speed of the remote object. (Emit two photons and look at the time difference between reception of their reflections.)
In what follows I'll be assuming that the speed of light is always measured to be c. I do so because I'm not familiar with any observations that suggest superluminal speeds. Obviously you get different results if things can go faster than light.
I step through a few details of what happens when you can view orthogonal time components in the next 4 slides. The bottom line is that you can find simple relationships between the measured times in the two systems if you can see the other object at all. For some values of the relative timeline angle and the speed of the remote object you wind up taking the square root of a negative quantity: the remote object is not visible. In particular, if the remote object is at rest, but evolving over a different timeline angle, you don't see it.
I don't actually expect to be able to measure orthogonal time components directly, so I don't think this is a realistic model, but it suggests that our intuitition was correct: that there are problems observing things on different timelines.
The next set of slides consider two objects at rest, with parallel but not identical timelines. The remote object has a constant non-zero time component.
Set up the situation first
Look at when the photon can interact. If the object is close in space but far away in orthogonal time, you can't see it, even if the timelines are parallel.
Notice that since we assume that the speed of light is constant, the remote object looks closer than it really is.
We can calculate the time if the remote object is in motion as well.
And we can calculate the results if the remote object has a non-parallel timeline. The result is more complex, of course, but the fundamental point that you cannot always observe objects remains.
Another point to note is that the transformations are not linear in beta, and so the Einsteinian formalism won't work for transformations.
Another interesting sidelight is that because of this nonlinearity, objects on different timelines appear to undergo an acceleration. I tried plugging in numbers for the Pioneer spacecraft. With those assumptions the acceleration varies with distance (as 1/x), while the Pioneer anomaly was a constant change in acceleration. The sign is correct, though—it would appear to be slowing down. This exercise was just for fun: I can't think of any good reason why a Pioneer would start evolving along a different timeline.
Also because of the nonlinearity, it turns out that you can find an independent estimate for beta using simultaneous measurements from A from a point with a non-zero “y” coordinate.
